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Residue number systems

Residue number systems are based on the congruence
relation:

» Two integers a and b are said to be congruent modulo m if m
divides exactly the difference of aand b

» We write a = b (mod m)

For example

10 =7 (mod 3)

10 = 4 (mod 3)

» 10=1 (mod 3)

» 10 =-2 (mod 3)

The number m is a modulus or base, and we assume that its
values exclude 1, which produces only trivial congruences
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Residue number systems

Infact:
If g and r are the quotient and remainder, respectively, of
the integer division of aby m - thatis:a=gm +r

— then, by definition, we have a = r (mod m)

The number r is said to be the residue of a with respect to
m, and we shall usually denote this by r = |a| ,

The set of m smallest values, {0; 1, 2, ... ;m — 1}, that the
residue may assume is called the set of /east positive

residues modulo m
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Residue number systems

Suppose we have a set, {m,;m,; ...,m,}, of N positive and
pairwise relatively prime moduli

Let M be the product of the moduli M=m xm,x...xm,

We write the representation in the form <x1; x2, ...; xN>,
where xi = | X| ., and we indicate the relationship
between X and its residues by writing X = <x1; x2, ...; xN>

Example: in the residue system {2, 3, 5}, M=30 and
8 2 <0, 2, 3>
16 2 <0, 1, 1>
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Residue number systems

» Every number X < M has a unique representation in the
residue number system, which is the sequence of
residues <|X|,.:1<i< N>

» A partial proof of uniqueness is as follows:

» Suppose X; and X, are two different numbers with the same
residue representation

» Then | X, |,,=| X, |,;,andso | X;-X, |, =0
» Therefore X, - X, is the least common multiple (lem) of mi

mi ?

» But if the mi are relatively prime, then their lem is M, and it
must be that X, - X, is a multiple of M

» So it cannot be that X, <M and X, <M

» Therefore, the representation <|X|,;: 1 <i< N>is unique and

.......... may-be taken.as.the representationof X'
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Residue number systems

The number M is called the dynamic range of the RNS,

because the number of numbers that can be represented
is M

For unsigned numbers, that range is [O;M - 1]

Representations in a system in which the moduli are not
pairwise relatively prime will be not be unique: two or
more numbers will have the same representation
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Residue number systems

We defined standard residue number systems

There are also examples of non-standard RNS, the most
common of which are the redundant residue number
systems

Such a system is obtained by, essentially, adding extra
(redundant) moduli to a standard system

The dynamic range then consists of a legitimate range,
defined by the non-redundant moduli and an illegitimate
range

Redundant number systems of this type are especially
useful in fault-tolerant computing
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Residue number systems

lgnoring other, more practical, issues, the best moduli
are probably prime numbers

For computer applications, it is important to have
modauli-sets that facilitate both efficient representation
and balance, meaning that the differences between the
moduli should be as small as possible
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Residue number systems

Take, for example, the choice of 13 and 17 for the moduli
that are adjacent prime numbers

The dynamic range is 221

With a straightforward binary encoding:
» 4 bits will be required to represent 13
» 5 bits will be required to represent 17
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Residue number systems

The representational efficiency is:
» In the first case 13/16
» In the second case is 17/32

If instead we chose 13 and 16, then the representational
efficiency:

» isimproved to 16/16 in the second case

» but at the cost of reduction in the range (down to 208)

With the better balanced pair, 15 and 16, we would have:
» a better efficiency 15/16 and 16/16
» A greater range: 240

p 12 Advanced and Parallel Architectures 2016/2017



Residue number systems

It is also useful to have moduli that simplify the
implementation of the arithmetic operations

This means that arithmetic on residue digits should not
deviate too far from conventional arithmetic, which is
just arithmetic modulo a power of two

A common choice of prime modulus that does not
complicate arithmetic and which has good
representational efficiency ismi=2"-1
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Residue number systems

Not all pairs of numbers of the form 2/ — 1 are relatively
prime

It can be shown that that 2/ - 1 and 2% - 1 are relatively
prime if and only if j and k are relatively prime

For example:

» 24-1=15 15=3x5

» 2°-1=31 31 prime

» 26-1=63 63=3x7

» 27-1=127 127 prime

» 28-1= 255 255=3x5x17

p 14 Advanced and Parallel Architectures 2016/2017



Residue number systems

Many moduli sets are based on these choices, but there
are other possibilities; for example, moduli-sets of the
form {2"-1, 2"; 2" +1} are among the most popular in use

At least four considerations for the selection of moduli

» The selected moduli must provide an adequate range whilst
also ensuring that RNS representations are unique

» The efficiency of binary representations; a balance between
the different moduli in a given moduli-set is also important

» The implementations of arithmetic units for RNS should to
some extent be compatible with those for conventional
arithmetic, especially given the legacy that exists for the latter

» The size of individual moduli
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Residue number systems

One of the primary advantages of RNS is that certain
RNS-arithmetic operations do not require carries
between digits

But, this is so only between digits

Since a digit is ultimately represented in binary, there will
be carries between bits, and therefore it is important to
ensure that digits (= the moduli) are not too large
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Residue number systems

Small digits make it possible to realize cost-effective
table-lookup implementations of arithmetic operations

But, on the other hand, if the moduli are small, then a
large number of them may be required to ensure a
sufficient dynamic range

The choices depend on applications and technologies
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Residue number systems

Negative numbers

As with the conventional number systems, any one of the
radix complement, diminished-radix complement, or sign-
and-magnitude notations may be used in RNS

The merits and drawbacks of choosing one over the other
are similar to those for the conventional notations

However, the determination of sign is much more
difficult with the residue notations, as is magnitude-
comparison

This problem imposes many limitations on the application
of RNS and we deal with just the positive numbers
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Residue number systems

Basic arithmetic

Addition/subtraction and multiplication are easily
implemented with residue notation, depending on the
choice of the moduli

Division is much more difficult due to the difficulties of
sign-determination and magnitude-comparison
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Residue number systems

Basic arithmetic

Residue addition is carried out by individually adding
corresponding digits

A carry-out from one digit position is not propagated into
the next digit position

As an example, with the moduli-set {2, 3, 5, 7}:
» the representation of 17 is<1; 2; 2, 3>
» the representation of 19is<1;1; 4, 5>

» adding the two residue numbers yields <0; O; 1, 1>, which is
the representation for 36 in that system
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Residue number systems

Basic arithmetic

Subtraction may be carried out by negating (in whatever
is the chosen notation) the subtrahend and adding to the
minuend

This is straightforward for numbers in diminished-radix
complement or radix complement notation

For sign-and-magnitude representation, a slight
modification of the algorithm for conventional sign-and-
magnitude is necessary:

» the sign digit is fanned out to all positions

» addition proceeds as in the case for unsigned numbers but
with a conventional sign-and-magnitude algorithm.
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Residue number systems

Basic arithmetic

Multiplication too can be performed simply by
multiplying corresponding residue digit-pairs, relative to
the modulus for their position = multiply digits and
ignore or adjust an appropriate part of the result

As an example, with the moduli-set {2, 3, 5, 7}:
» 17 2<1;2;2; 3>

» 19 > <1;1;4; 5>

» their product, 323 is<1; 2, 3, 1>
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Residue number systems

Basic arithmetic

Basic fixed-point division consists, essentially, of a
sequence of subtractions, magnitude-comparisons, and
selections of the quotient-digits

But comparison in RNS is a diffcult operation, because
RNS is not positional or weighted

Example:

» moduli-set {2, 3, 5, 7}

» the number represented by <0; 0; 1, 1> is almost twice that
represented by <1; 1, 4; 5>

» but this is far from apparent
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Residue number systems

Conversion

The most direct way to convert from a conventional
representation to a residue one is to divide by each of the

given moduli and then collect the remainders, forward
conversion

This is a costly operation if the number is represented in
an arbitrary radix and the moduli are arbitrary

If number is represented in radix-2 (or a radix that is a
power of two) and the moduli are of a suitable form (e.g.
2"-1), then these procedures that can be implemented
with more efficiency
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Residue number systems

Conversion

The conversion from residue notation to a conventional
notation - reverse conversion - is more difficult
(conceptually, if not necessarily in the implementation)
and so far has been one of the major impediments to the
adoption use of RNS

» One way in which it can be done is to assign weights to the
digits of a residue representation and then produce a
positional (weighted) mixed-radix representation that can
then be converted into any conventional form

» Another approach involves the use of the Chinese Remainder
Theorem, which is the basis for many algorithms for
conversion from residue to conventional notation
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Residue number systems

Base extension

A frequently occurring computation is that of base
extension, which is defined as:
» Given a residue representation <|X|,_,,; |X|,.,, -, |X|,,>and

an additional set of moduli, m,,;m,,; ... ;My.« such that
m;m,; ... My;My, . ... My, are all pairwise relatively prime
» we want to compute the residue representation <| X| | X|
S s X L [ X st o 7 1X ] e
Base extension is useful in dealing with the diffcult
operations of reverse conversion, division, dynamic-range
extension, magnitude-comparison, overflow-detection,

and sign-determination

ml ; m2
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Residue number systems

Example: multiply-accumulate operation over a sequence of
scalars (frequent operation in digital-signal processing)

» Let the moduli-set be {2, 3, 5, 7} with dynamic range 210
» We wish to evaluate the sum-of-products 7x3+ 16 x5+ 47 x 2
» The residue-sets are

22><0;2;2;,2>

32><1;0;3;3>

5—><1;2;0; 5>

72><1;1;2;0>

16 > <0; 1; 1; 2>

47 2> <1; 2; 2; 5>
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Residue number systems

Example: multiply-accumulate operation over a sequence of
scalars (frequent operation in digital-signal processing)

We proceed by first computing the products by multiplying
the corresponding residues.

» 7x3 2> < |1x1]|, |1x0];5 |2x3|; |0x3|,>=<1,0, 1, 0>

» 16 x5 2> < |Ox1|, |1x2]|; |1x0]|; |2x5],>=<0, 2,0, 3>

» 47 x2 2 < |1x0], |2x2]|; |2x2]| |5x2|,>=<0, 1, 4, 3>

The sum of products can be evaluated by adding the
corresponding residues:

» <|1+0+0]|, [0+2+1|; |1+0+4 | |0+3+3],>=<1,0,0, 6>
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Circuit area and time evaluation
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Circuit area and time

» To discuss about the time and area, it is useful the
analytical model (unit-gate model) presented in

» A. Tyagi, A reduced-area scheme for carry-select adders, |IEEE
Trans. Comput., 1993

» They use a simplistic model for gate-count and gate-delay:
» Each gate except EX-OR counts as one elementary gate
» An EX-OR gate is counted as two elementary gates, because in
static (restoring) CMOS, an EX-OR gate is implemented as two
elementary gates (NAND)

» The delay through an elementary gate is counted as one gate-
delay unit, but an EX-OR gate is two gate-delay units
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Circuit area and time

In this model we are ignoring the fanin and fanout of a gate
This can lead to unfair comparisons for circuits containing
gates with a large difference in fanin or fanout

» For instance, gates in the CLA adder have different fanin

» A carry-ripple adder has no gates with fanin and fanout greater
than 2

The best comparison for a VLSI implementation is
actual area and time

The gate-count and gate-delay comparisons may not
always be consistent with the area-time comparisons
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Circuit area and time

» To simplify we consider:

» Any gate (but the EX-OR) counts as one gate for both area and
delay 2 A__,.and T,

gate gate

» An exclusive-OR gate counts as two elementary gates for both
area and delay =2 A;y o =2A, .. and Tgy or =2T

gate gate

» An m-input gate counts as m — 1 gates for area and log,m
gates for delay 2 A =(m-1)A_,.and T =log,mT

m-gate gate m-gate gate
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Circuit area and time

» A half adder (HA) has:
» delay 2 unit gates 2> T,,=2T

gate

» area 3 unitgates 2> Ay =3 A,
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Circuit area and time

A half adder (HA) has:
» delay 2 unit gates 2 T,,=2T

gate
» area 3unitgates 2> A, =3A

A full adder (FA) has:
» delay 4 unit gates 2 T,=4T

gate

» area 7 unitgates 2> A,=7A

gate

gate

A —o—)

A B¢ S
. sum - t
D— CARRY Cout
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Circuit area and time

» A half adder (HA) has:
» delay 2 unit gates 2> T,,=2T

gate
» area 3unitgates 2> A, =3A

» A full adder (FA) has:
» delay 4 unitgates 2 Tp=4T,_ .. = 2T,

gate

» area 7unitgates 2> A= 7A,_ .= 2A,+A

gate

gate

gate

Xy

A_
B B HA
| 1
CDUT
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Circuit area and time

A carry-ripple adder for n-bits operands has:

» delay Tepagder 2 Tcradder=N Tea=2nTya=4nT

gate
> area ACR-adder 9 ACR-adder= n AFA =2n AHA+ n Agate =/n Agate
8n.1 Ppa af Tz -Tl fl -510 To
Cn Cn-1 C3 Co Ci Co

<+—— Full Adder f&—— -+ «—— Full Adder j«—— Full Adder |[«—— Full Adder j&——
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