Advanced Parallel ArchitectureLesson 9

Annalisa Massini - 2016/2017

Residue number systems Circuit metrics: area and delay

- Residue number systems are based on the congruence relation:
 - ▶ Two integers *a* and *b* are said to be *congruent modulo m* if *m* divides exactly the difference of *a* and *b*
 - \blacktriangleright We write $a \equiv b \pmod{m}$
- For example
 - \blacktriangleright 10 \equiv 7 (mod 3)
 - \blacktriangleright 10 \equiv 4 (mod 3)
 - \blacktriangleright 10 \equiv 1 (mod 3)
 - \blacktriangleright 10 \equiv -2 (mod 3)
- ▶ The number *m* is a *modulus* or *base*, and we assume that its values exclude 1, which produces only trivial congruences

- Infact:
- If **q** and **r** are the **quotient** and **remainder**, respectively, of the integer division of **a** by **m** that is: **a** = **q**:**m** + **r**
 - \rightarrow then, by definition, we have $a \equiv r \pmod{m}$
- The number r is said to be the *residue* of a with respect to m, and we shall usually denote this by $r = |a|_m$
- ► The set of m smallest values, {0; 1; 2; ...;m 1}, that the residue may assume is called the set of least positive residues modulo m

- Suppose we have a set, $\{m_1; m_2; ...; m_N\}$, of N positive and pairwise **relatively prime** moduli
- Let M be the product of the moduli $M=m_1xm_2x...xm_N$
- We write the representation in the form $\langle x1; x2; ...; xN \rangle$, where $xi = |X|_{mi}$, and we indicate the relationship between X and its residues by writing $X \approx \langle x1; x2; ...; xN \rangle$
- Example: in the residue system {2, 3, 5}, M=30 and

- Every number X < M has a **unique representation** in the residue number system, which is the sequence of residues $< |X|_{mi} : 1 \le i \le N >$
- A partial proof of uniqueness is as follows:
 - ▶ Suppose X_1 and X_2 are two different numbers with the **same** residue representation
 - ▶ Then $|X_1|_{mi} = |X_2|_{mi}$, and so $|X_1 X_2|_{mi} = 0$
 - ▶ Therefore $X_1 X_2$ is the least common multiple (**lcm**) of *mi*
 - ▶ But if the mi are relatively prime, then their lcm is M, and it must be that $X_1 X_2$ is a multiple of M
 - ▶ So it cannot be that $X_1 < M$ and $X_2 < M$
 - ▶ Therefore, the representation $< |X|_{mi} : 1 \le i \le N >$ is unique and may be taken as the representation of X

The number M is called the dynamic range of the RNS, because the number of numbers that can be represented is M

- For unsigned numbers, that range is [0;M 1]
- Representations in a system in which the moduli are not pairwise relatively prime will be not be unique: two or more numbers will have the same representation

Example

	Relatively prime			Relatively non-prime		
N	m1=2	m2=3	m3=5	m1=2	m2=4	m3=6
0	0	0	0	0	0	0
1	1	1	1	1	1	1
2	0	2	2	0	2	2
3	1	0	3	1	3	3
4	0	1	4	0	0	4
5	1	2	0	1	1	5
6	0	0	1	0	2	0
7	1	1	2	1	3	1
8	0	2	3	0	0	2
9	1	0	4	1	1	3
10	0	1	0	0	2	4
11	1	2	1	1	3	5
12	0	0	2	0	0	0
13	1	1	3	1	1	1
14	0	2	4	0	2	2
15	1	0	0	1	3	3

- We defined standard residue number systems
- There are also examples of non-standard RNS, the most common of which are the redundant residue number systems
- Such a system is obtained by, essentially, adding extra (redundant) moduli to a standard system
- The dynamic range then consists of a legitimate range, defined by the non-redundant moduli and an illegitimate range
- Redundant number systems of this type are especially useful in fault-tolerant computing

- Ignoring other, more practical, issues, the best moduli are probably prime numbers
- For computer applications, it is important to have moduli-sets that facilitate both efficient representation and balance, meaning that the differences between the moduli should be as small as possible

- Take, for example, the choice of 13 and 17 for the moduli that are adjacent prime numbers
- The dynamic range is 221
- With a straightforward binary encoding:
 - ▶ 4 bits will be required to represent 13
 - ▶ 5 bits will be required to represent 17

- The representational efficiency is:
 - ▶ In the first case 13/16
 - ▶ In the second case is 17/32
- If instead we chose 13 and 16, then the representational efficiency:
 - ▶ is improved to 16/16 in the second case
 - but at the cost of reduction in the range (down to 208)
- With the better balanced pair, 15 and 16, we would have:
 - ▶ a better efficiency 15/16 and 16/16
 - ▶ A greater range: 240

- It is also useful to have *moduli that simplify* the implementation of the *arithmetic operations*
- This means that arithmetic on residue digits should not deviate too far from conventional arithmetic, which is just arithmetic modulo a power of two
- A common choice of prime modulus that does not complicate arithmetic and which has good representational efficiency is mi = 2ⁱ − 1

- Not all pairs of numbers of the form 2ⁱ 1 are relatively prime
- It can be shown that that 2^{j} 1 and 2^{k} 1 are relatively prime if and only if j and k are relatively prime

For example:

$$\triangleright$$
 2⁵-1= 31 31 *prime*

$$\triangleright$$
 2⁶-1= 63 63=3x7

$$\triangleright$$
 2⁷-1= 127 127 prime

$$\triangleright$$
 28-1= 255 255=3x5x17

- Many moduli sets are based on these choices, but there are other possibilities; for example, moduli-sets of the form $\{2^n-1; 2^n; 2^n+1\}$ are among the most popular in use
- At least four considerations for the selection of moduli
 - ▶ The selected moduli must provide an **adequate range** whilst also ensuring that RNS representations are **unique**
 - ▶ The efficiency of binary representations; a balance between the different moduli in a given moduli-set is also important
 - ➤ The implementations of arithmetic units for RNS should to some extent be compatible with those for conventional arithmetic, especially given the legacy that exists for the latter
 - The size of individual moduli

- One of the primary advantages of RNS is that certain RNS-arithmetic operations do not require carries between digits
- ▶ But, this is so only between *digits*
- Since a digit is ultimately represented in binary, there will be carries between bits, and therefore it is important to ensure that digits (→ the moduli) are not too large

- Small digits make it possible to realize cost-effective table-lookup implementations of arithmetic operations
- But, on the other hand, if the moduli are small, then a large number of them may be required to ensure a sufficient dynamic range
- The choices depend on applications and technologies

Negative numbers

- As with the conventional number systems, any one of the radix complement, diminished-radix complement, or signand-magnitude notations may be used in RNS
- The merits and drawbacks of choosing one over the other are similar to those for the conventional notations
- However, the determination of sign is much more difficult with the residue notations, as is magnitudecomparison
- This problem imposes many limitations on the application of RNS and we deal with just the positive numbers

Basic arithmetic

 Addition/subtraction and multiplication are easily implemented with residue notation, depending on the choice of the moduli

 Division is much more difficult due to the difficulties of sign-determination and magnitude-comparison

- Residue addition is carried out by individually adding corresponding digits
- A carry-out from one digit position is not propagated into the next digit position
- As an example, with the moduli-set {2; 3; 5; 7}:
 - ▶ the representation of 17 is <1; 2; 2; 3>
 - ▶ the representation of 19 is <1; 1; 4; 5>
 - ▶ adding the two residue numbers yields <0; 0; 1; 1>, which is the representation for 36 in that system

- Subtraction may be carried out by negating (in whatever is the chosen notation) the subtrahend and adding to the minuend
- This is straightforward for numbers in diminished-radix complement or radix complement notation
- For sign-and-magnitude representation, a slight modification of the algorithm for conventional sign-andmagnitude is necessary:
 - the sign digit is fanned out to all positions
 - ▶ addition proceeds as in the case for unsigned numbers but with a conventional sign-and-magnitude algorithm.

- Multiplication too can be performed simply by multiplying corresponding residue digit-pairs, relative to the modulus for their position → multiply digits and ignore or adjust an appropriate part of the result
- ▶ As an example, with the moduli-set {2; 3; 5; 7}:
 - 17 → <1; 2; 2; 3>
 - ▶ 19 → <1; 1; 4; 5>
 - their product, 323 is <1; 2; 3; 1>

- Basic fixed-point division consists, essentially, of a sequence of subtractions, magnitude-comparisons, and selections of the quotient-digits
- But comparison in RNS is a diffcult operation, because RNS is not positional or weighted
- Example:
 - moduli-set {2; 3; 5; 7}
 - ▶ the number represented by <0; 0; 1; 1> is almost twice that represented by <1; 1; 4; 5>
 - but this is far from apparent

Conversion

- The most direct way to convert from a conventional representation to a residue one is to divide by each of the given moduli and then collect the remainders, forward conversion
- This is a costly operation if the number is represented in an arbitrary radix and the moduli are arbitrary
- If number is represented in radix-2 (or a radix that is a power of two) and the moduli are of a suitable form (e.g. 2ⁿ-1), then these procedures that can be implemented with more efficiency

Conversion

- The conversion from residue notation to a conventional notation - reverse conversion - is more difficult (conceptually, if not necessarily in the implementation) and so far has been one of the major impediments to the adoption use of RNS
 - One way in which it can be done is to assign weights to the digits of a residue representation and then produce a positional (weighted) mixed-radix representation that can then be converted into any conventional form
 - ► Another approach involves the use of the Chinese Remainder Theorem, which is the basis for many algorithms for conversion from residue to conventional notation

Base extension

- A frequently occurring computation is that of *base extension*, which is defined as:
 - ▶ Given a residue representation $<|X|_{m_1}$; $|X|_{m_2}$; ...; $|X|_{m_N}>$ and an additional set of moduli, m_{N+1} ; m_{N+2} ; ...; m_{N+K} , such that m_1 ; m_2 ; ... m_N ; m_{N+1} ; ...; m_{N+K} are all pairwise relatively prime
 - we want to compute the residue representation $<|X|_{m1}$; $|X|_{m2}$; ...; $|X|_{mN}$; $|X|_{mN+1}$, ...; $|X|_{mN+K}$ >
- Base extension is useful in dealing with the diffcult operations of reverse conversion, division, dynamic-range extension, magnitude-comparison, overflow-detection, and sign-determination

- **Example**: multiply-accumulate operation over a sequence of scalars (frequent operation in digital-signal processing)
 - ▶ Let the moduli-set be {2; 3; 5; 7} with dynamic range 210
 - We wish to evaluate the sum-of-products $7 \times 3 + 16 \times 5 + 47 \times 2$
 - ▶ The residue-sets are

 - 3 → <1; 0; 3; 3>
 - > 5 → <1; 2; 0; 5>
 - 7 → <1; 1; 2; 0>
 - 16 → <0; 1; 1; 2>
 - → 47 → <1; 2; 2; 5>

- **Example**: multiply-accumulate operation over a sequence of scalars (frequent operation in digital-signal processing)
- We proceed by first computing the products by multiplying the corresponding residues:
 - \rightarrow 7 x 3 \rightarrow < $|1x1|_2 |1x0|_3 |2x3|_5 |0x3|_7 > = < 1, 0, 1, 0 >$
 - ▶ $16 \times 5 \rightarrow < |0x1|_2 |1x2|_3 |1x0|_5 |2x5|_7 > = < 0, 2, 0, 3 >$
 - ▶ $47 \times 2 \rightarrow < |1 \times 0|_2 |2 \times 2|_3 |2 \times 2|_5 |5 \times 2|_7 > = < 0, 1, 4, 3 >$
- The sum of products can be evaluated by adding the corresponding residues:
 - $| < |1+0+0|_2 |0+2+1|_3 |1+0+4|_5 |0+3+3|_7 > = < 1, 0, 0, 6 >$

Circuit area and time evaluation

- To discuss about the time and area, it is useful the analytical model (unit-gate model) presented in
 - ▶ A. Tyagi, *A reduced-area scheme for carry-select adders*, IEEE Trans. Comput., 1993
- ▶ They use a simplistic model for gate-count and gate-delay:
 - ► Each gate except **EX-OR** counts as one elementary gate
 - ▶ An EX-OR gate is counted as two elementary gates, because in static (restoring) CMOS, an EX-OR gate is implemented as two elementary gates (NAND)
 - ▶ The delay through an elementary gate is counted as one gatedelay unit, but an EX-OR gate is two gate-delay units

- In this model we are ignoring the fanin and fanout of a gate
- This can lead to unfair comparisons for circuits containing gates with a large difference in fanin or fanout
 - ▶ For instance, gates in the CLA adder have different fanin
 - ▶ A carry-ripple adder has no gates with *fanin* and *fanout* greater than 2
- The best comparison for a VLSI implementation is actual area and time
- ▶ The gate-count and gate-delay comparisons may not always be consistent with the area-time comparisons

- ▶ To simplify we consider:
 - ▶ Any gate (but the EX-OR) counts as one gate for both area and delay \rightarrow A_{gate} and T_{gate}
 - An exclusive-OR gate counts as two elementary gates for both area and delay \rightarrow $A_{EX-OR} = 2A_{gate}$ and $T_{EX-OR} = 2T_{gate}$
 - ▶ An *m*-input gate counts as m 1 gates for area and log_2m gates for delay \rightarrow A_{m-gate} = (m-1)A_{gate} and T_{m-gate} = log_2m T_{gate}

- A half adder (HA) has:
 - ▶ delay 2 unit gates \rightarrow T_{HA}= 2 T_{gate}
 - ▶ area 3 unit gates \rightarrow A_{HA}= 3 A_{gate}

- A half adder (HA) has:
 - ▶ delay 2 unit gates \rightarrow T_{HA}= 2 T_{gate}
 - ▶ area 3 unit gates \rightarrow A_{HA}= 3 A_{gate}
- A full adder (FA) has:
 - ▶ delay 4 unit gates \rightarrow T_{FA}= 4 T_{gate}
 - ▶ area 7 unit gates \rightarrow A_{FA}= 7 A_{gate}

- A half adder (HA) has:
 - ▶ delay 2 unit gates \rightarrow T_{HA}= 2 T_{gate}
 - ▶ area 3 unit gates \rightarrow A_{HA}= 3 A_{gate}
- A full adder (FA) has:
 - ▶ delay 4 unit gates \rightarrow T_{FA}= 4 T_{gate} = 2 T_{HA}
 - ▶ area 7 unit gates \rightarrow A_{FA}= 7 A_{gate} = 2 A_{HA} + A_{gate}

▶ A carry-ripple adder for n-bits operands has:

- ► delay $T_{CR-adder}$ \rightarrow $T_{CR-adder} = n T_{FA} = 2n T_{HA} = 4n T_{gate}$
- ► area $A_{CR-adder}$ \rightarrow $A_{CR-adder} = n A_{FA} = 2n A_{HA} + n A_{gate} = 7n A_{gate}$

