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Computer arithmetic
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Computer architecture A quantitive approach

Appendix J

2016/2017Advanced and Parallel Architectures2



Half adder and Full adder

 Adders are usually implemented by combining multiple 
copies of simple components

 The natural components for addition are half adders and 
full adders

 The half adder takes two bits a and b as input and 
produces a sum bit s and a carry bit cout as output

 As logic equations,             and 
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Half adder and Full adder

 The full adder takes three bits a, b and c as input and 
produces a sum bit s and a carry bit cout as output

 As logic equations,                                                 
and 

 The half adder is a (2,2) adder, since it takes two inputs 
and produces two outputs. The full adder is a (3,2) adder, 
since it takes three inputs and produces two outputs
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Ripple-Carry Addition

 The principal problem in constructing an adder for n-bit 
numbers out of smaller pieces is propagating the carries 
from one piece to the next

 The most obvious way to solve this is with a ripple-carry 
adder, consisting of n full adders
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Ripple-Carry Addition

 The time a circuit takes to produce an output is 
proportional to the maximum number of logic levels 
through which a signal travels

 Determining the exact relationship between logic levels 
and timings is highly technology dependent
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Ripple-Carry Addition

 When comparing adders we will simply compare the 
number of logic levels in each one

 A ripple-carry adder takes two levels to compute c1 from 
a0 and b0. Then it takes two more levels to compute c2 
from c1, a1, b1, and so on, up to cn

 So, there are a total of 2n levels
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Ripple-Carry Addition

 Typical values of n are 32 for integer arithmetic and 53 for 
double-precision floating point

 The ripple-carry adder is the slowest adder, but also the 
cheapest

 It can be built with only n simple cells, connected in a 
simple, regular way
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Ripple-Carry Addition

 The ripple-carry adder is relatively slow  it takes time O(n)

 But it is used because in technologies like CMOS, the 
constant factor is very small

 Short ripple adders are often used as building blocks in 
larger adders
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Ripple-Carry Addition for Signed Numbers

 The most widely used system for representing integers is 
the  two’s complement, where the MSB is considered 
associated with a negative weight

 The value of a two’s complement number
is:
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Ripple-Carry Addition for Signed Numbers

 One reason for the popularity of two’s complement is 
that it makes signed addition easy  Simply discard the 
carry-out from the high order bit

 Subtraction is executed as an addition: A-B = A+(-B), 
recalling that

2016/2017Advanced and Parallel Architectures11

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

1 XX

an-1 bn-1



Ripple-Carry Addition for Signed Numbers

 The Ripple-Carry adder can be used also for subtraction 
acting on second operand B and on C0 

 If line complement is 1 then operand B is bit wise 
complemented and C0=1

2016/2017Advanced and Parallel Architectures12

an-1 a0a1a2

Sn-1 s0s1s2

bn-1 b2 b1 b0

complement



Unsigned Multiplication

 The simplest multiplier computes the product of two 
unsigned numbers, an–1an–2 ⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0, one 
bit at a time

 Register Product is initially 0
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Unsigned Multiplication

 Each multiply step has two parts:

(i) If the least-significant bit of A is 1, then register B, containing 
bn–1bn–2 ⋅ ⋅ ⋅ b0, is added to P; otherwise, 0 ⋅ ⋅ ⋅ 00 is added to P. 
The sum is placed back into P
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Unsigned Multiplication

(ii) Registers P and A are shifted right, with the carry-out of the 
sum being moved into the high-order bit of P, the low-order bit 
of P being moved into register A, and the rightmost bit of A (not 
used in the rest of the algorithm) being shifted out
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Unsigned Multiplication

 Hence, we add the contents of P to either B or 0 (depending on 
the low-order bit of A), replace P with the sum, and then shift 
both P and A one bit right

 After n steps, the product appears in registers P and A, with A 
holding the lower-order bits
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Signed Multiplication

 To multiply  two’s complement numbers, the obvious approach 
is to convert operands to be nonnegative, do an unsigned 
multiplication, and then (if the original operands were of 
opposite signs) negate the result 

 This requires extra time and hardware
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Signed Multiplication

 A better approach to multiply A and B using the hardware below:

 If B is potentially negative but A is nonnegative, to convert 
the unsigned multiplication algorithm into a two’s complement 
one we need that when P is shifted, it is shifted arithmetically
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Signed Multiplication

 A better approach to multiply A and B using the hardware below:

 If A is negative, the method is Booth recoding that is based on 
the fact that any sequence of 1s in a binary number can be 
written as     011…11 = 100..00 - 1
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Signed Multiplication

 Then, we replace a string of 1s in multiplier with an initial 
subtract when we first see a one and then later add for the bit 
after the last one
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Signed Multiplication

 Then, we replace a string of 1s in multiplier with an initial 
subtract when we first see a one and then later add for the bit 
after the last one
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Signed Multiplication

 Hence, to deal with negative values of A, all that is required is to 
sometimes subtract B from P, instead of adding either B or 0 to P

 Rules: If the initial content of A is an–1 ⋅ ⋅ ⋅ a0, then step (i) in the 
multiplication algorithm becomes:

 If ai = 0 and ai–1 = 0, then add 0 to P

 If ai = 0 and ai–1 = 1, then add B to P

 If ai = 1 and ai–1 = 0, then subtract B from P

 If ai = 1 and ai–1 = 1, then add 0 to P

 For the first step, when i = 0, take ai–1 to be 0
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 Integer addition is the simplest operation and the most 
important

 Even for programs that don’t do explicit arithmetic, 
addition must be performed to increment the program 
counter and to calculate addresses

 The delay of an N-bit ripple-carry adder is:

tripple = NtFA

where tFA is the delay of a full adder

 There are different  techniques to increase the speed of 
integer operations (that lead to faster floating point)

Speeding Up Integer Addition
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Carry-Lookahead Adder

• A carry-lookahead adder improves speed by reducing 
the amount of time required to determine carry bits

We define:

Carry Generate 

Carry propagate 

Then the expression of the carry is:

And the expression of the sum is:
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If we consider 4 bits, we have that c1, c2, c3, c4, depend only on c0:
c1 = a0b0 + (a0+b0)c0 = g0 + p0c0

c2 = a1b1 + (a1+b1)c1 = g1 + p1c1 = g1 + p1g0 + p1p0c0

c3 = a2b2 + (a2+b2)c2 = g2 + p2c2 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = a3b3 + (a3+b3)c3 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

a3 b3

g3 p3

a2 b2

g2 p2

a1 b1

g1 p1

a0 b0

g0 p0

c1c2c3c4

c0

Carry-Lookahead Adder
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Carry-Lookahead Addition

 Structure of a 4 bit CLA

 A CLA requires one logic 
level to form p and g, 
two levels to form the 
carries, and two for the 
sum, for total of five 
logic levels
improvement over the 
2n levels required for the 
ripple-carry adder
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Carry-Lookahead Addition

 Unfortunately, as is 
evident, a carry-
lookahead adder on n 
bits requires a fan-in of n 
+ 1 at the OR gate as 
well as at the rightmost 
AND gate

 The irregular structure 
and long wires make it 
impractical to build a full 
carry-lookahead adder 
when n is large
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Carry-Lookahead Addition

 A 16-bit adder can be built from four 4-bit adders, and a 4-
bit carry look-ahead unit at the second level

 A 64-bit adder can be built from sixteen 4-bit adders, four 
4-bit carry look-ahead units at the second level, and a 
single 4-bit carry look-ahead unit at the third level
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Speeding Up Integer Multiplication

 Methods that increase the speed of multiplication can be 
divided into two classes: 

 single adder 

 multiple adders

 In the simple multiplier we described, each multiplication 
step passes through the single adder

 The amount of computation in each step depends on the 
used adder

 If the space for many adders is available, then 
multiplication speed can be improved
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Pipelined arithmetic

 Consider the instruction pipelining already described

 The processor goes through a repetitive cycle of fetching 
and processing instructions

 In the absence of hazards, the processor is continuously 
fetching instructions from sequential locations the 
pipeline is kept full and a savings in time is achieved

 Similarly, a pipelined ALU will save time if it is fed a 
stream of data from sequential locations

 A single, isolated operation is not speeded up by pipeline

 The speedup is achieved when a vector of operands is 
presented to the units in the ALU
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Pipelined Addition

 For n bits operands, a 
pipeline adder consists 
of n stages of half 
adders

 Registers are inserted 
at each stage to 
synchronize the 
computation

 At each clock cycle a 
new pair of operands is 
applied to the inputs 
of the adder
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Pipelined Addition

 After n clock cycles,  
the sum of the first 
pair of operands is 
obtained 

 The computing time 
for a single sum is the 
same of the carry-
ripple adder

 A new sum is obtained 
at each clock cycle 
starting from the 
(n+1)-th clock cycle
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Pipelined Addition

 The number of HA is 
O(n2), whereas the 
circuit complexity of 
the carry-ripple adder 
is O(n)

 The added circuit 
complexity pays off if 
long sequences of 
numbers are being 
added

33 2016/2017Advanced and Parallel Architectures

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3



Pipelined Unsigned Multiplication

34 2016/2017Advanced and Parallel Architectures

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
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p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2
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p4p5p6p7

01234567
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bbbb
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 The product of 
two n bit 
operands has 
length 2n

 Result is obtained 
by executing n-1 
sums



Pipelined Unsigned Multiplication
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 Inputs to the 
multiplier are 
logical AND 
among pairs of 
bits

 There are 2(n-1) 
stages of FA or HA



Pipelined Unsigned Multiplication
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 After stage (n-1) 
all bit products 
(AND) are added

 Last (n-1) stages 
represent a 
pipelined adder

 Bit p2n-1 of the 
result is obtained 
as OR among the 
carries generated 
by the most left 
HA of each stage



Pipelined Unsigned Multiplication
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 After 2(n-1) clock 
cycles,  the 
product of the 
first pair of 
operands is 
obtained 

 A new result is 
obtained at each 
clock cycle 
starting from the 
(2n-1)-th clock 
cycle



Pipelined Signed Multiplication

 Signed numbers are 
extended to the length 
2n of the product and 
used as operands
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Pipelined Signed Multiplication

 Partial products of 
length 2n are 
considered (the 
remaining part is 
ignored) 

 All stages but the first 
consists of FAs
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