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Pipelining

 Pipelining is an implementation technique whereby 
multiple instructions are overlapped in execution

 Pipelining takes advantage of parallelism that exists 
among the actions needed to execute an instruction

 In a computer pipeline:

 Each step in the pipeline completes a part of an instruction 

 Different steps are completing different parts of different 
instructions in parallel. 

 Each of these steps is called a pipe stage or a pipe segment

 The stages are connected one to the next to form a pipe 
instructions enter at one end, progress through the stages, 
and exit at the other end, as cars in an assembly line
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Pipelining

 The throughput of an instruction pipeline is determined 
by how often an instruction exits the pipeline

 Because the pipe stages are hooked together, all the 
stages must be ready to proceed at the same time, just as 
we would require in an assembly line

 The time required between moving an instruction one 
step down the pipeline is a processor cycle

 The length of a processor cycle is determined by the time 
required for the slowest pipe stage

 In a computer, this processor cycle is usually 1 clock cycle
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Pipelining

 The goal is to balance the length of each pipeline stage

 If the stages are perfectly balanced, assuming ideal 
conditions:

 The time per instruction , on the pipelined processor is 

 the ideal speedup due to pipelining is equal to the number 
of pipeline stages
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Pipelining

 Usually, however, the stages will not be perfectly balanced

 Thus, the time per instruction on the pipelined processor 
will not have its minimum possible value (it can be close)

 Pipelining yields a reduction in the average execution time 
per instruction

 The reduction can be viewed as:

 decreasing the number of clock cycles per instruction (CPI)

 decreasing the clock cycle time

 a combination
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Pipelining

 Pipelining:

 is an implementation technique that exploits parallelism among 
the instructions in a sequential instruction stream

 is not visible to the programmer

 In the follow, we use a RISC architecture characterized by a 
few key properties, which simplify its implementation:

 All operations on data apply to data in registers 

 The only operations that affect memory are load (move data 
from memory to a register) and store (to memory from a 
register) operations

 The instruction formats are few in number
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Pipelining

 Most RISC architectures have three classes of instructions:

 ALU instructions—These instructions take either two registers 
or a register and a sign-extended immediate, operate on 
them, and store the result into a third register

 Load and store instructions—These instructions take a register 
source, called the base register and an offset, to compute 
effective address, as well as a second register operand

 Branches and jumps—Branches are conditional transfers of 
control. Unconditional jumps are provided in many RISC 
architectures
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Pipelining

 Every instruction in this RISC subset can be implemented in 
at most 5 clock cycles:

 Instruction fetch cycle (IF)

 Instruction decode/register fetch cycle (ID) - Decode the 
instruction and read the registers. Do the equality test on the 
registers as they are read, for a possible branch. Compute the 
possible branch target address by adding the sign-extended 
offset to the incremented PC
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Pipelining

 Every instruction in this RISC subset can be implemented in 
at most 5 clock cycles:

 Execution/effective address cycle (EX) - The ALU operates 
on the operands prepared in the prior cycle, performing 
one of three functions depending on the instruction type:

 Memory reference—The ALU adds the base register and the 
offset to form the effective address

 Register-Register ALU instruction—The ALU performs the 
operation (ALU opcode) on the values read from the register file

 Register-Immediate ALU instruction—The ALU performs the 
operation (ALU opcode) on the first value read from the register 
file and the sign-extended immediate
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Pipelining

 Every instruction in this RISC subset can be implemented in 
at most 5 clock cycles:

 Memory access (MEM): If the instruction is a load, the 
memory does a read using the effective address. If it is a 
store, then the memory writes the data from the second 
register using the effective address

 Write-back cycle (WB): Register-Register ALU instruction or 
load instruction: Write the result into the register file, 
whether it comes from the memory system (for a load) or 
from the ALU (for an ALU instruction)

 Branch instructions require 2 cycles, store instructions 
require 4 cycles, and all other instructions require 5 cycles
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Pipelining

 Each of the clock cycles from the previous section becomes 
a pipe stage—a cycle in the pipeline

 This results in the execution pattern above, which is the 
typical way a pipeline structure is drawn
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Pipelining

 Each instruction takes 5 clock cycles to complete

 During each clock cycle the hardware:

 will initiate a new instruction 

 will be executing some part of the five different instructions

2016/2017Advanced and Parallel Architectures13

Clock number

1 2 3 4 5 6 7 8 9

Instruction number 

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB



Pipelining

 Pipelining seems simple, but it’s not

 two different operations cannot be performed with the same 
data path resource on the same clock cycle  for example, a 
single ALU cannot be asked to compute an effective address  and 
perform a subtract operation at the same time
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Pipelining

Observations

 The use of separate caches eliminates a conflict for a single 
memory that would arise between instruction fetch and 
data memory access

 The register file is used in the two stages: one for reading
in ID and one for writing in WB. These uses are distinct

 To start a new instruction every clock, we must increment 
and store the PC every clock (IF stage). Furthermore, we 
must also have an adder to compute the potential branch 
target during ID. One further problem is that a branch does 
not change the PC until the ID stage. This causes a problem
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Pipelining

 To ensure that instructions in different stages of the 
pipeline do not interfere with one another pipeline 
registers are introduced between successive stages of the 
pipeline:

 at the end of a clock cycle all the results from a given stage are 
stored into a register that is used as the input to the next stage 
on the next clock cycle
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Performance Issues in Pipelining

 Pipelining increases the CPU instruction throughput — the 
number of instructions completed per unit of time — but it 
does not reduce the execution time of a single instruction

 The increase in instruction throughput means that a 
program runs faster and has lower total execution time, 
even though no single instruction runs faster!
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Performance Issues in Pipelining

 In fact, the execution time of each instruction is slightly 
increased due to:

 imbalance among the pipe stages

 overhead in the control of the pipeline 

 Imbalance among the pipe stages reduces performance 
since the clock can run no faster than the time needed for 
the slowest pipeline stage

 Pipeline overhead arises from the combination of pipeline 
register delay and clock skew
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Example 

 Assume that an unpipelined processor has a 1 ns clock 
cycle and that it uses 4 cycles for ALU operations and
branches and 5 cycles for memory operations

 Assume that the relative frequencies of these operations 
are 40%, 20%, and 40%, respectively

 Suppose that due to clock skew and setup, pipelining the 
processor adds 0.2 ns of overhead to the clock

 How much speedup in the instruction execution rate will 
we gain from a pipeline?
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Example 

 The average instruction execution time on the unpipelined
processor is:

Average instruction execution time = 

= Clock cycle × Average CPI =

= 1 ns × [(40% + 20%) × 4 + 40% × 5] = 

=1 ns × 4.4 = 4.4 ns
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Example 

 In the pipelined implementation, the clock must run at the 
speed of the slowest stage plus overhead

 Average instruction execution time is (1 + 0.2)ns = 1.2 ns

 Thus, the speedup from pipelining is

 The 0.2 ns overhead establishes a limit on the effectiveness 
of pipelining
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Sequential vs Pipelining Execution
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 Time pipe stage = 2 ns

 Time 6 pipelined instruction = Time 1 unpipelined instruction + 5 x Time pipe stage 
= 10 ns + 10 ns = 20 ns

 Time N pipelined instruction = Time 1 unpip. instruction + (N-1) x Time pipe stage 

10 ns

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

2 ns

2 ns

2 ns

2 ns

2 ns IF ID EX MEM WB

2 ns

 Time  1 unpipelined instruction = 10 ns 

 Time 6 unpipelined instruction = 60 ns

 Time N unpipelined instruction = N x 10 ns



Pipeline Hazards

 A hazard (conflict) is created whenever there is a 
dependence between instructions, and instructions are 
close enough that the overlap caused by pipelining would 
change the order of access to the operands involved in the 
dependence

 Hazards:

 prevent the next instruction from executing during its clock cycle

 reduce the performance from the ideal speedup 
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Pipeline Hazards

 There are three classes of hazards:

 Structural hazards Attempt to use the same resource from 
different instructions simultaneously - arise when the hardware 
cannot support that instructions overlap their execution

 Example: Single memory for instructions and data

 Data hazards Attempt to use a result before it is ready - arise 
when an instruction depends on the results of a previous 
instruction still in the pipeline

 Control hazards Attempt to make a decision on the next 
instruction to execute before the condition is evaluated

 Example: conditional branch execution (change the PC)
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Pipeline Hazards

 Hazards in pipelines can make it necessary to stall the 
pipeline

 Some instructions in the pipeline be allowed to proceed 
while others are delayed

 When an instruction is stalled:

 all instructions issued later than the stalled instruction—and 
hence not as far along in the pipeline—are also stalled

 Instructions issued earlier than the stalled instruction—and 
hence farther along in the pipeline—must continue 

 As a result, no new instructions are fetched during the stall
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Performance of Pipelines with Stalls


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Performance of Pipelines with Stalls


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Performance of Pipelines with Stalls


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Performance of Pipelines with Stalls


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Performance of Pipelines with Stalls


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Performance of Pipelines with Stalls


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Structural Hazards

 When a processor is pipelined, the overlapped execution 
of instructions requires:

 pipelining of functional units, and 

 duplication of resources 

to allow all possible combinations of instructions in the 
pipeline

 If some combination of instructions cannot be 
accommodated because of resource conflicts, the 
processor is said to have a structural hazard
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Structural Hazards

Examples:

 Some functional unit is not fully pipelined  a sequence of 
instructions using that unpipelined unit cannot proceed at the 
rate of one per clock cycle

 Some resource has not been duplicated enough to allow all 
combinations of instructions in the pipeline to execute  a 
processor may have only one register-file write port, but under 
certain circumstances, the pipeline might want to perform two 
writes in a clock cycle

 Some pipelined processors have shared a single-memory 
pipeline for data and instructions when an instruction 
contains a data memory reference, it will conflict with the 
instruction reference for a later instruction
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Structural Hazards - single-memory
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To resolve this hazard, we stall the pipeline for 1 clock cycle when the 
data memory access occurs



Structural Hazards

Example - Cost of the load structural hazard 

 Suppose that:

 data references constitute 40% of the mix

 the ideal CPI of the pipelined processor is 1

 Assume that:

 the processor with the structural hazard has a clock rate that 
is 1.05 times higher than the clock rate of the processor 
without the hazard

 Is the pipeline with or without the structural hazard 
faster, and by how much? (Disregarding any other 
performance losses)
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Structural Hazards

Example - Cost of the load structural hazard

 A way to solve this problem is to compute the average 
instruction time on the two processors

 The processor without the structural hazard is 1.3 times
faster
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Structural Hazards

 The designer could provide a separate memory access for 
instructions, either by splitting the cache into separate 
instruction and data caches or by using a set of buffers, 
usually called instruction buffers, to hold instructions

 A processor without structural hazards has always a lower 
CPI  why would a designer allow structural hazards?

 Pipelining all the functional units, or duplicating them, 
may be too costly

 For example, processors that support both an instruction and a 
data cache access every require twice as much total memory 
bandwidth and often have higher bandwidth at the pins
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Data Hazards

 Overlapping the execution of instructions introduces data 
and control hazards

 Data hazards occur when the pipeline changes the order 
of read/write accesses to operands so that the order 
differs from the order seen by sequentially executing 
instructions on an unpipelined processor
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Data Hazards

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

 All the instructions after the ADD use 
the result of the ADD instruction

 The ADD instruction writes the value 
of R1 in the WB pipe stage

 But the SUB instruction reads the 
value during its ID stage

 This problem is called a data hazard

 Unless precautions are taken to 
prevent it, the SUB instruction will 
read the wrong value and try to use it
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Data Hazards

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11
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 In fact, the value used by the SUB 
instruction is not even deterministic

 If an interrupt should occur between 
the ADD and SUB instructions, the WB 
stage of the ADD will complete, and 
the value of R1 at that point will be the 
result of the ADD

 This unpredictable behavior is
unacceptable



Data Hazards

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11
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IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB



Data Hazards
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AND instruction is also affected by this hazard: the write of R1 does 
not complete until the end of clock cycle 5  the AND instruction that 
reads the registers during clock cycle 4 will receive the wrong results



Data Hazards
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The OR instruction also operates without incurring a hazard because 
we perform the register file reads in the second half of the cycle and 
the writes in the first half



Data Hazards
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The XOR instruction operates properly because its register read occurs 
in clock cycle 6, after the register write



Data Hazards: Possible Solutions

 Compilation Techniques: 

 Insertion of nop (no operation) instructions 

 Instructions scheduling to avoid that correlating instructions 
are too close 

 The compiler tries to insert independent instructions among 
correlating instructions 

 When the compiler does not find independent instructions, it insert 
nops

 Hardware Techniques: 

 Insertion of stalls or “bubbles” in the pipeline 

 Data forwarding or bypassing
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Insertion of nop
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ADD R1,R2,R3

nop

nop

nop

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

IF ID

IF



Scheduling

Example

sub $2, $1, $3 

and $12, $2, $5 

or $13, $6, $2

add $14, $2, $2

sw $15,100($2) 

add $4, $10, $11 

and $7, $8, $9 

lw $16, 100($18)

sub $2, $1, $3 

add $4, $10, $11 

and $7, $8, $9 

lw $16, 100($18) 

and $12, $2, $5 

or $13, $6, $2

add $14, $2, $2

sw $15,100($2)
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Data Hazards Requiring Stalls

 Hardware, called pipeline interlock, is added to:

 preserve the correct execution pattern

 detect a hazard

 stall the pipeline until the hazard is cleared

 The interlock stalls the pipeline:

 beginning with the instruction that wants to use the data until 
the source instruction produces it 

 introducing a stall or bubble, as for the structural hazard

 The CPI for the stalled instruction increases by the length 
of the stall
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Insertion of stalls
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ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

IF ID EX MEM WB

ID EX MEM

IF ID EX

IF ID

IF

IF stall stall stall

stall stall stall



Data Hazards Requiring Stalls

 Consider the following sequence of instructions:

LD R1,0(R2)

SUB  R4,R1,R5

AND  R6,R1,R7

OR    R8,R1,R9

 LD instruction does not have the data until the end of clock 
cycle 4 (its MEM cycle) 

 SUB instruction needs to have the data by the beginning of 
that clock cycle

 the data hazard from using the result of a load instruction 
cannot be completely eliminated with simple hardware
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Data Hazards Requiring Stalls

 Consider the following sequence of instructions:

LD     R1,0(R2)

SUB  R4,R1,R5

AND  R6,R1,R7

OR    R8,R1,R9
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Data Hazards Requiring Stalls

LD R1,0(R2) 

SUB R4,R1,R5 

AND R6,R1,R7 

OR R8,R1,R9

 Before stall insertion

LD R1,0(R2) 

SUB R4,R1,R5 

AND R6,R1,R7 

OR R8,R1,R9 

 After stall insertion
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IF ID EX MEM WB

EX MEM WB

IF

stall

stall

stall

IF ID

ID EX MEM WB

IF ID EX MEM

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB



Forwarding

 Data forwarding (also bypassing or short-circuiting):

 Temporary results stored in the pipeline registers 
instead of waiting for the write back of results in the RF 
(register file)

 A result is forwarded from the pipeline register 
(output of one unit) to the input of another unit
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Forwarding

 Forwarding works as follows:

 The ALU result from both the EX/MEM and MEM/WB 
pipeline registers is always fed back to the ALU inputs

 If the forwarding hardware detects that the previous 
ALU operation has written the register of a source for 
the current ALU operation, control logic selects the 
forwarded result as the ALU input
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Forwarding

SUB  $2, $1, $3 

AND $12, $2, $5 

OR    $13, $6, $2

ADD $14, $2, $2

SW   $15,100($2)
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IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

EX/EX
path

MEM/ID
path

MEM/EX
path



Minimizing Data Hazard Stalls by Forwarding
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Type of Data Hazards

 RAW (READ AFTER WRITE) hazard

 instruction n+1 tries to read a source register before the 
previous instruction n has written it in the RF

 Example: 

ADD $R1, $R2, $R3 

SUB $R4, $R1, $R5 

 By using forwarding, it is always possible to solve this 
conflict without introducing stalls, except for the load/use 
hazards where it is necessary to add one stall
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Type of Data Hazards

 WAW (WRITE AFTER WRITE) hazard

 Instruction n+1 tries to write a destination operand before it 
has been written by the previous instruction n  write 
operations executed in the wrong order (out-of-order) 

 Example: 

LW $R1, 0($R2) 

ADD $R1,$R2,$R3
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Type of Data Hazards

 WAR (WRITE AFTER READ) hazard

 Instruction n+1 tries to write a destination operand before it 
has been read from the previous instruction n  instruction n 
reads the wrong value

 Example

 SW $Y, 0($X) # sw has to read $x 

 ADDI $X, $X, 4 # addi writes Sx

 As before, if we assume the register write in the ALU 
instructions occurs in the fourth stage and that we need 
two stages to access the data memory, some instructions 
could read operands too late in the pipeline
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Control hazards

 Control hazards can cause a greater performance loss for 
our MIPS pipeline than do data hazards

 When a branch is executed, it may change the PC to 
something other than next address (PC plus 4):

 the branch decision (to change or not change the PC) is 
taken during the MEM stage

 if a branch changes the PC to its target address, it is a taken
branch

 if it falls through, it is not taken, or untaken

2016/2017Advanced and Parallel Architectures60



Control hazards

 Examples of branches (for MIPS processor): 

 beq (branch on equal) and bne (branch on not equal) 

 beq $s1, $s2, L1 # go to L1 if ($s1 == $s2) 

 bne $s1, $s2, L1 # go to L1 if ($s1 != $s2)

 Branch Outcome and Branch Target Address are ready at 
the end of the EX stage (3th stage) 

 Conditional branches are solved when PC is updated at 
the end of the MEM stage (4th stage)
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Control hazards

 Control hazards: Attempt to make a decision on the next 
instruction to fetch before the branch condition is 
evaluated

 Control hazards arise from the pipelining of conditional 
branches and other instructions changing the PC

 Control hazards reduce the performance from the ideal 
speedup gained by the pipelining since they can make it 
necessary to stall the pipeline
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Example

beq $1, $3, L1 

and  $12, $2, $5 

or     $13, $6, $2 

add  $14, $2, $2 

L1: lw $4, 50($7)

 The branch instruction may or may not change the PC 
(MEM stage)

 The next 3 instructions are fetched and their execution is 
started
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IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM



Example

beq $1, $3, L1 

and  $12, $2, $5 

or     $13, $6, $2 

add  $14, $2, $2 

L1: lw $4, 50($7)

 If the branch is not taken, the pipeline execution is OK 

 If the branch is taken, it is necessary to flush the next 3 
instructions in the pipeline and fetch the lw instruction at 
the branch target address (L1)
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IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM



Solutions

 Stalling until resolution: To stall the pipeline until the 
branch decision is taken and then fetch the correct 
instruction flow

 Without forwarding: for three clock cycles (end MEM stage)

beq $1, $3, L1 

and  $12, $2, $5 

or     $13, $6, $2 

add  $14, $2, $2 

 Each branch costs three stalls to fetch the correct 
instruction flow: (PC+4) or Branch Target Address
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IF ID EX MEM WB

IF ID EX MEM

IF ID EX

IF ID

stall stall stall



Solutions

 Stalling until resolution: To stall the pipeline until the 
branch decision is taken and then fetch the correct 
instruction flow

 With forwarding: for two clock cycles (end EX stage)

beq $1, $3, L1 

and  $12, $2, $5 

or     $13, $6, $2 

add  $14, $2, $2 

 Each branch costs two stalls to fetch the correct 
instruction flow: (PC+4) or Branch Target Address
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IF ID EX MEM WB

IF ID EX MEM

IF ID EX

stall stall IF ID EX MEM WB



Solutions

 Early Evaluation of the PC: To improve performance in 
case of branch hazards, additional  hardware resources 
are needed to to: 

 Compare registers to derive the Branch Outcome 

 Compute the Branch Target Address 

 Update the PC register as soon as possible in the 

 MIPS processor compares registers, computes branch 
target address and updates PC during ID stage
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Solutions

 Stalling until resolution at the end of the ID stage

beq $1, $3, L1 

and  $12, $2, $5 

or     $13, $6, $2 

add  $14, $2, $2 

 Each branch costs one stalls to fetch the correct 
instruction flow: (PC+4) or Branch Target Address
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IF ID EX MEM WB

IF ID EX MEM

stall

IF ID EX MEM WB

IF ID EX MEM WB



Solutions

 Consequence of early evaluation of the branch decision in 
ID stage: 

 In case of add instruction followed by a branch testing the 
result  we need to introduce one stall before ID stage of 
branch to enable the forwarding (EX-ID) of the result from EX 
stage of previous instruction

 We also need one stall after the branch for branch resolution

addi $1, $1, 4 

beq $1, $6, L1 

and  $12, $2, $5 
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IF ID EX MEM WB

IF ID EX MEM

stallIF ID EX MEM WB

stall



Solutions

 Consequence of early evaluation of the branch decision in 
ID stage: 

 In case of load instruction followed by a branch testing the 
result  we need to introduce two stalls before ID stage of 
branch to enable the forwarding (ME-ID) of the result from 
EX stage of previous instruction

 We also need one stall after the branch for branch resolution

lw $1, BASE($2)

beq $1, $6, L1 

and  $12, $2, $5 
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IF ID EX MEM WB

IF ID EX MEM

stallIF ID EX MEM WB

stall

stall



Solutions

 With the branch decision made during ID stage, there is a 
reduction of the cost associated with each branch (branch 
penalty):

 We need only one-clock-cycle stall after each branch 

 Or a flush of only one instruction following the branch 

 There are techniques to reduce the performance loss
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Solutions

 Branch prediction techniques try to predict ASAP the 
outcome of a branch instruction

 Static Branch Prediction Techniques: The actions for a 
branch are fixed for each branch during the entire 
execution. The actions are fixed at compile time

 Branch Always Not Taken (Predicted-Not-Taken) 

 Branch Always Taken (Predicted-Taken) 

 Backward Taken Forward Not Taken (BTFNT)

 Profile-Driven Prediction 

 Delayed Branch
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Solutions

 Branch prediction techniques try to predict ASAP the 
outcome of a branch instruction

 Dynamic Branch Prediction Techniques: The decision 
causing the branch prediction can dynamically change 
during the program execution

 Basic Idea: To use the past branch behavior to predict 

 We use hardware to dynamically predict the outcome of a 
branch: the prediction will depend on the behavior of the 
branch at run time and will change if the branch changes its 
behavior during execution
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Exercise - Midterm 2014/2015

 Consider  the following loop 
in a high level language: 

for (i =0; i < N; i ++) 



vectA[i] = vectB[i] 

vectB[i] = vectB[i] + 4; 



 The program in MIPS 
assembly code is: 

FOR: beq $t6,$t7,END

lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

 Registers $t6 and $t7 are 
initialized with 0 and 4N

 VECTB is a 16-bit constant
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Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS 
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard) 

 Identify the number of stalls to be inserted before each instruction (or 
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved 
in the hazard
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Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

lw $t2,VECTB($t6) IF ID EX ME WB

sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB



Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS 
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard) 

 Identify the number of stalls to be inserted before each instruction (or 
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved 
in the hazard
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Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB



Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS 
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard) 

 Identify the number of stalls to be inserted before each instruction (or 
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved 
in the hazard
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Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB



Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS 
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard) 

 Identify the number of stalls to be inserted before each instruction (or 
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved 
in the hazard
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Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB



Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS 
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard) 

 Identify the number of stalls to be inserted before each instruction (or 
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved 
in the hazard
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Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA



Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS 
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard) 

 Identify the number of stalls to be inserted before each instruction (or 
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved 
in the hazard
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Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA



Exercise

 For each instruction

 Write the phases and insert the stalls to solve the hazards 
identified  take into account that solving some hazards can 
help to solve those that follow

 Specify the number of stalls actually inserted
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Num. 

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END

lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR



Exercise

 For each instruction

 Write the phases and insert the stalls to solve the hazards 
identified  take into account that solving some hazards can 
help to solve those that follow

 Specify the number of stalls actually inserted
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Num. 

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA



Exercise

 For each instruction

 Write the phases and insert the stalls to solve the hazards 
identified  take into account that solving some hazards can 
help to solve those that follow

 Specify the number of stalls actually inserted
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Num. 

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB

3 sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

3 sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB

3 IF ID

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA


