Advanced Parallel Architecture Lesson 8

Annalisa Massini - 2016/2017

Advanced and Parallel Architectures 2016/2017

Conventional radix-r systems use [0, r-1] digit set radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- If the digit set (in radix-r system) contains more than r digits, the system is redundant
 - radix-2 → 0, 1, 2 or -1, 0, 1
 - radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
 - radix-10 \rightarrow -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5
- Redundancy may result from adopting the digit set wider than radix and the number interpretation is conventional
- Redundancy representation of numbers is not unique

- Redundant numbers with [0,m] digit set can be represented by two numbers of [0,n] digit sets, where m=2n
- Conversion requires ordinary addition of two such numbers with [0,n] digit set representation

Decomposed representation is not unique, but the sum amounts to correct result

- Redundant binary numbers may be coded with bit-fields, e.g:
 - ▶ 0: (0,0),
 - ▶ 1: (0,1) or (1,0),
 - ▶ 2: (1,1)
- Decomposed representation is not unique, but the sum amounts to correct result

- **Carry-free** addition \rightarrow no carry propagation
- All digit additions can be done simultaneously
- Carry-free addition is possible with widening of the digit set

Reduction of digit set by carry propagation by only one position

Signed-digit numbers

- All digits have weights r^p (p-position, r-radix)
- Digits can have signed values
- Any set digit $[-\alpha, \beta]$ including 0, can be used
- If $\alpha+\beta+1 > r$ the numbering system is redundant

[-1,1] radix-2 \rightarrow 1 -1 0 -1 0 = 6₍₁₀₎ [-1,3] radix-4 \rightarrow 1 -1 2 0 3 = 227₍₁₀₎ 1111 (2's compl.) \rightarrow -1 1 1 1 = -1

Signed-digit numbers

- A radix-r redundant signed-digit number system is based on digit set S = {- β , -(β - 1), ..., -1, 0, 1, ..., α }, where $1 \le \alpha, \beta \le r - 1$
- The digit set S contains more than r values → multiple representations for any number in signed digit format
 → redundant
- A symmetric signed digit has $\alpha = \beta$
- Carry-free addition is an attractive property of redundant signed-digit numbers

Signed digit representation

- In mathematical notation for numbers, signed-digit representation is a positional system with signed digits
- The representation may not be unique
- Signed-digit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries

A. K. Cherri, M. A. Karim, "Modified-signed digit arithmetic using an efficient symbolic substitution", Appl. Opt. (1988)

Modified signed digit representation The set of digit is $\{-1,0,1\} = \{\overline{1},0,1\}$

The representation is not unique:

 $\bar{10}1\bar{1} = -8 + 2 - 1 = -7$ $\bar{100}1 = -8 + 1 = -7$ $\bar{111}\bar{1} = -8 + 4 - 2 - 1 = -7$

- The number of possible representation depends on the length of the sequence of digits
- To perform the addition, truth table are used

Truth tables

	First addend				First addend			nd	
	-1 0 1				-1	0	1		
addend	-1	0 -1	1 -1	0 0	addend	-1	0 -1	-1 0	0 0
	0	1 -1	0 0	-1 1		0	-1 0	0	1 0
Second	1	0 0	-1 1	0 1	Second	1	0 0	1 0	0 1

Three steps are needed to obtain the sum

- Left table is applied in step 1 and 3
- Right table is applied in step 2
- Output: sum \rightarrow lower row complemented sum \rightarrow upper row

Example

			First addend					
			-1		0	1		
	þ	1	(C	1	0		
	len		-1		-1	0		
	adc	0		1	0	-1		
	Second addend		-1		0	1		
	eco	1	(0	-1	0		
	S		0		1	1		
			Firs	st	adde	end		
		-	1		0	1		
q	-1		0	-1		0		
len		-1	-	0		0		
adc	0		-1		0	1		
puq		0			0	0		
Second addend			0		1	0		
S		0			0	1		

Advanced and Parallel Architectures 2016/2017

Advanced and Parallel Architectures 2016/2017

RB - Redundant binary number representation

G. A. De Biase, A. Massini "Redundant binary number representation for an inherently parallel arithmetic on optical computers",

Appl. Opt., 32 (1993)

An integer D obtained by

$$D = \sum_{i=0}^{n-1} a_i 2^{i - \lceil i/2 \rceil}$$

This weight sequence characterizes the RB number representation and is:

 All position weights are doubled: the left digit is called r (redundant) and the right digit n (normal)

- RB representation of a number can be obtained from its binary representation by the following recoding rules:
 0 → 00
 1 → 01
- The RB number obtained in this way is in canonical form
- This coding operation is performable in parallel in constant time (one elemental logic step)

- Each RB number has a canonical form and several redundant representations
- Examples of unsigned RB numbers (canonical and redundant)

0	000	000000			
1	001	000001	000010		
2	010	000100	001000	000011	
3	011	000101	001001	001010	
			100000		
5	101	010001	010010	100001	100010
6	110	010100	011000	101000	010011
7	111	010101	010110	101001	101010

Advanced and Parallel Architectures 2016/2017

Table for addition

Truth table

_	00	01	10	11
00	00	10	00	10
	00	00	01	01
01	00	10	00	10
_	01	01	10	10
10	00	10	00	10
	01	01	10	10
11	00	10	00	10
	10	10	11	11

Advanced and Parallel Architectures 2016/2017

Table for addition

- **Two steps**: parallel application of the table 2 on all *rn* pairs
- Output: sum on the lower row and zero on the upper row

	00	01	10	11
00	00	10	00	10
	00	00	01	01
01	00	10	00	10
	01	01	10	10
10	00	10	00	10
	01	01	10	10
11	00	10	00	10
	10	10	11	11

Example

0	0	0	1	0	1	1	1	8
0	0	1	1	0	1	1	0	11

	00	01	10	11
00	00	10	00	10
	00	00	01	01
01	00	10	00	10
	01	01	10	10
10	00	10	00	10
	01	01	10	10
11	00	10	00	10
	10	10	11	11

Example

						00	01	10
0 0	0 1	0 1	1 1	8	00	00	10	00
0 0	1 1	0 1	1 0	11		00	00	01
0 0	1 0	1 0	1 0		01	00	10	00
0 1	0 0	1 1	0 0			01	01	10
					10	00	10	00
						01	01	10
					11	00	10	00
						10	10	11

Example

						00	01	10	11
0 0	0 1	0 1	1 1	8	00	00	10	00	10
0 0	1 1	0 1	1 0	11		00	00	01	01
0 0	1 0	1 0	1 0	7	01	00	10	00	10
$\frac{0}{0}$ 1	$\frac{0 \ 0}{0 \ 0}$	$\frac{1}{0}$	$\frac{0 \ 0}{0 \ 0}$	12		01	01	10	10
$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \end{array}$	0 19	10	00	10	00	10
1 0	1 1	1 0	1 0	17		01	01	10	10
					11	00	10	00	10
						10	10	11	11

- **RB Redundant Binary Representation**
- In analogy with the 2's complement binary system, a signed RB number is obtained by

$$D = -\sum_{i=n-2}^{n-1} a_i 2^{i - \lceil i/2 \rceil} + \sum_{i=0}^{n-3} a_i 2^{i - \lceil i/2 \rceil}$$
 n even

The same procedure of the addition of two unsigned RB numbers obtains the algebraic sum of two signed RB numbers

The additive inverse of an RB number is obtained by following a procedure similar to that used in the 2's complement number system, taking into account that the negation of all RB representations of the number 0 is (-2)₁₀ whereas in the 2's complement binary system it is (- 1)₁₀

Procedure

- Step 1 all digits of the RB number are complemented
- Step 2 algebraic sum between the RB canonical form of (2) 10 and the RB number
- The output is the **additive inverse** of the considered RB number

The decoding of RB numbers, with the correct truncation, can be performed with the following procedure that derives directly from the RB number definition

Procedure

- ▶ The input is RB*n* and RB*r*
- Binary addition RB + RBr.
- Only the first n/2 bits are considered
- The output is the corresponding binary or 2's complement binary number

Zero and Its Detection

- In the case of unsigned RB numbers the (0)₁₀ has only the RB canonical form and is easily detectable
- In the case of signed RB numbers, (0)₁₀ has many RB representations
- Example for six-digit signed RB numbers:

(000000)	(101011)	(101100)
(100111)	(010111)	(011100)

This difficulty can be overcome by using the number (- 1)₁₀ instead of (0)₁₀

Zero and Its Detection

In fact, any redundant representation of the number (-1)₁₀ obtains the canonical representation of the (-1)₁₀ if the following rules acting on *rn* pairs are applied

$01 \rightarrow 01 \qquad 10 \rightarrow 01$

Then, if the result of an algebraic sum between an RB number and an RB representation of (-1)₁₀ is an RB representation of the number (-1)₁₀ again, this RB number is a representation of (0)₁₀

Zero and Its Detection

Then the procedure to detect the number (0) 10 is:

Procedure

- Input an RB number
- Step 1 algebraic sum between the RB canonical form of (- 1) 10 and the RB number
- Step 2 application of rules to the result
- Output is the RB canonical form of (-1) 10 or of another RB number

Comparison of two RB numbers

Procedure

- Input the first RB number and the additive inverse of a second RB number
- Step 1 algebraic sum between the two RB numbers
- Step 2 Procedure for the zero detection applied to the result
- The output is the RB canonical form of (-1) 10 or of another RB number