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Redundant number systems

2016/2017Advanced and Parallel Architectures2



Redundant number systems

 Conventional radix-r systems use [0, r-1] digit set

radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 If the digit set (in radix-r system) contains more than r 
digits, the system is redundant

 radix-2 → 0, 1, 2 or -1, 0, 1

 radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

 radix-10 → -6, -5,- 4, -3, -2, -1, 0, 1, 2, 3, 4, 5 

 Redundancy may result from adopting the digit set wider 
than radix and the number interpretation is conventional

 Redundancy – representation of numbers is not unique
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Redundant number systems

 Redundant numbers with [0,m] digit set can be 
represented by two numbers of [0,n] digit sets, where
m=2n

 Conversion requires ordinary addition of two such 
numbers with [0,n] digit set representation

radix-10, digit set [0,18]

radix-10, digit set [0,9]

 Decomposed representation is not unique, but the sum 
amounts to correct result
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8318021

931802

999999

18121017911
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Redundant number systems

 Redundant binary numbers may be coded with bit-fields, 
e.g:

 0: (0,0),

 1: (0,1) or (1,0),

 2: (1,1)

 Decomposed representation is not unique, but the sum 
amounts to correct result

radix-2, digit set [0,2]

radix-2, digit set [0,1]
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0010001

010100

010111

020211
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Redundant number systems

 Carry-free addition → no carry propagation

 All digit additions can be done simultaneously

 Carry-free addition is possible with widening of the digit
set

radix-10, digit set [0,9]

radix-10, digit set [0,9]

radix-10, digit set [0,18]
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Redundant number systems

 Reduction of digit set by carry propagation by only one
position

radix-10, digit set [0,18]

radix-10, digit set [0,18]

radix-10, digit set [0,36]

Intermediate sums [0,16]

Transfer digit set [0,2]

sum [0,18]
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Signed-digit numbers

 All digits have weights rp (p-position, r-radix)

 Digits can have signed values

 Any set digit [−α, β] including 0, can be used

 If α+β+1 > r the numbering system is redundant

[-1,1] radix-2 → 1 -1 0 -1 0 = 6(10)

[-1,3] radix-4 → 1 -1 2 0 3 = 227(10)

1111 (2's compl.) → -1 1 1 1 = -1
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Signed-digit numbers

 A radix-r redundant signed-digit number system is based 
on digit set S = {- β, -(β - 1), … , -1, 0, 1, … , α}, 

where

 The digit set S contains more than r values multiple 
representations for any number in signed digit format 
 redundant

 A symmetric signed digit has α = β

 Carry-free addition is an attractive property of redundant
signed-digit numbers
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Signed digit representation

 In mathematical notation for numbers, signed-digit 
representation is a positional system with signed digits

 The representation may not be unique

 Signed-digit representation can be used to accomplish fast 
addition of integers because it can eliminate chains of 
dependent carries
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Modified signed digit representation

A. K. Cherri, M. A. Karim, “Modified-signed digit arithmetic 
using an efficient symbolic substitution”, Appl. Opt. (1988)
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Modified signed digit representation

 The set of digit is 

 The representation is not unique:

 The number of possible representation depends on the 
length of the sequence of digits

 To perform the addition, truth table are used
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   1,0,11,0,1 
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71281011
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Modified signed digit representation

 Truth tables 

 Three steps are needed to obtain the sum

 Left table is applied in step 1 and 3

 Right table is applied in step 2

 Output: sum  lower row - complemented sum  upper row
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Modified signed digit representation

 Example
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Modified signed digit representation

 Example
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Modified signed digit representation

 Example
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Modified signed digit representation

 Example
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RB - Redundant binary number 
representation

G. A. De Biase, A. Massini “Redundant binary number representation 
for an inherently parallel arithmetic on optical computers”, 

Appl. Opt., 32 (1993)
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RB - Redundant Binary Representation

 An integer D obtained by

 This weight sequence characterizes the RB number 
representation and is:

 All position weights are doubled: the left digit is called r 
(redundant) and the right digit n (normal)
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RB - Redundant Binary Representation

 RB representation of a number can be obtained from its 
binary representation by the following recoding rules:  

0 00 1 01

 The RB number obtained in this way is in canonical form

 This coding operation is performable in parallel in 
constant time (one elemental logic step)
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RB - Redundant Binary Representation

 Each RB number has a canonical form and several redundant 
representations

 Examples of unsigned RB numbers (canonical and redundant)
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1010101010010101100101011117
0100111010000110000101001106
1000101000010100100100011015
0001110011001000000100001004

0010100010010001010113

0000110010000001000102

0000100000010011

0000000000



Table for addition

 Truth table
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Table for addition

 Two steps: parallel application of the table 2 on all rn pairs

 Output: sum on the lower row and zero on the upper row

2016/2017Advanced and Parallel Architectures23

 00 01 10 11 

00   00 
00 

  10 
00 

  00 
01 

  10 
01 

01   00 
01 

  10 
01 

  00 
10 

  10 
10 

10   00 
01 

  10 
01 

  00 
10 

  10 
10 

11   00 
10 

  10 
10 

  00 
11 

  10 
11 

 



RB - Redundant Binary Representation

 Example
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RB - Redundant Binary Representation

 Example
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RB - Redundant Binary Representation

 Example
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RB - Redundant Binary Representation

 In analogy with the 2's complement binary system, a 
signed RB number is obtained by

n even

 The same procedure of the addition of two unsigned RB 
numbers obtains the algebraic sum of two signed RB 
numbers 
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RB - Redundant Binary Representation

 The additive inverse of an RB number is obtained by 
following a procedure similar to that used in the 2's 
complement number system, taking into account that the 
negation of all RB representations of the number 0 is (-2)10

whereas in the 2's complement binary system it is (- 1) 10

 Procedure

 Step 1 - all digits of the RB number are complemented

 Step 2 - algebraic sum between the RB canonical form of (2) 10

and the RB number

 The output is the additive inverse of the considered RB number
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RB - Redundant Binary Representation

 The decoding of RB numbers, with the correct truncation, 
can be performed with the following procedure that 
derives directly from the RB number definition

 Procedure 

 The input is RBn and RBr

 Binary addition RB + RBr.

 Only the first n/2 bits are considered

 The output is the corresponding binary or 2's complement
binary number
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RB - Redundant Binary Representation

 Zero and Its Detection

 In the case of unsigned RB numbers the (0)10 has only the 
RB canonical form and is easily detectable

 In the case of signed RB numbers, (0)10 has many RB 
representations

 Example for six-digit signed RB numbers: 

(000000) (101011) (101100)

(100111) (010111) (011100)

 This difficulty can be overcome by using the number (- 1) 10

instead of (0) 10
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RB - Redundant Binary Representation

 Zero and Its Detection

 In fact, any redundant representation of the number (- 1) 10

obtains the canonical representation of the (- 1) 10 if the 
following rules acting on rn pairs are applied 

0101 1001

 Then, if the result of an algebraic sum between an RB 
number and an RB representation of (-1) 10 is an RB 
representation of the number (-1) 10  again, this RB number 
is a representation of (0) 10
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RB - Redundant Binary Representation

 Zero and Its Detection

 Then the procedure to detect the number (0) 10 is:

Procedure

 Input an RB number

 Step 1 - algebraic sum between the RB canonical form of (- 1) 10

and the RB number

 Step 2 - application of rules to the result

 Output is the RB canonical form of (-1) 10 or of another RB 
number
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RB - Redundant Binary Representation

 Comparison of  two RB numbers

Procedure

 Input - the first RB number and the additive inverse of a 
second RB number

 Step 1 - algebraic sum between the two RB numbers

 Step 2 - Procedure for the zero detection applied to the 
result

 The output is the RB canonical form of (-1) 10 or of another 
RB number
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