
Advanced Parallel Architecture
Lesson 9

Annalisa Massini - 2016/2017



Residue number systems
Circuit metrics: area and delay
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Residue number systems

 Residue number systems are based on the congruence 
relation:

 Two integers a and b are said to be congruent modulo m if m 
divides exactly the difference of a and b

 We write a ≡ b (mod m) 

 For example

 10 ≡ 7 (mod 3)

 10 ≡ 4 (mod 3)

 10 ≡ 1 (mod 3)

 10 ≡ -2 (mod 3)

 The number m is a modulus or base, and we assume that its 
values exclude 1, which produces only trivial congruences
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Residue number systems

 Infact:

 If q and r are the quotient and remainder, respectively, of 
the integer division of a by m - that is: a = q:m + r

 then, by definition, we have a ≡ r (mod m)

 The number r is said to be the residue of a with respect to 
m, and we shall usually denote this by r = |a|m

 The set of m smallest values, {0; 1; 2; … ;m – 1}, that the 
residue may assume is called the set of least positive 
residues modulo m
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Residue number systems

 Suppose we have a set, {m1;m2; …;mN}, of N positive and 
pairwise relatively prime moduli

 Let M be the product of the moduli M=m1xm2x …xmN

 We write the representation in the form <x1; x2; …; xN>, 
where xi = |X|mi , and we indicate the relationship 
between X and its residues by writing X ≈ <x1; x2; …; xN>

 Example: in the residue system {2, 3, 5}, M=30 and 

8  <0, 2, 3>

16  <0, 1, 1>
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Residue number systems

 Every number X < M has a unique representation in the 
residue number system, which is the sequence of 
residues <|X|mi : 1 ≤ i ≤ N>

 A partial proof of uniqueness is as follows:

 Suppose X1 and X2 are two different numbers with the same 
residue representation

 Then |X1 |mi = | X2 |mi , and so | X1 - X2 |mi = 0

 Therefore X1 - X2 is the least common multiple (lcm) of mi

 But if the mi are relatively prime, then their lcm is M, and it 
must be that X1 - X2 is a multiple of M

 So it cannot be that X1 < M and X2 < M

 Therefore, the representation <|X|mi : 1 ≤ i ≤ N> is unique and 
may be taken as the representation of X
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Residue number systems

 The number M is called the dynamic range of the RNS, 
because the number of numbers that can be represented 
is M

 For unsigned numbers, that range is [0;M - 1]

 Representations in a system in which the moduli are not 
pairwise relatively prime will be not be unique: two or 
more numbers will have the same representation
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 Example
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Relatively prime Relatively non-prime

N m1=2 m2=3 m3=5 m1=2 m2=4 m3=6

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 0 2 2 0 2 2

3 1 0 3 1 3 3

4 0 1 4 0 0 4

5 1 2 0 1 1 5

6 0 0 1 0 2 0

7 1 1 2 1 3 1

8 0 2 3 0 0 2

9 1 0 4 1 1 3

10 0 1 0 0 2 4

11 1 2 1 1 3 5

12 0 0 2 0 0 0

13 1 1 3 1 1 1

14 0 2 4 0 2 2

15 1 0 0 1 3 3



Residue number systems

 We defined  standard residue number systems

 There are also examples of non-standard RNS, the most 
common of which are the redundant residue number 
systems

 Such a system is obtained by, essentially, adding extra 
(redundant) moduli to a standard system

 The dynamic range then consists of a legitimate range, 
defined by the non-redundant moduli and an illegitimate
range

 Redundant number systems of this type are especially 
useful in fault-tolerant computing
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Residue number systems

 Ignoring other, more practical, issues, the best moduli 
are probably prime numbers

 For computer applications, it is important to have 
moduli-sets that facilitate both efficient representation 
and balance, meaning that the differences between the 
moduli should be as small as possible
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Residue number systems

 Take, for example, the choice of 13 and 17 for the moduli 
that are adjacent prime numbers

 The dynamic range is 221

 With a straightforward binary encoding:

 4 bits will be required to represent 13 

 5 bits will be required to represent 17
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Residue number systems

 The representational efficiency is:

 In the first case 13/16

 In the second case is 17/32

 If instead we chose 13 and 16, then the representational 
efficiency:

 is improved to 16/16 in the second case 

 but at the cost of reduction in the range (down to 208)

 With the better balanced pair, 15 and 16, we would have:

 a better efficiency 15/16 and 16/16 

 A greater range: 240
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Residue number systems

 It is also useful to have moduli that simplify the 
implementation of the arithmetic operations

 This means that arithmetic on residue digits should not 
deviate too far from conventional arithmetic, which is 
just arithmetic modulo a power of two

 A common choice of prime modulus that does not 
complicate arithmetic and which has good 
representational efficiency is mi = 2i – 1
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Residue number systems

 Not all pairs of numbers of the form 2i – 1 are relatively 
prime

 It can be shown that that 2j - 1 and 2k - 1 are relatively 
prime if and only if j and k are relatively prime

 For example:

 24-1= 15 15=3x5

 25-1= 31 31 prime

 26-1= 63 63=3x7

 27-1= 127 127 prime

 28-1= 255 255=3x5x17
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Residue number systems

 Many moduli sets are based on these choices, but there 
are other possibilities; for example, moduli-sets of the 
form {2n-1; 2n; 2n +1} are among the most popular in use

 At least four considerations for the selection of moduli

 The selected moduli must provide an adequate range whilst 
also ensuring that RNS representations are unique

 The efficiency of binary representations; a balance between 
the different moduli in a given moduli-set is also important

 The implementations of arithmetic units for RNS should to 
some extent be compatible with those for conventional 
arithmetic, especially given the legacy that exists for the latter

 The size of individual moduli
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Residue number systems

 One of the primary advantages of RNS is that certain 
RNS-arithmetic operations do not require carries 
between digits

 But, this is so only between digits

 Since a digit is ultimately represented in binary, there will 
be carries between bits, and therefore it is important to 
ensure that digits ( the moduli) are not too large
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Residue number systems

 Small digits make it possible to realize cost-effective 
table-lookup implementations of arithmetic operations

 But, on the other hand, if the moduli are small, then a 
large number of them may be required to ensure a 
sufficient dynamic range

 The choices depend on applications and technologies

2016/2017Advanced and Parallel Architectures17



Residue number systems

Negative numbers

 As with the conventional number systems, any one of the 
radix complement, diminished-radix complement, or sign-
and-magnitude notations may be used in RNS 

 The merits and drawbacks of choosing one over the other 
are similar to those for the conventional notations

 However, the determination of sign is much more 
difficult with the residue notations, as is magnitude-
comparison

 This problem imposes many limitations on the application 
of RNS and we deal with just the positive numbers
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Residue number systems

Basic arithmetic

 Addition/subtraction and multiplication are easily 
implemented with residue notation, depending on the 
choice of the moduli

 Division is much more difficult due to the difficulties of 
sign-determination and magnitude-comparison
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Residue number systems

Basic arithmetic

 Residue addition is carried out by individually adding 
corresponding digits

 A carry-out from one digit position is not propagated into 
the next digit position

 As an example, with the moduli-set {2; 3; 5; 7}:

 the representation of 17 is <1; 2; 2; 3>

 the representation of 19 is <1; 1; 4; 5>

 adding the two residue numbers yields <0; 0; 1; 1>, which is 
the representation for 36 in that system
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Residue number systems

Basic arithmetic

 Subtraction may be carried out by negating (in whatever 
is the chosen notation) the subtrahend and adding to the 
minuend

 This is straightforward for numbers in diminished-radix 
complement or radix complement notation

 For sign-and-magnitude representation, a slight 
modification of the algorithm for conventional sign-and-
magnitude is necessary: 

 the sign digit is fanned out to all positions 

 addition proceeds as in the case for unsigned numbers but 
with a conventional sign-and-magnitude algorithm.
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Residue number systems

Basic arithmetic

 Multiplication too can be performed simply by 
multiplying corresponding residue digit-pairs, relative to 
the modulus for their positionmultiply digits and 
ignore or adjust an appropriate part of the result

 As an example, with the moduli-set {2; 3; 5; 7}:

 17  <1; 2; 2; 3>

 19  <1; 1; 4; 5>

 their product, 323 is <1; 2; 3; 1>
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Residue number systems

Basic arithmetic

 Basic fixed-point division consists, essentially, of a 
sequence of subtractions, magnitude-comparisons, and 
selections of the quotient-digits

 But comparison in RNS is a diffcult operation, because 
RNS is not positional or weighted

 Example:

 moduli-set {2; 3; 5; 7} 

 the number represented by <0; 0; 1; 1> is almost twice that 
represented by <1; 1; 4; 5> 

 but this is far from apparent
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Residue number systems

Conversion

 The most direct way to convert from a conventional 
representation to a residue one is to divide by each of the 
given moduli and then collect the remainders, forward 
conversion

 This is a costly operation if the number is represented in 
an arbitrary radix and the moduli are arbitrary

 If number is represented in radix-2 (or a radix that is a 
power of two) and the moduli are of a suitable form (e.g. 
2n-1), then these procedures that can be implemented 
with more efficiency
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Residue number systems

Conversion

 The conversion from residue notation to a conventional 
notation - reverse conversion - is more difficult 
(conceptually, if not necessarily in the implementation) 
and so far has been one of the major impediments to the 
adoption use of RNS

 One way in which it can be done is to assign weights to the 
digits of a residue representation and then produce a 
positional (weighted) mixed-radix representation that can 
then be converted into any conventional form

 Another approach involves the use of the Chinese Remainder 
Theorem, which is the basis for many algorithms for 
conversion from residue to conventional notation
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Residue number systems

Base extension

 A frequently occurring computation is that of base 
extension, which is defined as:

 Given a residue representation <|X|m1 ; |X|m2 ; … ; |X |mN> and 
an additional set of moduli, mN+1;mN+2; … ;mN+K, such that 
m1;m2; … mN;mN+1; … ;mN+K are all pairwise relatively prime

 we want to compute the residue representation <|X|m1 ; |X|m2

; … ; |X |mN; |X|mN+1, … ; |X|mN+K> 

 Base extension is useful in dealing with the diffcult
operations of reverse conversion, division, dynamic-range
extension, magnitude-comparison, overflow-detection, 
and sign-determination
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Residue number systems

 Example: multiply-accumulate operation over a sequence of 
scalars (frequent operation in digital-signal processing) 

 Let the moduli-set be {2; 3; 5; 7} with dynamic range 210

 We wish to evaluate the sum-of-products 7 x 3 + 16 x 5 + 47 x 2

 The residue-sets are

 2  <0; 2; 2; 2>

 3 <1; 0; 3; 3>

 5  <1; 2; 0; 5>

 7  <1; 1; 2; 0>

 16 <0; 1; 1; 2>

 47 <1; 2; 2; 5>
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Residue number systems

 Example: multiply-accumulate operation over a sequence of 
scalars (frequent operation in digital-signal processing) 

 We proceed by first computing the products by multiplying 
the corresponding residues: 

 7 x 3  < |1x1|2 |1x0|3 |2x3|5 |0x3|7 > = < 1, 0, 1, 0>

 16 x 5  < |0x1|2 |1x2|3 |1x0|5 |2x5|7 > = < 0, 2, 0, 3>

 47 x 2  < |1x0|2 |2x2|3 |2x2|5 |5x2|7 > = < 0, 1, 4, 3>

 The sum of products can be evaluated by adding the 
corresponding residues:

 <|1+0+0|2 |0+2+1|3 |1+0+4|5 |0+3+3|7 > = < 1, 0, 0, 6>
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Circuit area and time evaluation
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Circuit area and time

 To discuss about the time and area, it is useful the 
analytical model (unit-gate model) presented in 

 A. Tyagi, A reduced-area scheme for carry-select adders, IEEE 
Trans. Comput., 1993

 They use a simplistic model for gate-count and gate-delay:

 Each gate except EX-OR counts as one elementary gate

 An EX-OR gate is counted as two elementary gates, because in 
static (restoring) CMOS, an EX-OR gate is implemented as two
elementary gates (NAND)

 The delay through an elementary gate is counted as one gate-
delay unit, but an EX-OR gate is two gate-delay units
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Circuit area and time

 In this model we are ignoring the fanin and fanout of a gate

 This can lead to unfair comparisons for circuits containing 
gates with a large difference in fanin or fanout

 For instance, gates in the CLA adder have different fanin

 A carry-ripple adder has no gates with fanin and fanout greater 
than 2

 The best comparison for a VLSI implementation is 
actual area and time

 The gate-count and gate-delay comparisons may not 
always be consistent with the area-time comparisons
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Circuit area and time

 To simplify we consider:

 Any gate (but the EX-OR) counts as one gate for both area and 
delay  Agate and Tgate

 An exclusive-OR gate counts as two elementary gates for both 
area and delay  AEX-OR =2Agate and TEX-OR =2Tgate

 An m-input gate counts as m − 1 gates for area and log2m 
gates for delay  Am-gate =(m-1)Agate and Tm-gate = log2m Tgate
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Circuit area and time

 A half adder (HA) has:

 delay 2 unit gates  THA= 2 Tgate

 area 3 unit gates  AHA= 3 Agate 
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Circuit area and time

 A half adder (HA) has:

 delay 2 unit gates  THA= 2 Tgate

 area 3 unit gates  AHA= 3 Agate 

 A full adder (FA) has:

 delay 4 unit gates  TFA= 4 Tgate

 area 7 unit gates  AFA= 7 Agate 
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Circuit area and time

 A half adder (HA) has:

 delay 2 unit gates  THA= 2 Tgate

 area 3 unit gates  AHA= 3 Agate 

 A full adder (FA) has:

 delay 4 unit gates  TFA= 4 Tgate = 2 THA 

 area 7 unit gates  AFA= 7 Agate = 2 AHA + Agate 
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Circuit area and time

 A carry-ripple adder for n-bits operands has:

 delay TCR-adder   TCR-adder = n TFA = 2n THA = 4n Tgate

 area ACR-adder  ACR-adder = n AFA = 2n AHA + n Agate = 7n Agate
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