

Advanced and parallel architectures

Prof. A. Massini

June 13, 2017

Part B

Student’s Name

Matricola number

Exercise 1a (3 points)

Exercise 1b (3 points)

Exercise 2 (8 points)

Exercise 3 (4 points)

Exercise 4 (3 points)

Exercise 5 (3points)

Exercise 6 (4 points)

Exercise 7 (4 points)

Total (32 points)

Exercise 1a (3 points) – Interconnection Networks – CLOS

Design a Clos network of size 150 x 150, using in the first stage modules having 24 inputs. Consider both cases, strictly non-blocking and rearrangeable network.

Exercise 1b (3 points) – Interconnection Networks – Comparison Clos-Crossbar

Compare the cost of the crossbar 150 x 150 and the Clos network, strictly non-blocking and rearrangeable, designed in the previous point.

Exercise 2 (4+2+2 points) - GPU & CUDA

You need to write a kernel that operates on a 2D matrix of size
15000x4500. You would like to assign one thread to each matrix
element. You would like your thread blocks to use the maximum
number of threads per block possible on your device, having compute
capability 3.0.
a) How would you select the dimensions of a 2D grid and 2D
blocks for your kernel? Consider the two cases of rectangular and
square blocks
b) How would you select the dimensions of a 3D grid and 2D
blocks for your kernel?
c) What is the best choice for grid and block dimensions with
respect to the number of idle threads?

Technical specifications Compute capability (version)

1.0 1.1 1.2 1.3 2.x 3.0 3.5 3.7 5.0 5.2

Maximum dimensionality of grid of thread blocks 2 3

Maximum x-dimension of a grid of thread blocks 65535 231-1

Maximum y-, or z-dimension of a grid of thread blocks 65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 512 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Warp size 32

Maximum number of resident blocks per multiprocessor 8 16 32

Maximum number of resident warps per multiprocessor 24 32 48 64

Maximum number of resident threads per multiprocessor 768 1024 1536 2048

Technical specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5 3.7 5.0 5.2

Compute capability (version)

Exercise 3 (4 points) - Cache coherence

Consider a multicore multiprocessor implemented as a symmetric shared-memory architecture, as illustrated in the figure.

Each processor has a single, private cache with coherence maintained using the snooping coherence protocol. Each cache is direct-mapped, with four blocks each holding two
words. The coherence states are denoted M, S, and I (Modified, Shared, and Invalid).

Each part of this exercise specifies a

sequence of one or more CPU

operations of the form:

P#: <op> <address> [<value>]

where P# designates the CPU (e.g.,
P0), <op> is the CPU operation (e.g.,
read or write), <address> denotes
the memory address, and <value>
indicates the new word to be
assigned on a write operation.

For each part of this exercise,
assume the initial cache and
memory state as illustrated in the
figure.

Show in the table for the results:

- miss/hit

- the coherence state before the
action
- the CPU processor Pi and cache
block Bj
- the changed state (i.e., coherence
state, tags, and data) of the caches
and memory after the given action.

Specify the value returned by a read operation.

P0

 Coherency
state

Address
tag

Data

B0 M 116 00 28

B1 M 120 00 32

B2 I 108 00 12

B3 S 112 00 32

P1

 Coherency
state

Address
tag

Data

B0 I 116 00 08

B1 I 104 00 08

B2 S 108 00 20

B3 S 112 00 32

P3

 Coherency
state

Address
tag

Data

B0 I 100 00 12

B1 M 104 00 28

B2 S 108 00 20

B3 M 128 00 12

On chip interconnect (with coherency manager)

Memory

Address Data

… … …

100 00 12

104 00 04

108 00 08

112 00 16

116 00 20

120 00 28

124 00 36

… … …

P2

 Coherency
state

Address
tag

Data

B0 M 100 00 16

B1 I 120 00 28

B2 S 108 00 20

B3 I 128 00 16

a) P2: write 112  28

hit/miss

state
before

Pi.Bj (state, tag, datawords)

b) P1: write 124  24

hit/miss state
before

Pi.Bj (state, tag, datawords)

c) P3: read 120

hit/miss state
before

Pi.Bj (state, tag, datawords)

d) P0: write 100  32

hit/miss state
before

Pi.Bj (state, tag, datawords)

Comments

Exercise 4 (3 points) – Interconnection networks – log N MIN

Complete the scheme Baseline networks of size N=8. Show if it can realize the permutation 









52713640

67452301
P showing the switch setting obtained using the self-routing.

Exercise 5 (3 points) – Interconnection networks – (2 log N - 1) MIN

Complete the scheme of the Butterfly-Butterfly-1. Show the switch setting to realize permutation 









52713640

67452301
P according to the looping algorithm.

Exercises 6 (4 points) Amdhal Law

The following measurements are recorded with respect to the different instruction classes for the instruction set running a given set of benchmark programs:

Instruction Type Instruction Count (millions) Cycles per Instruction

Arithmetic and logic
Load and store
Branch
Others

6
8
4
6

4
2
4
4

Assume that “Arithmetic and logic” instructions can be modified so that they take 3 cycles per instruction instead of 4, and “Branch” instructions can be modified so

that they take 2 cycle per instruction instead of 4 as in the table. Compute the speedup obtained by introducing only one enhancement and both enhancements using

the Amdhal law.

Exercises 7 (4 points) Performance equation

Suppose we have made the following measurements, where we are considering Arithmetic instructions and FP (Floating Point):

Frequency of Arithmetic operations = 35%
Average CPI of Arithmetic operations = 4.0
Average CPI of other instructions = 2.5

Frequency of FP operations = 15%
CPI of FP = 8.0

Assume that the two design alternatives are to decrease the CPI of FP to 3.0 or to decrease the average CPI of Arithmetic operations to 2.5.

Compare these two design alternatives using the processor performance equation, and compute the speedup in both cases.

