Advanced Parallel Architecture
Lesson 7

Annalisa Massini - 2016/2017

Computer arithmetic

Hennessy, Patterson

Computer architecture A quantitive approach
Appendix J

Advanced and Parallel Architectures 2016/2017

Half adder and Full adder

Adders are usually implemented by combining multiple
copies of simple components

The natural components for addition are half adders and
full adders

The half adder takes two bits a and b as input and
produces a sum bit s and a carry bit c_ , as output

As logic equations, S = ab + ab and C,, = ab

p 3 Advanced and Parallel Architectures 2016/2017

Half adder and Full adder

The full adder takes three bits a, b and ¢ as input and
produces a sum bit s and a carry bit c_,, as output

As logic equations, S = abc + abc+ abc+abc=(a®b)®c
and ¢, = (a®b)c+ab

The half adder is a (2,2) adder, since it takes two inputs

and produces two outputs. The full adder is a (3,2) adder,
since it takes three inputs and produces two outputs

T . AT
—]—

Cin B_| HA
i)

Cout r _|®70@ ut

b 4 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition

The principal problem in constructing an adder for n-bit
numbers out of smaller pieces is propagating the carries
from one piece to the next

The most obvious way to solve this is with a ripple-carry
adder, consisting of n full adders

0 0 Y O S

+—— Full Adder |4—— =+ «4—— Full Adder [&—— Full Adder [#— Full Adder -l—

p 5 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition

The time a circuit takes to produce an output is

proportional to the maximum number of logic levels
through which a signal travels

Determining the exact relationship between logic levels
and timings is highly technology dependent

Tn-1 lbn-l af Tz -Tl fl -jo i’o
Ch Ch-1 Ca Ca C Co
+— Full Adder |[4—— +=+ «4—— Full Adder [—— Full Adder

—— Full Adder |¢——

p 6 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition

When comparing adders we will simply compare the
number of logic levels in each one

A ripple-carry adder takes two levels to compute c1 from
a0 and b0. Then it takes two more levels to compute c2
from c1, a1, b1, and so on, up to cn

So, there are a total of 2n levels

0 Y 0 S O

+—— Full Adder |4—— =+ «4—— Full Adder [&—— Full Adder [#— Full Adder -l—

p 7 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition

Typical values of n are 32 for integer arithmetic and 53 for
double-precision floating point

The ripple-carry adder is the slowest adder, but also the
cheapest

It can be built with only n simple cells, connected in a
simple, regular way

0 Y 0 S O

+—— Full Adder |4—— =+ «4—— Full Adder [&—— Full Adder [#— Full Adder -l—

p 8 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition

The ripple-carry adder is relatively slow =2 it takes time O(n)

But it is used because in technologies like CMQOS, the
constant factor is very small

Short ripple adders are often used as building blocks in
larger adders

0 0 Y O S

+—— Full Adder |4—— =+ «4—— Full Adder [&—— Full Adder [#— Full Adder -l—

P 9 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition for Signed Numbers

The most widely used system for representing integers is

the two’s complement, where the MSB is considered
associated with a negative weight

The value of a two’s complement number a_.a_ ,---a.a
p n-1*"*n-2 0

is: _ _
-a ,2"'+a ,2" % +---+a,2"' +a,2°

a, b, a, by

s T T

<+—— Full Adder f&—— -+ «—— Full Adder j«—— Full Adder [«—— Full Adder -l—

p 10 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition for Signed Numbers

One reason for the popularity of two’s complement is
that it makes signed addition easy = Simply discard the
carry-out from the high order bit

Subtraction is execuled as an addition: A-B = A+(-B),
recalling that- X = X +1

ang by a, b, a; by a, by
[R N A

«— Full Adder (¢«—— +++ «—— Full Adder [«—— Full Adder [«—— Full Adder -l—

p 11 Advanced and Parallel Architectures 2016/2017

Ripple-Carry Addition for Signed Numbers

The Ripple-Carry adder can be used also for subtraction
acting on second operand B and on C,

If line complement is 1 then operand B is bit wise
complemented and C,=1

complement
b4 b, b, bg ¢
Cn Cn-1 Ca Ca Ci Co
«—— Full Adder j¢&—— ++* «—— Full Adder |« Full Adder j&«—— Full Adder j&——

Advanced and Parallel Architectures 2016/2017

Unsigned Multiplication

The simplest multiplier computes the product of two

unsigned numbers, a,_,a,_,---a,andb,_,b,_,- - - b, one
bit at a time

Register Product is initially O

» Shift Right
Carry out T
Product A - MUItlleer
)ﬂ I n bits n bits
\4{ . | n bits

B - Multiplicand

p 13 Advanced and Parallel Architectures 2016/2017

Unsigned Multiplication

Each multiply step has two parts:

(i) If the least-significant bit of A is 1, then register B, containing
b, ,b,_,---b,isadded to P; otherwise, 0 - - - 00 is added to P.

The sum is placed back into P

Shift Right
Carry out T
Product A - MUItlleer

I n bits n bits

AN

\«C ¢ | n bits
B - Multiplicand

p 14 Advanced and Parallel Architectures 2016/2017

Unsigned Multiplication

(if) Registers P and A are shifted right, with the carry-out of the
sum being moved into the high-order bit of P, the low-order bit
of P being moved into register A, and the rightmost bit of A (not
used in the rest of the algorithm) being shifted out

Shift Right
Product A - MUItlleer

I n bits n bits

Carry out

AN

\4_.4_| N bits
B - Multiplicand

p 15 Advanced and Parallel Architectures 2016/2017

Unsigned Multiplication

Hence, we add the contents of P to either B or O (depending on
the low-order bit of A), replace P with the sum, and then shift

both P and A one bit right

After n steps, the product appears in registers P and A, with A
holding the lower-order bits

Shift Right

Carry out T
Product A - MUItlleer

I n bits n bits

AN

\«C<_I n bits

B - Multiplicand

p 16 Advanced and Parallel Architectures 2016/2017

Signed Multiplication

To multiply two’s complement numbers, the obvious approach
is to convert operands to be nonnegative, do an unsigned
multiplication, and then (if the original operands were of
opposite signs) negate the result

This requires extra time and hardware

Shift Right
Product A - MUItlleer

I n bits n bits

Carry out

AN

\«C<_| n bits

B - Multiplicand

p 17 Advanced and Parallel Architectures 2016/2017

Signed Multiplication

A better approach to multiply A and B using the hardware below:

» If B is potentially negative but A is nonnegative, to convert
the unsigned multiplication algorithm into a two’s complement
one we need that when P is shifted, it is shifted arithmetically

Shift Right
Product A - MUItlleer

I n bits n bits

Carry out

AN

\«C<_| n bits

B - Multiplicand

p 18 Advanced and Parallel Architectures 2016/2017

Signed Multiplication

A better approach to multiply A and B using the hardware below:

» If Ais negative, the method is Booth recoding that is based on
the fact that any sequence of 1s in a binary number can be
writtenas 011...11=100..00-1

Shift Right
Product A - MUItlleer

I n bits n bits

Carry out

AN

\«C<_| n bits

B - Multiplicand

p 19 Advanced and Parallel Architectures 2016/2017

Signed Multiplication

Then, we replace a string of 1s in multiplier with an initial
subtract when we first see a one and then later add for the bit
after the last one

0010
X 0110
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in multiplier)
+ 0010 add (1 in multiplier)
+ 0000 shift (0 in multiplier)
00001100

p 20 Advanced and Parallel Architectures 2016/2017

Signed Multiplication

Then, we replace a string of 1s in multiplier with an initial
subtract when we first see a one and then later add for the bit

after the last one 8218
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in multiplier)
+ 0010 add (1 in multiplier)
+ 0000 shift (0 in multiplier)
00001100
0010
X 0110
+ 0000 shift (0 in multiplier)
= 0010 sub (first 1 in multpl)
+ 0000 shift (mid string of 1s)
+ 0010 add (prior step had last 1)
00001100

p 21 Advanced and Parallel Architectures 2016/2017

Signed Multiplication

Hence, to deal with negative values of A, all that is required is to
sometimes subtract B from P, instead of adding either Bor 0 to P

Rules: If the initial content of Aisa,_, - - - a,, then step (i) in the
multiplication algorithm becomes:

» Ifai=0and ai-1=0, thenaddOto P

» Ifai=0andai-1=1,thenadd Bto P

» If ai=1and ai-1 =0, then subtract B from P

» Ifai=1andai-1=1,thenaddOto P

» For the first step, when i =0, take ai—1 to be O

p 22 Advanced and Parallel Architectures 2016/2017

Speeding Up Integer Addition

Integer addition is the simplest operation and the most
iImportant

Even for programs that don’t do explicit arithmetic,
addition must be performed to increment the program
counter and to calculate addresses

The delay of an N-bit ripple-carry adder is:

1:ripple = NtFA

where t-, is the delay of a full adder

There are different techniques to increase the speed of

p 23 Advanced and Parallel Architectures 2016/2017

Carry-Lookahead Adder

A carry-lookahead adder improves speed by reducing
the amount of time required to determine carry bits

Ci = ab, +(a ®b)c
We define:
Carry Generate §; =ab,
Carry propagate Pi = & ©b,

Then the expression of the carry is: C;,; = g; + P;C;
And the expression of the sum is:

s, = abci + abci+ abic +abc =(a ®b)®c =p, dc,

p 24 Advanced and Parallel Architectures 2016/2017

Carry-Lookahead Adder

If we consider 4 bits, we have that c4, ¢, c3, ¢4, depend only on cg:
C1 = aobo + (20+bo)co = 8o + PocCo

C2 = aibg + (a1+b1)cy = g1 + p1C1-81 + P18o+ P1PoCo

C3 = axby + (a+by)co =g + P2Ca =82 + P281 + P2P1L0 + P2P1PoCo

C4 = asbs + (as+bs)c3 = g3 + p3C3 =gz + P3g2 + P3P281 + P3P2P 180+ P3P2P1P0Co

az bs a, by ap by ao bo
03 P3 02 P2 01 P1 Jo Po

_____________________ Ca . C___C . C
p 25 Advanced and Parallel Architectures 2016/2017

Carry-Lookahead Additio

Structure of a 4 bit CLA & :L)D:(,
,,”ﬁDfa--n-_-m-m-_m p
: : 1] MHe
A CLA requires one logic i
level to f d T) >~
eveI 0 Iorm/]tcoan i/, DS A
two levels to form the L
. HG,
carries, and two for the p—

. A \ C, \ 92
sum, for total of five ", DPP,:)DH
logic levels 2 Vo
improvement over the g S
2n levels required for the B+~
ripple-carry adder 1 He ¢, =

;3 Carry Lookahead
Block

p 26 Advanced and Parallel Architectures 2016/2017

Carry-Lookahead Additio

Unfortunately, as is . & JJD 3,

. | Uﬁmf’a“----_---_-_--_!’# S
evident, a carry- Byt A
lookahead adder on n 1 He
bits requires a fan-in of n i A
+ 1 at the OR gate as o | il
well as at the rightmost e
AND gate A, C \ 52

| T b B
The irregular structure [e
. . s

and long wires make it 4 ()
impractical to build a full =~ & 1) >t S
carry-lookahead adder m 17 o
when n is large T | o osherass

p 27 Advanced and Parallel Architectures 2016/2017

Carry-Lookahead Addition

A 16-bit adder can be built from four 4-bit adders, and a 4-
bit carry look-ahead unit at the second level

AlTs Bllz..ls Aslll Bf..ll Aal? Bf..? An:nf Bf.g
4-bit 4-bit 4-bit 4-bit | -,
CLA CLA CLA CLA |«—
Adder Adder Adder Adder
812..14 l SB..lll l Sa..?l l SD..E{ l
Pi2diz Ciz Psgs Cs PpP49s Csa pPoOgo
E 16-bit Lookahead Carry Unit PG GG

‘Y

A 64-bit adder can be built from sixteen 4-bit adders, four
4-bit carry look-ahead units at the second level, and a
single 4-bit carry look-ahead unit at the third level

Advanced and Parallel Architectures 2016/2017

Speeding Up Integer Multiplication

Methods that increase the speed of multiplication can be
divided into two classes:

» single adder
» multiple adders

In the simple multiplier we described, each multiplication
step passes through the single adder

The amount of computation in each step depends on the
used adder

If the space for many adders is available, then
multiplication speed can be improved

p 29 Advanced and Parallel Architectures 2016/2017

Pipelined arithmetic

Consider the instruction pipelining already described

The processor goes through a repetitive cycle of fetching
and processing instructions

In the absence of hazards, the processor is continuously
fetching instructions from sequential locations = the
pipeline is kept full and a savings in time is achieved

Similarly, a pipelined ALU will save time if it is fed a
stream of data from sequential locations

A single, isolated operation is not speeded up by pipeline

The speedup is achieved when a vector of operands is
presented to the units in the ALU

p 30 Advanced and Parallel Architectures 2016/2017

Pipelined Addition

For n bits operands, a
pipeline adder consists
of n stages of half
adders

Registers are inserted
at each stage to
synchronize the
computation

At each clock cycle a
new pair of operands is
applied to the inputs
of the adder

p 31 Advanced and Parallel Architectures 2016/2017

Pipelined Addition

After n clock cycles,
the sum of the first
pair of operands is
obtained

The computing time
for a single sum is the
same of the carry-
ripple adder

A new sum is obtained
at each clock cycle
starting from the
(n+1)-th clock cycle

p 32 Advanced and Parallel Architectures 2016/2017

Pipelined Addition

The number of HA is
O(n?), whereas the
circuit complexity of
the carry-ripple adder
is O(n)

The added circuit
complexity pays off if
long sequences of

numbers are being
added

p 33 Advanced and Parallel Architectures 2016/2017

Pipelined Unsigned Multiplication

asbs apby
a3 a'2 al a'0 j:'
b, b, b b
aSbO aZbO aibO aObO
ab, ab ab ab = &
a3b2 a‘ZbZ a1b2 aObZ
a3b3 a'2b3 a1b3 a‘ObS
P; Ps Ps Py P By P Py = P
The product of
two n bit
operands has
length 2n
Result is obtained]
1 =
by executing n-1
sums
Ps P4 P3 P2 P1 Po

p 34 Advanced and Parallel Architectures 2016/2017

Pipelined Unsigned Multiplication

a.b

3
a; 8, a g j='
b, b, b Db

ab, ab, ab, ah,

a;b, a,b ab ab T

a;b, ab, ab, apb,
a;b; a,b; ab, ah,

Pz

Ps Ps Py Ps P, P, Po s

Inputs to the
multiplier are
logical AND
among pairs of
bits

There are 2(n-1)
stages of FA or HA

Ps P4 Ps P2 P1

p 35 Advanced and Parallel Architectures 2016/2017

Pipelined Unsigned Multiplication

After stage (n-1)
all bit products
(AND) are added

Last (n-1) stages
represent a
pipelined adder

Bit p,, , of the
result is obtained
as OR among the |
carries generated
by the most left
HA of each stage

Ps P4 Ps P2

p 36 Advanced and Parallel Architectures 2016/2017

Pipelined Unsigned Multiplication

After 2(n-1) clock
cycles, the
product of the
first pair of
operands is
obtained

A new result is
obtained at each
clock cycle
starting from the
(2n-1)-th clock
cycle

Ps P4 Ps P2 P1

p 37 Advanced and Parallel Architectures 2016/2017

a

DbO

Pipelined Signed Multiplication

Signed numbers are asbg aib; aby asby asby @by aby ab

extended to the length
2n of the product and

used as operands

azb,

a,b ayb
"H!I’ FA FA

a.b anb,
a2 a, a, a, a a, ! 0 L L
b b, b, b, b b FA
asbo a4b0 asbo azbo albO aobo
a4b1 aSbl a2b1 a1b1 aObl agbs
a3b2 a2b2 aibz aobz @ [] [| [
azbs aﬂ_bs aobs
ab, agh,
aobs
Ps. Psa P3P P P Ps P4 P3 P,

Advanced and Parallel Architectures 2016/2017

Pipelined Signed Multiplication

Partial products of
length 2n are
considered (the
remaining part is
ignored)

All stages but the first azb agb
consists of FAs & A
a,b agb
a, a, a a a a ° ’ = .
b, b, b, b b b FA
ash, a,b, ab, ab, ab, ago,
ab ab, ab ab ab ab agbs
a,b, ab, ab, ab, apb, @ g =) =
a3b3 a2b3 a1b3 a0b3
a2b4 a1b4 a'Ob4
a0 aghg

Advanced and Parallel Architectures 2016/2017

