
Exercises for GPU – CUDA

From book: Programming Massively Parallel Processors – Kirk, Hwu

3.5. If we need to use each thread to calculate one output element of a vector addition, what would

be the expression for mapping the thread/block indices to data index:

(A) i = threadIdx.x + threadIdx.y

(B) i = blockIdx.x + threadIdx.x

(C) i = blockIdx.x*blockDim.x + threadIdx.x

(D) i = blockIdx.x*threadIdx.x

3.6 We want to use each thread to calculate two (adjacent) elements of a vector addition. Assume

that a variable i should be the index for the first element to be processed by a thread. What would

be the expression for mapping the thread/block indices to data index?

(A) i = blockIdx.x*blockDim.x + threadIdx.x + 2

(B) i = blockIdx.x*threadIdx.x*2

(C) i = (blockIdx.x*blockDim.x + threadIdx.x)*2

(D) i = blockIdx.x*threadIdx.x*2 + threadIdx.x

3.7. For a vector addition, assume that the vector length is 2000, each thread calculates one output

element, and the thread block size is 512 threads. How many threads will be in the grid?

(A) 2000

(B) 2024

(C) 2048

(D) 2096

4.1. If a CUDA device’s SM (streaming multiprocessor) can take up to 1536 threads and up to 4

thread blocks. Which of the following block configuration would result in the most number of

threads in the SM?

(A) 128 threads per block

(B) 256 threads per block

(C) 512 threads per block

(D) 1024 threads per block

4.4. You need to write a kernel that operates on an image of size 400x900 pixels. You would like to

assign one thread to each pixel. You would like your thread blocks to be square and to use the

maximum number of threads per block possible on the device (your device has compute capability

3.0). How would you select the grid dimensions and block dimensions of your kernel?

4.5. For the previous question, how many idle threads do you expect to have?

4.7. Indicate which of the following assignments per multiprocessor is possible. In the case where

it is not possible, indicate the limiting factor(s).

a) 8 blocks with 128 threads each on a device with compute capability 1.0

b) 8 blocks with 128 threads each on a device with compute capability 1.2

c) 8 blocks with 128 threads each on a device with compute capability 3.0

d) 16 blocks with 64 threads each on a device with compute capability 1.0

e) 16 blocks with 64 threads each on a device with compute capability 1.2

f) 16 blocks with 64 threads each on a device with compute capability 3.0

Technical specifications Compute capability (version)

1.0 1.1 1.2 1.3 2.x 3.0 3.5 3.7 5.0 5.2

Maximum dimensionality of grid of thread

blocks

2 3

Maximum x-dimension of a grid of thread

blocks

65535 2
31

-1

Maximum y-, or z-dimension of a grid of thread

blocks

65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 512 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Warp size 32

Maximum number of resident blocks per

multiprocessor

8 16 32

Maximum number of resident warps per

multiprocessor

24 32 48 64

Maximum number of resident threads per

multiprocessor

768 1024 1536 2048

Number of 32-bit registers per multiprocessor 8 K 16 K 32 K 64 K 128 K 64 K

Maximum number of 32-bit registers per

thread

128 63 255

Maximum amount of shared memory per

multiprocessor

16 KB 48 KB 112

KB

64

KB

96

KB

Number of shared memory banks 16 32

Amount of local memory per thread 16 KB 512 KB

Constant memory size 64 KB

Technical specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5 3.7 5.0 5.2

Compute capability (version)

CUDA Thread Indexing Cheatsheet

1D grid of 1D blocks

__device__ int getGlobalIdx_1D_1D()

{

 return blockIdx.x *blockDim.x + threadIdx.x;

}

1D grid of 2D blocks

__device__ int getGlobalIdx_1D_2D()

{

 return blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;

}

1D grid of 3D blocks

__device__ int getGlobalIdx_1D_3D()

{

 return blockIdx.x * blockDim.x * blockDim.y * blockDim.z

 + threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x;

}

2D grid of 1D blocks

__device__ int getGlobalIdx_2D_1D()

{

 int blockId = blockIdx.y * gridDim.x + blockIdx.x;

 int threadId = blockId * blockDim.x + threadIdx.x;

 return threadId;

}

2D grid of 2D blocks

 __device__ int getGlobalIdx_2D_2D()

{

 int blockId = blockIdx.x + blockIdx.y * gridDim.x;

 int threadId = blockId * (blockDim.x * blockDim.y) + (threadIdx.y * blockDim.x) +

threadIdx.x;

 return threadId;

}

2D grid of 3D blocks

__device__ int getGlobalIdx_2D_3D()

{

 int blockId = blockIdx.x

 + blockIdx.y * gridDim.x;

 int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)

 + (threadIdx.z * (blockDim.x * blockDim.y))

 + (threadIdx.y * blockDim.x)

 + threadIdx.x;

 return threadId;

}

3D grid of 1D blocks

__device__ int getGlobalIdx_3D_1D()

{

 int blockId = blockIdx.x

 + blockIdx.y * gridDim.x

 + gridDim.x * gridDim.y * blockIdx.z;

 int threadId = blockId * blockDim.x + threadIdx.x;

 return threadId;

}

3D grid of 2D blocks

__device__ int getGlobalIdx_3D_2D()

{

 int blockId = blockIdx.x

 + blockIdx.y * gridDim.x

 + gridDim.x * gridDim.y * blockIdx.z;

 int threadId = blockId * (blockDim.x * blockDim.y)

 + (threadIdx.y * blockDim.x)

 + threadIdx.x;

 return threadId;

}

3D grid of 3D blocks

__device__ int getGlobalIdx_3D_3D()

{

 int blockId = blockIdx.x

 + blockIdx.y * gridDim.x

 + gridDim.x * gridDim.y * blockIdx.z;

 int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)

 + (threadIdx.z * (blockDim.x * blockDim.y))

 + (threadIdx.y * blockDim.x)

 + threadIdx.x;

 return threadId;

}

