Advanced Parallel Architecture Lesson 9

Annalisa Massini - 2016/2017

Residue number systems Circuit metrics: area and delay

Residue number systems

- Residue number systems are based on the congruence relation:
- Two integers a and b are said to be congruent modulo m if m divides exactly the difference of a and b
- We write $a \equiv b(\bmod m)$
- For example
- $10 \equiv 7(\bmod 3)$
- $10 \equiv 4(\bmod 3)$
- $10 \equiv 1(\bmod 3)$
- $10 \equiv-2(\bmod 3)$
- The number m is a modulus or base, and we assume that its values exclude 1, which produces only trivial congruences

Residue number systems

- Infact:
- If q and r are the quotient and remainder, respectively, of the integer division of a by m - that is: $a=q: m+r$
\rightarrow then, by definition, we have $a \equiv r(\bmod m)$

The number r is said to be the residue of a with respect to m, and we shall usually denote this by $r=|a|_{m}$

- The set of m smallest values, $\{0 ; 1 ; 2 ; \ldots ; m-1\}$, that the residue may assume is called the set of least positive residues modulo m

Residue number systems

- Suppose we have a set, $\left\{m_{1} ; m_{2} ; \ldots ; m_{N}\right\}$, of N positive and pairwise relatively prime moduli
- Let M be the product of the moduli $M=m_{1} \times m_{2} \times \ldots \times m_{N}$
- We write the representation in the form <x1; $x 2 ; \ldots ; x N>$, where $x i=|X|_{m i}$, and we indicate the relationship between X and its residues by writing $X \approx\langle x 1 ; x 2$; ...; $x N>$
- Example: in the residue system $\{2,3,5\}, M=30$ and

$$
\begin{aligned}
8 & \rightarrow<0,2,3> \\
16 & \rightarrow<0,1,1>
\end{aligned}
$$

Residue number systems

- Every number $X<M$ has a unique representation in the residue number system, which is the sequence of residues $\left.\left.\langle | X\right|_{m i}: 1 \leq i \leq N\right\rangle$
- A partial proof of uniqueness is as follows:
- Suppose X_{1} and X_{2} are two different numbers with the same residue representation
- Then $\left|X_{1}\right|_{m i}=\left|X_{2}\right|_{m i}$, and so $\left|X_{1}-X_{2}\right|_{m i}=0$
- Therefore $X_{1}-X_{2}$ is the least common multiple (Icm) of mi
- But if the $m i$ are relatively prime, then their Icm is M, and it must be that $X_{1}-X_{2}$ is a multiple of M
- So it cannot be that $X_{1}<M$ and $X_{2}<M$
- Therefore, the representation $\left.\left.\langle | X\right|_{m i}: 1 \leq i \leq N\right\rangle$ is unique and may be taken as the representation of X

Advanced and Parallel Architectures 2016/2017

Residue number systems

- The number M is called the dynamic range of the RNS, because the number of numbers that can be represented is M
- For unsigned numbers, that range is [0;M-1]
- Representations in a system in which the moduli are not pairwise relatively prime will be not be unique: two or more numbers will have the same representation

		Relatively prime			Relatively non-prime		
	N	m1=2	m2=3	m3=5	m1=2	m2=4	m3=6
	0	0	0	0	0	0	0
, Example	1	1	1	1	1	1	1
	2	0	2	2	0	2	2
	3	1	0	3	1	3	3
	4	0	1	4	0	0	4
	5	1	2	0	1	1	5
	6	0	0	1	0	2	0
	7	1	1	2	1	3	1
	8	0	2	3	0	0	2
	9	1	0	4	1	1	3
	10	0	1	0	0	2	4
	11	1	2	1	1	3	5
	12	0	0	2	0	0	0
	13	1	1	3	1	1	1
	14	0	2	4	0	2	2
- 8	15	1	0	0	1	3	3

Residue number systems

- We defined standard residue number systems
- There are also examples of non-standard RNS, the most common of which are the redundant residue number systems
- Such a system is obtained by, essentially, adding extra (redundant) moduli to a standard system
- The dynamic range then consists of a legitimate range, defined by the non-redundant moduli and an illegitimate range
- Redundant number systems of this type are especially useful in fault-tolerant computing

Residue number systems

- Ignoring other, more practical, issues, the best moduli are probably prime numbers
- For computer applications, it is important to have moduli-sets that facilitate both efficient representation and balance, meaning that the differences between the moduli should be as small as possible

Residue number systems

- Take, for example, the choice of 13 and 17 for the moduli that are adjacent prime numbers
- The dynamic range is 221
- With a straightforward binary encoding:
- 4 bits will be required to represent 13
- 5 bits will be required to represent 17

Residue number systems

- The representational efficiency is:
- In the first case 13/16
- In the second case is $17 / 32$
- If instead we chose 13 and 16, then the representational efficiency:
- is improved to $16 / 16$ in the second case
- but at the cost of reduction in the range (down to 208)
- With the better balanced pair, 15 and 16 , we would have:
- a better efficiency $15 / 16$ and 16/16
- A greater range: 240

Residue number systems

- It is also useful to have moduli that simplify the implementation of the arithmetic operations
- This means that arithmetic on residue digits should not deviate too far from conventional arithmetic, which is just arithmetic modulo a power of two
- A common choice of prime modulus that does not complicate arithmetic and which has good representational efficiency is $m i=2^{i}-1$

Residue number systems

- Not all pairs of numbers of the form $2^{i}-1$ are relatively prime
- It can be shown that that $2^{j}-1$ and $2^{k}-1$ are relatively prime if and only if j and k are relatively prime
- For example:
- $2^{4}-1=15$
$15=3 \times 5$
- $2^{5}-1=31$
31 prime
- $2^{6}-1=63$
$63=3 \times 7$
- $2^{7}-1=127$
127 prime
- $2^{8}-1=255$
$255=3 \times 5 \times 17$

Residue number systems

- Many moduli sets are based on these choices, but there are other possibilities; for example, moduli-sets of the form $\left\{2^{n}-1 ; 2^{n} ; 2^{n}+1\right\}$ are among the most popular in use
- At least four considerations for the selection of moduli
- The selected moduli must provide an adequate range whilst also ensuring that RNS representations are unique
- The efficiency of binary representations; a balance between the different moduli in a given moduli-set is also important
- The implementations of arithmetic units for RNS should to some extent be compatible with those for conventional arithmetic, especially given the legacy that exists for the latter
- The size of individual moduli

Residue number systems

- One of the primary advantages of RNS is that certain RNS-arithmetic operations do not require carries between digits
- But, this is so only between digits
- Since a digit is ultimately represented in binary, there will be carries between bits, and therefore it is important to ensure that digits (\rightarrow the moduli) are not too large

Residue number systems

- Small digits make it possible to realize cost-effective table-lookup implementations of arithmetic operations
- But, on the other hand, if the moduli are small, then a large number of them may be required to ensure a sufficient dynamic range
- The choices depend on applications and technologies

Residue number systems

Negative numbers

- As with the conventional number systems, any one of the radix complement, diminished-radix complement, or sign-and-magnitude notations may be used in RNS
- The merits and drawbacks of choosing one over the other are similar to those for the conventional notations
- However, the determination of sign is much more difficult with the residue notations, as is magnitudecomparison
- This problem imposes many limitations on the application of RNS and we deal with just the positive numbers

Residue number systems

Basic arithmetic

- Addition/subtraction and multiplication are easily implemented with residue notation, depending on the choice of the moduli
- Division is much more difficult due to the difficulties of sign-determination and magnitude-comparison

Residue number systems

Basic arithmetic

- Residue addition is carried out by individually adding corresponding digits
- A carry-out from one digit position is not propagated into the next digit position
- As an example, with the moduli-set $\{2 ; 3 ; 5 ; 7\}$:
- the representation of 17 is $\langle 1 ; 2 ; 2 ; 3>$
- the representation of 19 is $\langle 1 ; 1 ; 4 ; 5>$
- adding the two residue numbers yields $<0 ; 0 ; 1 ; 1>$, which is the representation for 36 in that system

Residue number systems

Basic arithmetic

- Subtraction may be carried out by negating (in whatever is the chosen notation) the subtrahend and adding to the minuend
- This is straightforward for numbers in diminished-radix complement or radix complement notation
- For sign-and-magnitude representation, a slight modification of the algorithm for conventional sign-andmagnitude is necessary:
- the sign digit is fanned out to all positions
- addition proceeds as in the case for unsigned numbers but with a conventional sign-and-magnitude algorithm.

Residue number systems

Basic arithmetic

- Multiplication too can be performed simply by multiplying corresponding residue digit-pairs, relative to the modulus for their position \rightarrow multiply digits and ignore or adjust an appropriate part of the result
- As an example, with the moduli-set $\{2 ; 3 ; 5 ; 7\}$:
- $17 \rightarrow<1 ; 2 ; 2 ; 3>$
- $19 \rightarrow\langle 1 ; 1 ; 4 ; 5\rangle$
- their product, 323 is $<1 ; 2 ; 3 ; 1>$

Residue number systems

Basic arithmetic

- Basic fixed-point division consists, essentially, of a sequence of subtractions, magnitude-comparisons, and selections of the quotient-digits
- But comparison in RNS is a diffcult operation, because RNS is not positional or weighted
- Example:
- moduli-set $\{2 ; 3 ; 5 ; 7\}$
- the number represented by $<0 ; 0 ; 1 ; 1>$ is almost twice that represented by <1; 1; 4; 5>
- but this is far from apparent

Residue number systems

Conversion

- The most direct way to convert from a conventional representation to a residue one is to divide by each of the given moduli and then collect the remainders, forward conversion
- This is a costly operation if the number is represented in an arbitrary radix and the moduli are arbitrary
- If number is represented in radix-2 (or a radix that is a power of two) and the moduli are of a suitable form (e.g. $2^{n}-1$), then these procedures that can be implemented with more efficiency

Residue number systems

Conversion

- The conversion from residue notation to a conventional notation - reverse conversion - is more difficult (conceptually, if not necessarily in the implementation) and so far has been one of the major impediments to the adoption use of RNS
- One way in which it can be done is to assign weights to the digits of a residue representation and then produce a positional (weighted) mixed-radix representation that can then be converted into any conventional form
- Another approach involves the use of the Chinese Remainder Theorem, which is the basis for many algorithms for conversion from residue to conventional notation

Residue number systems

Base extension

- A frequently occurring computation is that of base extension, which is defined as:
- Given a residue representation $<|X|_{m 1} ;|X|_{m 2} ; \ldots ;|X|_{m N}>$ and an additional set of moduli, $m_{N+1} ; m_{N+2} ; \ldots ; m_{N+k}$, such that $m_{1} ; m_{2} ; \ldots m_{N} ; m_{N+1} ; \ldots ; m_{N+k}$ are all pairwise relatively prime
- we want to compute the residue representation $\left.\langle | X\right|_{m 1} ;|X|_{m 2}$ $; \ldots ;|X|_{m N i}|X|_{m N+1}, \ldots ;|X|_{m N+k}>$
- Base extension is useful in dealing with the diffcult operations of reverse conversion, division, dynamic-range extension, magnitude-comparison, overflow-detection, and sign-determination

Residue number systems

- Example: multiply-accumulate operation over a sequence of scalars (frequent operation in digital-signal processing)
- Let the moduli-set be $\{2 ; 3 ; 5 ; 7\}$ with dynamic range 210
- We wish to evaluate the sum-of-products $7 \times 3+16 \times 5+47 \times 2$
- The residue-sets are

$$
\begin{aligned}
& 2 \rightarrow\langle 0 ; 2 ; 2 ; 2> \\
& 3 \rightarrow<1 ; 0 ; 3 ; 3\rangle \\
& 5 \rightarrow\langle 1 ; 2 ; 0 ; 5> \\
& 7 \rightarrow\langle 1 ; 1 ; 2 ; 0\rangle \\
& 16 \rightarrow<0 ; 1 ; 1 ; 2> \\
& 47 \rightarrow\langle 1 ; 2 ; 2 ; 5>
\end{aligned}
$$

Residue number systems

- Example: multiply-accumulate operation over a sequence of scalars (frequent operation in digital-signal processing)
- We proceed by first computing the products by multiplying the corresponding residues
- $\left.7 \times 3 \rightarrow\langle | 1 \times\left. 1\right|_{2}|1 \times 0|_{3}|2 \times 3|_{5}|0 \times 3|_{7}\right\rangle=\langle 1,0,1,0\rangle$
- $\left.\left.16 \times 5 \rightarrow<|0 \times 1|_{2}|1 \times 2|_{3}|1 \times 0|_{5}|2 \times 5|_{7}\right\rangle=<0,2,0,3\right\rangle$
- $\left.\left.47 \times 2 \rightarrow\langle | 1 \times\left. 0\right|_{2}|2 \times 2|_{3}|2 \times 2|_{5}|5 \times 2|_{7}\right\rangle=<0,1,4,3\right\rangle$
- The sum of products can be evaluated by adding the corresponding residues:
- $\left.\langle | 1+0+\left.0\right|_{2}|0+2+1|_{3}|1+0+4|_{5}|0+3+3|_{7}\right\rangle=\langle 1,0,0,6\rangle$

Circuit area and time evaluation

Circuit area and time

- To discuss about the time and area, it is useful the analytical model (unit-gate model) presented in
- A. Tyagi, A reduced-area scheme for carry-select adders, IEEE Trans. Comput., 1993
- They use a simplistic model for gate-count and gate-delay:
- Each gate except EX-OR counts as one elementary gate
- An EX-OR gate is counted as two elementary gates, because in static (restoring) CMOS, an EX-OR gate is implemented as two elementary gates (NAND)
- The delay through an elementary gate is counted as one gatedelay unit, but an EX-OR gate is two gate-delay units

Circuit area and time

- In this model we are ignoring the fanin and fanout of a gate
- This can lead to unfair comparisons for circuits containing gates with a large difference in fanin or fanout
- For instance, gates in the CLA adder have different fanin
- A carry-ripple adder has no gates with fanin and fanout greater than 2
- The best comparison for a VLSI implementation is actual area and time

The gate-count and gate-delay comparisons may not always be consistent with the area-time comparisons

Circuit area and time

- To simplify we consider:

- Any gate (but the EX-OR) counts as one gate for both area and delay $\rightarrow \mathrm{A}_{\text {gate }}$ and $\mathrm{T}_{\text {gate }}$
- An exclusive-OR gate counts as two elementary gates for both area and delay $\rightarrow A_{E X-O R}=2 A_{\text {gate }}$ and $T_{\text {EX-OR }}=2 \mathrm{~T}_{\text {gate }}$
- An \boldsymbol{m}-input gate counts as $\boldsymbol{m}-1$ gates for area and $\log _{2} m$ gates for delay $\rightarrow A_{\text {m-gate }}=(m-1) A_{\text {gate }}$ and $T_{m \text {-gate }}=\log _{2} m T_{\text {gate }}$

Circuit area and time

- A half adder (HA) has:
- delay 2 unit gates $\rightarrow \mathrm{T}_{\mathrm{HA}}=2 \mathrm{~T}_{\text {gate }}$
- area 3 unit gates $\rightarrow A_{H A}=3 A_{\text {gate }}$

Circuit area and time

- A half adder (HA) has:
- delay 2 unit gates $\rightarrow \mathrm{T}_{\mathrm{HA}}=2 \mathrm{~T}_{\text {gate }}$
- area 3 unit gates $\rightarrow \mathrm{A}_{\mathrm{HA}}=3 \mathrm{~A}_{\text {gate }}$
- A full adder (FA) has:
- delay 4 unit gates $\rightarrow \mathrm{T}_{\mathrm{FA}}=4 \mathrm{~T}_{\text {gate }}$
- area 7 unit gates $\rightarrow A_{F A}=7 A_{\text {gate }}$

Circuit area and time

- A half adder (HA) has:
- delay 2 unit gates $\rightarrow \mathrm{T}_{\mathrm{HA}}=2 \mathrm{~T}_{\text {gate }}$
- area 3 unit gates $\rightarrow A_{H A}=3 A_{\text {gate }}$
- A full adder (FA) has:
- delay 4 unit gates $\rightarrow \mathrm{T}_{\mathrm{FA}}=4 \mathrm{~T}_{\text {gate }}=2 \mathrm{~T}_{\mathrm{HA}}$
- area 7 unit gates $\rightarrow A_{F A}=7 A_{\text {gate }}=2 A_{H A}+A_{\text {gate }}$

Circuit area and time

- A carry-ripple adder for n-bits operands has:
- delay $\mathrm{T}_{\mathrm{CR} \text {-adder }} \rightarrow \mathrm{T}_{\mathrm{CR} \text {-adder }}=\mathrm{n} \mathrm{T}_{\mathrm{FA}}=2 \mathrm{n} \mathrm{T}_{\mathrm{HA}}=4 \mathrm{n} \mathrm{T}_{\text {gate }}$
- area $\mathrm{A}_{\text {CR-adder }}$
$\rightarrow \quad A_{C R-\text { adder }}=n A_{F A}=2 n A_{H A}+n A_{\text {gate }}=7 n A_{\text {gate }}$

