
Advanced Parallel Architecture
Lesson 7

Annalisa Massini - 2016/2017

Computer arithmetic

Hennessy, Patterson

Computer architecture A quantitive approach

Appendix J

2016/2017Advanced and Parallel Architectures2

Half adder and Full adder

 Adders are usually implemented by combining multiple
copies of simple components

 The natural components for addition are half adders and
full adders

 The half adder takes two bits a and b as input and
produces a sum bit s and a carry bit cout as output

 As logic equations, and

2016/2017Advanced and Parallel Architectures3

b a b as  ab cout 

Half adder and Full adder

 The full adder takes three bits a, b and c as input and
produces a sum bit s and a carry bit cout as output

 As logic equations,
and

 The half adder is a (2,2) adder, since it takes two inputs
and produces two outputs. The full adder is a (3,2) adder,
since it takes three inputs and produces two outputs

2016/2017Advanced and Parallel Architectures4

abcba cout )(

cbaabccba cba cb as )(

S

Ripple-Carry Addition

 The principal problem in constructing an adder for n-bit
numbers out of smaller pieces is propagating the carries
from one piece to the next

 The most obvious way to solve this is with a ripple-carry
adder, consisting of n full adders

2016/2017Advanced and Parallel Architectures5

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

an-1 bn-1

Ripple-Carry Addition

 The time a circuit takes to produce an output is
proportional to the maximum number of logic levels
through which a signal travels

 Determining the exact relationship between logic levels
and timings is highly technology dependent

2016/2017Advanced and Parallel Architectures6

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition

 When comparing adders we will simply compare the
number of logic levels in each one

 A ripple-carry adder takes two levels to compute c1 from
a0 and b0. Then it takes two more levels to compute c2
from c1, a1, b1, and so on, up to cn

 So, there are a total of 2n levels

2016/2017Advanced and Parallel Architectures7

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition

 Typical values of n are 32 for integer arithmetic and 53 for
double-precision floating point

 The ripple-carry adder is the slowest adder, but also the
cheapest

 It can be built with only n simple cells, connected in a
simple, regular way

2016/2017Advanced and Parallel Architectures8

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition

 The ripple-carry adder is relatively slow  it takes time O(n)

 But it is used because in technologies like CMOS, the
constant factor is very small

 Short ripple adders are often used as building blocks in
larger adders

2016/2017Advanced and Parallel Architectures9

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition for Signed Numbers

 The most widely used system for representing integers is
the two’s complement, where the MSB is considered
associated with a negative weight

 The value of a two’s complement number
is:

2016/2017Advanced and Parallel Architectures10

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

0

0

1

1

2

2

1

1 2222 aaaa n

n

n

n  





 

0121 aaaa nn 

an-1 bn-1

Ripple-Carry Addition for Signed Numbers

 One reason for the popularity of two’s complement is
that it makes signed addition easy  Simply discard the
carry-out from the high order bit

 Subtraction is executed as an addition: A-B = A+(-B),
recalling that

2016/2017Advanced and Parallel Architectures11

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

1 XX

an-1 bn-1

Ripple-Carry Addition for Signed Numbers

 The Ripple-Carry adder can be used also for subtraction
acting on second operand B and on C0

 If line complement is 1 then operand B is bit wise
complemented and C0=1

2016/2017Advanced and Parallel Architectures12

an-1 a0a1a2

Sn-1 s0s1s2

bn-1 b2 b1 b0

complement

Unsigned Multiplication

 The simplest multiplier computes the product of two
unsigned numbers, an–1an–2 ⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0, one
bit at a time

 Register Product is initially 0

2016/2017Advanced and Parallel Architectures13

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Unsigned Multiplication

 Each multiply step has two parts:

(i) If the least-significant bit of A is 1, then register B, containing
bn–1bn–2 ⋅ ⋅ ⋅ b0, is added to P; otherwise, 0 ⋅ ⋅ ⋅ 00 is added to P.
The sum is placed back into P

2016/2017Advanced and Parallel Architectures14

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Unsigned Multiplication

(ii) Registers P and A are shifted right, with the carry-out of the
sum being moved into the high-order bit of P, the low-order bit
of P being moved into register A, and the rightmost bit of A (not
used in the rest of the algorithm) being shifted out

2016/2017Advanced and Parallel Architectures15

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Unsigned Multiplication

 Hence, we add the contents of P to either B or 0 (depending on
the low-order bit of A), replace P with the sum, and then shift
both P and A one bit right

 After n steps, the product appears in registers P and A, with A
holding the lower-order bits

2016/2017Advanced and Parallel Architectures16

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication

 To multiply two’s complement numbers, the obvious approach
is to convert operands to be nonnegative, do an unsigned
multiplication, and then (if the original operands were of
opposite signs) negate the result

 This requires extra time and hardware

2016/2017Advanced and Parallel Architectures17

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication

 A better approach to multiply A and B using the hardware below:

 If B is potentially negative but A is nonnegative, to convert
the unsigned multiplication algorithm into a two’s complement
one we need that when P is shifted, it is shifted arithmetically

2016/2017Advanced and Parallel Architectures18

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication

 A better approach to multiply A and B using the hardware below:

 If A is negative, the method is Booth recoding that is based on
the fact that any sequence of 1s in a binary number can be
written as 011…11 = 100..00 - 1

2016/2017Advanced and Parallel Architectures19

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication

 Then, we replace a string of 1s in multiplier with an initial
subtract when we first see a one and then later add for the bit
after the last one

2016/2017Advanced and Parallel Architectures20

0010

x 0110

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001100

Signed Multiplication

 Then, we replace a string of 1s in multiplier with an initial
subtract when we first see a one and then later add for the bit
after the last one

2016/2017Advanced and Parallel Architectures21

0010

x 0110

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001100

0010

x 0110

+ 0000 shift (0 in multiplier)

- 0010 sub(first 1 in multpl)

+ 0000 shift(mid string of 1s)

+ 0010 add(prior step had last 1)

00001100

Signed Multiplication

 Hence, to deal with negative values of A, all that is required is to
sometimes subtract B from P, instead of adding either B or 0 to P

 Rules: If the initial content of A is an–1 ⋅ ⋅ ⋅ a0, then step (i) in the
multiplication algorithm becomes:

 If ai = 0 and ai–1 = 0, then add 0 to P

 If ai = 0 and ai–1 = 1, then add B to P

 If ai = 1 and ai–1 = 0, then subtract B from P

 If ai = 1 and ai–1 = 1, then add 0 to P

 For the first step, when i = 0, take ai–1 to be 0

2016/2017Advanced and Parallel Architectures22

23

 Integer addition is the simplest operation and the most
important

 Even for programs that don’t do explicit arithmetic,
addition must be performed to increment the program
counter and to calculate addresses

 The delay of an N-bit ripple-carry adder is:

tripple = NtFA

where tFA is the delay of a full adder

 There are different techniques to increase the speed of
integer operations (that lead to faster floating point)

Speeding Up Integer Addition

2016/2017Advanced and Parallel Architectures

Carry-Lookahead Adder

• A carry-lookahead adder improves speed by reducing
the amount of time required to determine carry bits

We define:

Carry Generate

Carry propagate

Then the expression of the carry is:

And the expression of the sum is:

24

iiiiii cbab a c)(1 

iii ba g 

iii b a p 

iiii cp g c 1

iiiiiiiiiiiiiiiiii cpcbacbacba cba cb a s )(

2016/2017Advanced and Parallel Architectures

25

If we consider 4 bits, we have that c1, c2, c3, c4, depend only on c0:
c1 = a0b0 + (a0+b0)c0 = g0 + p0c0

c2 = a1b1 + (a1+b1)c1 = g1 + p1c1 = g1 + p1g0 + p1p0c0

c3 = a2b2 + (a2+b2)c2 = g2 + p2c2 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = a3b3 + (a3+b3)c3 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

a3 b3

g3 p3

a2 b2

g2 p2

a1 b1

g1 p1

a0 b0

g0 p0

c1c2c3c4

c0

Carry-Lookahead Adder

2016/2017Advanced and Parallel Architectures

Carry-Lookahead Addition

 Structure of a 4 bit CLA

 A CLA requires one logic
level to form p and g,
two levels to form the
carries, and two for the
sum, for total of five
logic levels
improvement over the
2n levels required for the
ripple-carry adder

26 2016/2017Advanced and Parallel Architectures

Carry-Lookahead Addition

 Unfortunately, as is
evident, a carry-
lookahead adder on n
bits requires a fan-in of n
+ 1 at the OR gate as
well as at the rightmost
AND gate

 The irregular structure
and long wires make it
impractical to build a full
carry-lookahead adder
when n is large

27 2016/2017Advanced and Parallel Architectures

Carry-Lookahead Addition

 A 16-bit adder can be built from four 4-bit adders, and a 4-
bit carry look-ahead unit at the second level

 A 64-bit adder can be built from sixteen 4-bit adders, four
4-bit carry look-ahead units at the second level, and a
single 4-bit carry look-ahead unit at the third level

28 2016/2017Advanced and Parallel Architectures

Speeding Up Integer Multiplication

 Methods that increase the speed of multiplication can be
divided into two classes:

 single adder

 multiple adders

 In the simple multiplier we described, each multiplication
step passes through the single adder

 The amount of computation in each step depends on the
used adder

 If the space for many adders is available, then
multiplication speed can be improved

29 2016/2017Advanced and Parallel Architectures

Pipelined arithmetic

 Consider the instruction pipelining already described

 The processor goes through a repetitive cycle of fetching
and processing instructions

 In the absence of hazards, the processor is continuously
fetching instructions from sequential locations the
pipeline is kept full and a savings in time is achieved

 Similarly, a pipelined ALU will save time if it is fed a
stream of data from sequential locations

 A single, isolated operation is not speeded up by pipeline

 The speedup is achieved when a vector of operands is
presented to the units in the ALU

2016/2017Advanced and Parallel Architectures30

Pipelined Addition

 For n bits operands, a
pipeline adder consists
of n stages of half
adders

 Registers are inserted
at each stage to
synchronize the
computation

 At each clock cycle a
new pair of operands is
applied to the inputs
of the adder

31 2016/2017Advanced and Parallel Architectures

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

Pipelined Addition

 After n clock cycles,
the sum of the first
pair of operands is
obtained

 The computing time
for a single sum is the
same of the carry-
ripple adder

 A new sum is obtained
at each clock cycle
starting from the
(n+1)-th clock cycle

32 2016/2017Advanced and Parallel Architectures

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

Pipelined Addition

 The number of HA is
O(n2), whereas the
circuit complexity of
the carry-ripple adder
is O(n)

 The added circuit
complexity pays off if
long sequences of
numbers are being
added

33 2016/2017Advanced and Parallel Architectures

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

Pipelined Unsigned Multiplication

34 2016/2017Advanced and Parallel Architectures

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

01234567

30313233

20212223

10111213

00010203

0123

0123

pppppppp

babababa

babababa

babababa

babababa

bbbb

aaaa

 The product of
two n bit
operands has
length 2n

 Result is obtained
by executing n-1
sums

Pipelined Unsigned Multiplication

35 2016/2017Advanced and Parallel Architectures

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

01234567

30313233

20212223

10111213

00010203

0123

0123

pppppppp

babababa

babababa

babababa

babababa

bbbb

aaaa

 Inputs to the
multiplier are
logical AND
among pairs of
bits

 There are 2(n-1)
stages of FA or HA

Pipelined Unsigned Multiplication

36 2016/2017Advanced and Parallel Architectures

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

 After stage (n-1)
all bit products
(AND) are added

 Last (n-1) stages
represent a
pipelined adder

 Bit p2n-1 of the
result is obtained
as OR among the
carries generated
by the most left
HA of each stage

Pipelined Unsigned Multiplication

37 2016/2017Advanced and Parallel Architectures

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

 After 2(n-1) clock
cycles, the
product of the
first pair of
operands is
obtained

 A new result is
obtained at each
clock cycle
starting from the
(2n-1)-th clock
cycle

Pipelined Signed Multiplication

 Signed numbers are
extended to the length
2n of the product and
used as operands

38 2016/2017Advanced and Parallel Architectures

HA HAHA

FA FA FA

FA

HA HA

a3b2

a1b4

a0b0

p0p1p2p3

FA FA FA

FA

FA FA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5

a3b1a4b0a4b1a5b0

a0b4

a0b5

012345

505152

40414243

3031323334

202122232425

101112131415

000102030405

012345

012345

pppppp

bababa

babababa

bababababa

babababababa

babababababa

babababababa

bbbbbb

aaaaaa

Pipelined Signed Multiplication

 Partial products of
length 2n are
considered (the
remaining part is
ignored)

 All stages but the first
consists of FAs

39 2016/2017Advanced and Parallel Architectures

HA HAHA

FA FA FA

FA

HA HA

a3b2

a1b4

a0b0

p0p1p2p3

FA FA FA

FA

FA FA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5

a3b1a4b0a4b1a5b0

a0b4

a0b5

012345

505152

40414243

3031323334

202122232425

101112131415

000102030405

012345

012345

pppppp

bababa

babababa

bababababa

babababababa

babababababa

babababababa

bbbbbb

aaaaaa

