
Advanced Parallel Architecture
Lessons 5 and 6

Annalisa Massini - 2016/2017

Pipelining

Hennessy, Patterson

Computer architecture A quantitive approach

Appendix C – Sections C.1, C.2

Pipelining

 Pipelining is an implementation technique whereby
multiple instructions are overlapped in execution

 Pipelining takes advantage of parallelism that exists
among the actions needed to execute an instruction

 In a computer pipeline:

 Each step in the pipeline completes a part of an instruction

 Different steps are completing different parts of different
instructions in parallel.

 Each of these steps is called a pipe stage or a pipe segment

 The stages are connected one to the next to form a pipe
instructions enter at one end, progress through the stages,
and exit at the other end, as cars in an assembly line

2016/2017Advanced and Parallel Architectures3

Pipelining

 The throughput of an instruction pipeline is determined
by how often an instruction exits the pipeline

 Because the pipe stages are hooked together, all the
stages must be ready to proceed at the same time, just as
we would require in an assembly line

 The time required between moving an instruction one
step down the pipeline is a processor cycle

 The length of a processor cycle is determined by the time
required for the slowest pipe stage

 In a computer, this processor cycle is usually 1 clock cycle

2016/2017Advanced and Parallel Architectures4

Pipelining

 The goal is to balance the length of each pipeline stage

 If the stages are perfectly balanced, assuming ideal
conditions:

 The time per instruction , on the pipelined processor is

 the ideal speedup due to pipelining is equal to the number
of pipeline stages

2016/2017Advanced and Parallel Architectures5

stages pipelineof number

 processor dunpipeline the on ninstructio per time

Pipelining

 Usually, however, the stages will not be perfectly balanced

 Thus, the time per instruction on the pipelined processor
will not have its minimum possible value (it can be close)

 Pipelining yields a reduction in the average execution time
per instruction

 The reduction can be viewed as:

 decreasing the number of clock cycles per instruction (CPI)

 decreasing the clock cycle time

 a combination

2016/2017Advanced and Parallel Architectures6

Pipelining

 Pipelining:

 is an implementation technique that exploits parallelism among
the instructions in a sequential instruction stream

 is not visible to the programmer

 In the follow, we use a RISC architecture characterized by a
few key properties, which simplify its implementation:

 All operations on data apply to data in registers

 The only operations that affect memory are load (move data
from memory to a register) and store (to memory from a
register) operations

 The instruction formats are few in number

2016/2017Advanced and Parallel Architectures7

Pipelining

 Most RISC architectures have three classes of instructions:

 ALU instructions—These instructions take either two registers
or a register and a sign-extended immediate, operate on
them, and store the result into a third register

 Load and store instructions—These instructions take a register
source, called the base register and an offset, to compute
effective address, as well as a second register operand

 Branches and jumps—Branches are conditional transfers of
control. Unconditional jumps are provided in many RISC
architectures

2016/2017Advanced and Parallel Architectures8

Pipelining

 Every instruction in this RISC subset can be implemented in
at most 5 clock cycles:

 Instruction fetch cycle (IF)

 Instruction decode/register fetch cycle (ID) - Decode the
instruction and read the registers. Do the equality test on the
registers as they are read, for a possible branch. Compute the
possible branch target address by adding the sign-extended
offset to the incremented PC

2016/2017Advanced and Parallel Architectures9

Pipelining

 Every instruction in this RISC subset can be implemented in
at most 5 clock cycles:

 Execution/effective address cycle (EX) - The ALU operates
on the operands prepared in the prior cycle, performing
one of three functions depending on the instruction type:

 Memory reference—The ALU adds the base register and the
offset to form the effective address

 Register-Register ALU instruction—The ALU performs the
operation (ALU opcode) on the values read from the register file

 Register-Immediate ALU instruction—The ALU performs the
operation (ALU opcode) on the first value read from the register
file and the sign-extended immediate

2016/2017Advanced and Parallel Architectures10

Pipelining

 Every instruction in this RISC subset can be implemented in
at most 5 clock cycles:

 Memory access (MEM): If the instruction is a load, the
memory does a read using the effective address. If it is a
store, then the memory writes the data from the second
register using the effective address

 Write-back cycle (WB): Register-Register ALU instruction or
load instruction: Write the result into the register file,
whether it comes from the memory system (for a load) or
from the ALU (for an ALU instruction)

 Branch instructions require 2 cycles, store instructions
require 4 cycles, and all other instructions require 5 cycles

2016/2017Advanced and Parallel Architectures11

Pipelining

 Each of the clock cycles from the previous section becomes
a pipe stage—a cycle in the pipeline

 This results in the execution pattern above, which is the
typical way a pipeline structure is drawn

2016/2017Advanced and Parallel Architectures12

Clock number

1 2 3 4 5 6 7 8 9

Instruction number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

 Each instruction takes 5 clock cycles to complete

 During each clock cycle the hardware:

 will initiate a new instruction

 will be executing some part of the five different instructions

2016/2017Advanced and Parallel Architectures13

Clock number

1 2 3 4 5 6 7 8 9

Instruction number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

 Pipelining seems simple, but it’s not

 two different operations cannot be performed with the same
data path resource on the same clock cycle  for example, a
single ALU cannot be asked to compute an effective address and
perform a subtract operation at the same time

2016/2017Advanced and Parallel Architectures14

Clock number

1 2 3 4 5 6 7 8 9

Instruction number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

Observations

 The use of separate caches eliminates a conflict for a single
memory that would arise between instruction fetch and
data memory access

 The register file is used in the two stages: one for reading
in ID and one for writing in WB. These uses are distinct

 To start a new instruction every clock, we must increment
and store the PC every clock (IF stage). Furthermore, we
must also have an adder to compute the potential branch
target during ID. One further problem is that a branch does
not change the PC until the ID stage. This causes a problem

2016/2017Advanced and Parallel Architectures15

Pipelining

 To ensure that instructions in different stages of the
pipeline do not interfere with one another pipeline
registers are introduced between successive stages of the
pipeline:

 at the end of a clock cycle all the results from a given stage are
stored into a register that is used as the input to the next stage
on the next clock cycle

2016/2017Advanced and Parallel Architectures16

Performance Issues in Pipelining

 Pipelining increases the CPU instruction throughput — the
number of instructions completed per unit of time — but it
does not reduce the execution time of a single instruction

 The increase in instruction throughput means that a
program runs faster and has lower total execution time,
even though no single instruction runs faster!

2016/2017Advanced and Parallel Architectures17

Performance Issues in Pipelining

 In fact, the execution time of each instruction is slightly
increased due to:

 imbalance among the pipe stages

 overhead in the control of the pipeline

 Imbalance among the pipe stages reduces performance
since the clock can run no faster than the time needed for
the slowest pipeline stage

 Pipeline overhead arises from the combination of pipeline
register delay and clock skew

2016/2017Advanced and Parallel Architectures18

Example

 Assume that an unpipelined processor has a 1 ns clock
cycle and that it uses 4 cycles for ALU operations and
branches and 5 cycles for memory operations

 Assume that the relative frequencies of these operations
are 40%, 20%, and 40%, respectively

 Suppose that due to clock skew and setup, pipelining the
processor adds 0.2 ns of overhead to the clock

 How much speedup in the instruction execution rate will
we gain from a pipeline?

2016/2017Advanced and Parallel Architectures19

Example

 The average instruction execution time on the unpipelined
processor is:

Average instruction execution time =

= Clock cycle × Average CPI =

= 1 ns × [(40% + 20%) × 4 + 40% × 5] =

=1 ns × 4.4 = 4.4 ns

2016/2017Advanced and Parallel Architectures20

Example

 In the pipelined implementation, the clock must run at the
speed of the slowest stage plus overhead

 Average instruction execution time is (1 + 0.2)ns = 1.2 ns

 Thus, the speedup from pipelining is

 The 0.2 ns overhead establishes a limit on the effectiveness
of pipelining

2016/2017Advanced and Parallel Architectures21

times3.7
ns1.2

ns4.4

pipelined time ninstructio Average

dunpipeline time ninstructio Average

pipelining from Speedup





Sequential vs Pipelining Execution

2016/2017Advanced and Parallel Architectures22

 Time pipe stage = 2 ns

 Time 6 pipelined instruction = Time 1 unpipelined instruction + 5 x Time pipe stage
= 10 ns + 10 ns = 20 ns

 Time N pipelined instruction = Time 1 unpip. instruction + (N-1) x Time pipe stage

10 ns

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

2 ns

2 ns

2 ns

2 ns

2 ns IF ID EX MEM WB

2 ns

 Time 1 unpipelined instruction = 10 ns

 Time 6 unpipelined instruction = 60 ns

 Time N unpipelined instruction = N x 10 ns

Pipeline Hazards

 A hazard (conflict) is created whenever there is a
dependence between instructions, and instructions are
close enough that the overlap caused by pipelining would
change the order of access to the operands involved in the
dependence

 Hazards:

 prevent the next instruction from executing during its clock cycle

 reduce the performance from the ideal speedup

2016/2017Advanced and Parallel Architectures23

Pipeline Hazards

 There are three classes of hazards:

 Structural hazards Attempt to use the same resource from
different instructions simultaneously - arise when the hardware
cannot support that instructions overlap their execution

 Example: Single memory for instructions and data

 Data hazards Attempt to use a result before it is ready - arise
when an instruction depends on the results of a previous
instruction still in the pipeline

 Control hazards Attempt to make a decision on the next
instruction to execute before the condition is evaluated

 Example: conditional branch execution (change the PC)

2016/2017Advanced and Parallel Architectures24

Pipeline Hazards

 Hazards in pipelines can make it necessary to stall the
pipeline

 Some instructions in the pipeline be allowed to proceed
while others are delayed

 When an instruction is stalled:

 all instructions issued later than the stalled instruction—and
hence not as far along in the pipeline—are also stalled

 Instructions issued earlier than the stalled instruction—and
hence farther along in the pipeline—must continue

 As a result, no new instructions are fetched during the stall

2016/2017Advanced and Parallel Architectures25

Performance of Pipelines with Stalls



2016/2017Advanced and Parallel Architectures26

Performance of Pipelines with Stalls



2016/2017Advanced and Parallel Architectures27

Performance of Pipelines with Stalls



2016/2017Advanced and Parallel Architectures28

Performance of Pipelines with Stalls



2016/2017Advanced and Parallel Architectures29

Performance of Pipelines with Stalls



2016/2017Advanced and Parallel Architectures30

Performance of Pipelines with Stalls



2016/2017Advanced and Parallel Architectures31

Structural Hazards

 When a processor is pipelined, the overlapped execution
of instructions requires:

 pipelining of functional units, and

 duplication of resources

to allow all possible combinations of instructions in the
pipeline

 If some combination of instructions cannot be
accommodated because of resource conflicts, the
processor is said to have a structural hazard

2016/2017Advanced and Parallel Architectures32

Structural Hazards

Examples:

 Some functional unit is not fully pipelined  a sequence of
instructions using that unpipelined unit cannot proceed at the
rate of one per clock cycle

 Some resource has not been duplicated enough to allow all
combinations of instructions in the pipeline to execute  a
processor may have only one register-file write port, but under
certain circumstances, the pipeline might want to perform two
writes in a clock cycle

 Some pipelined processors have shared a single-memory
pipeline for data and instructions when an instruction
contains a data memory reference, it will conflict with the
instruction reference for a later instruction

2016/2017Advanced and Parallel Architectures33

Structural Hazards - single-memory

2016/2017Advanced and Parallel Architectures34

To resolve this hazard, we stall the pipeline for 1 clock cycle when the
data memory access occurs

Structural Hazards

Example - Cost of the load structural hazard

 Suppose that:

 data references constitute 40% of the mix

 the ideal CPI of the pipelined processor is 1

 Assume that:

 the processor with the structural hazard has a clock rate that
is 1.05 times higher than the clock rate of the processor
without the hazard

 Is the pipeline with or without the structural hazard
faster, and by how much? (Disregarding any other
performance losses)

2016/2017Advanced and Parallel Architectures35

Structural Hazards

Example - Cost of the load structural hazard

 A way to solve this problem is to compute the average
instruction time on the two processors

 The processor without the structural hazard is 1.3 times
faster

2016/2017Advanced and Parallel Architectures36

ideal

ideal

time cycle Clock1.3

1.05

time cycle Clock
1) 0.4 (1

 time cycle Clock CPI time ninstructio Average







Structural Hazards

 The designer could provide a separate memory access for
instructions, either by splitting the cache into separate
instruction and data caches or by using a set of buffers,
usually called instruction buffers, to hold instructions

 A processor without structural hazards has always a lower
CPI  why would a designer allow structural hazards?

 Pipelining all the functional units, or duplicating them,
may be too costly

 For example, processors that support both an instruction and a
data cache access every require twice as much total memory
bandwidth and often have higher bandwidth at the pins

2016/2017Advanced and Parallel Architectures37

Data Hazards

 Overlapping the execution of instructions introduces data
and control hazards

 Data hazards occur when the pipeline changes the order
of read/write accesses to operands so that the order
differs from the order seen by sequentially executing
instructions on an unpipelined processor

2016/2017Advanced and Parallel Architectures38

Data Hazards

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

 All the instructions after the ADD use
the result of the ADD instruction

 The ADD instruction writes the value
of R1 in the WB pipe stage

 But the SUB instruction reads the
value during its ID stage

 This problem is called a data hazard

 Unless precautions are taken to
prevent it, the SUB instruction will
read the wrong value and try to use it

2016/2017Advanced and Parallel Architectures39

Data Hazards

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

2016/2017Advanced and Parallel Architectures40

 In fact, the value used by the SUB
instruction is not even deterministic

 If an interrupt should occur between
the ADD and SUB instructions, the WB
stage of the ADD will complete, and
the value of R1 at that point will be the
result of the ADD

 This unpredictable behavior is
unacceptable

Data Hazards

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

2016/2017Advanced and Parallel Architectures41

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Data Hazards

2016/2017Advanced and Parallel Architectures42

AND instruction is also affected by this hazard: the write of R1 does
not complete until the end of clock cycle 5  the AND instruction that
reads the registers during clock cycle 4 will receive the wrong results

Data Hazards

2016/2017Advanced and Parallel Architectures43

The OR instruction also operates without incurring a hazard because
we perform the register file reads in the second half of the cycle and
the writes in the first half

Data Hazards

2016/2017Advanced and Parallel Architectures44

The XOR instruction operates properly because its register read occurs
in clock cycle 6, after the register write

Data Hazards: Possible Solutions

 Compilation Techniques:

 Insertion of nop (no operation) instructions

 Instructions scheduling to avoid that correlating instructions
are too close

 The compiler tries to insert independent instructions among
correlating instructions

 When the compiler does not find independent instructions, it insert
nops

 Hardware Techniques:

 Insertion of stalls or “bubbles” in the pipeline

 Data forwarding or bypassing

2016/2017Advanced and Parallel Architectures45

Insertion of nop

2016/2017Advanced and Parallel Architectures46

ADD R1,R2,R3

nop

nop

nop

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

IF ID

IF

Scheduling

Example

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15,100($2)

add $4, $10, $11

and $7, $8, $9

lw $16, 100($18)

sub $2, $1, $3

add $4, $10, $11

and $7, $8, $9

lw $16, 100($18)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15,100($2)

2016/2017Advanced and Parallel Architectures47

Data Hazards Requiring Stalls

 Hardware, called pipeline interlock, is added to:

 preserve the correct execution pattern

 detect a hazard

 stall the pipeline until the hazard is cleared

 The interlock stalls the pipeline:

 beginning with the instruction that wants to use the data until
the source instruction produces it

 introducing a stall or bubble, as for the structural hazard

 The CPI for the stalled instruction increases by the length
of the stall

2016/2017Advanced and Parallel Architectures48

Insertion of stalls

2016/2017Advanced and Parallel Architectures49

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

IF ID EX MEM WB

ID EX MEM

IF ID EX

IF ID

IF

IF stall stall stall

stall stall stall

Data Hazards Requiring Stalls

 Consider the following sequence of instructions:

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

 LD instruction does not have the data until the end of clock
cycle 4 (its MEM cycle)

 SUB instruction needs to have the data by the beginning of
that clock cycle

 the data hazard from using the result of a load instruction
cannot be completely eliminated with simple hardware

2016/2017Advanced and Parallel Architectures50

Data Hazards Requiring Stalls

 Consider the following sequence of instructions:

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

2016/2017Advanced and Parallel Architectures51

Data Hazards Requiring Stalls

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

 Before stall insertion

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

 After stall insertion

2016/2017Advanced and Parallel Architectures52

IF ID EX MEM WB

EX MEM WB

IF

stall

stall

stall

IF ID

ID EX MEM WB

IF ID EX MEM

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Forwarding

 Data forwarding (also bypassing or short-circuiting):

 Temporary results stored in the pipeline registers
instead of waiting for the write back of results in the RF
(register file)

 A result is forwarded from the pipeline register
(output of one unit) to the input of another unit

2016/2017Advanced and Parallel Architectures53

Forwarding

 Forwarding works as follows:

 The ALU result from both the EX/MEM and MEM/WB
pipeline registers is always fed back to the ALU inputs

 If the forwarding hardware detects that the previous
ALU operation has written the register of a source for
the current ALU operation, control logic selects the
forwarded result as the ALU input

2016/2017Advanced and Parallel Architectures54

Forwarding

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15,100($2)

2016/2017Advanced and Parallel Architectures55

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

EX/EX
path

MEM/ID
path

MEM/EX
path

Minimizing Data Hazard Stalls by Forwarding

2016/2017Advanced and Parallel Architectures56

Type of Data Hazards

 RAW (READ AFTER WRITE) hazard

 instruction n+1 tries to read a source register before the
previous instruction n has written it in the RF

 Example:

ADD $R1, $R2, $R3

SUB $R4, $R1, $R5

 By using forwarding, it is always possible to solve this
conflict without introducing stalls, except for the load/use
hazards where it is necessary to add one stall

2016/2017Advanced and Parallel Architectures57

Type of Data Hazards

 WAW (WRITE AFTER WRITE) hazard

 Instruction n+1 tries to write a destination operand before it
has been written by the previous instruction n  write
operations executed in the wrong order (out-of-order)

 Example:

LW $R1, 0($R2)

ADD $R1,$R2,$R3

2016/2017Advanced and Parallel Architectures58

Type of Data Hazards

 WAR (WRITE AFTER READ) hazard

 Instruction n+1 tries to write a destination operand before it
has been read from the previous instruction n  instruction n
reads the wrong value

 Example

 SW $Y, 0($X) # sw has to read $x

 ADDI $X, $X, 4 # addi writes Sx

 As before, if we assume the register write in the ALU
instructions occurs in the fourth stage and that we need
two stages to access the data memory, some instructions
could read operands too late in the pipeline

2016/2017Advanced and Parallel Architectures59

Control hazards

 Control hazards can cause a greater performance loss for
our MIPS pipeline than do data hazards

 When a branch is executed, it may change the PC to
something other than next address (PC plus 4):

 the branch decision (to change or not change the PC) is
taken during the MEM stage

 if a branch changes the PC to its target address, it is a taken
branch

 if it falls through, it is not taken, or untaken

2016/2017Advanced and Parallel Architectures60

Control hazards

 Examples of branches (for MIPS processor):

 beq (branch on equal) and bne (branch on not equal)

 beq $s1, $s2, L1 # go to L1 if ($s1 == $s2)

 bne $s1, $s2, L1 # go to L1 if ($s1 != $s2)

 Branch Outcome and Branch Target Address are ready at
the end of the EX stage (3th stage)

 Conditional branches are solved when PC is updated at
the end of the MEM stage (4th stage)

2016/2017Advanced and Parallel Architectures61

Control hazards

 Control hazards: Attempt to make a decision on the next
instruction to fetch before the branch condition is
evaluated

 Control hazards arise from the pipelining of conditional
branches and other instructions changing the PC

 Control hazards reduce the performance from the ideal
speedup gained by the pipelining since they can make it
necessary to stall the pipeline

2016/2017Advanced and Parallel Architectures62

Example

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

L1: lw $4, 50($7)

 The branch instruction may or may not change the PC
(MEM stage)

 The next 3 instructions are fetched and their execution is
started

2016/2017Advanced and Parallel Architectures63

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

Example

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

L1: lw $4, 50($7)

 If the branch is not taken, the pipeline execution is OK

 If the branch is taken, it is necessary to flush the next 3
instructions in the pipeline and fetch the lw instruction at
the branch target address (L1)

2016/2017Advanced and Parallel Architectures64

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

Solutions

 Stalling until resolution: To stall the pipeline until the
branch decision is taken and then fetch the correct
instruction flow

 Without forwarding: for three clock cycles (end MEM stage)

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

 Each branch costs three stalls to fetch the correct
instruction flow: (PC+4) or Branch Target Address

2016/2017Advanced and Parallel Architectures65

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

IF ID

stall stall stall

Solutions

 Stalling until resolution: To stall the pipeline until the
branch decision is taken and then fetch the correct
instruction flow

 With forwarding: for two clock cycles (end EX stage)

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

 Each branch costs two stalls to fetch the correct
instruction flow: (PC+4) or Branch Target Address

2016/2017Advanced and Parallel Architectures66

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

stall stall IF ID EX MEM WB

Solutions

 Early Evaluation of the PC: To improve performance in
case of branch hazards, additional hardware resources
are needed to to:

 Compare registers to derive the Branch Outcome

 Compute the Branch Target Address

 Update the PC register as soon as possible in the

 MIPS processor compares registers, computes branch
target address and updates PC during ID stage

2016/2017Advanced and Parallel Architectures67

Solutions

 Stalling until resolution at the end of the ID stage

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

 Each branch costs one stalls to fetch the correct
instruction flow: (PC+4) or Branch Target Address

2016/2017Advanced and Parallel Architectures68

IF ID EX MEM WB

IF ID EX MEM

stall

IF ID EX MEM WB

IF ID EX MEM WB

Solutions

 Consequence of early evaluation of the branch decision in
ID stage:

 In case of add instruction followed by a branch testing the
result  we need to introduce one stall before ID stage of
branch to enable the forwarding (EX-ID) of the result from EX
stage of previous instruction

 We also need one stall after the branch for branch resolution

addi $1, $1, 4

beq $1, $6, L1

and $12, $2, $5

2016/2017Advanced and Parallel Architectures69

IF ID EX MEM WB

IF ID EX MEM

stallIF ID EX MEM WB

stall

Solutions

 Consequence of early evaluation of the branch decision in
ID stage:

 In case of load instruction followed by a branch testing the
result  we need to introduce two stalls before ID stage of
branch to enable the forwarding (ME-ID) of the result from
EX stage of previous instruction

 We also need one stall after the branch for branch resolution

lw $1, BASE($2)

beq $1, $6, L1

and $12, $2, $5

2016/2017Advanced and Parallel Architectures70

IF ID EX MEM WB

IF ID EX MEM

stallIF ID EX MEM WB

stall

stall

Solutions

 With the branch decision made during ID stage, there is a
reduction of the cost associated with each branch (branch
penalty):

 We need only one-clock-cycle stall after each branch

 Or a flush of only one instruction following the branch

 There are techniques to reduce the performance loss

2016/2017Advanced and Parallel Architectures71

Solutions

 Branch prediction techniques try to predict ASAP the
outcome of a branch instruction

 Static Branch Prediction Techniques: The actions for a
branch are fixed for each branch during the entire
execution. The actions are fixed at compile time

 Branch Always Not Taken (Predicted-Not-Taken)

 Branch Always Taken (Predicted-Taken)

 Backward Taken Forward Not Taken (BTFNT)

 Profile-Driven Prediction

 Delayed Branch

2016/2017Advanced and Parallel Architectures72

Solutions

 Branch prediction techniques try to predict ASAP the
outcome of a branch instruction

 Dynamic Branch Prediction Techniques: The decision
causing the branch prediction can dynamically change
during the program execution

 Basic Idea: To use the past branch behavior to predict

 We use hardware to dynamically predict the outcome of a
branch: the prediction will depend on the behavior of the
branch at run time and will change if the branch changes its
behavior during execution

2016/2017Advanced and Parallel Architectures73

Exercise - Midterm 2014/2015

 Consider the following loop
in a high level language:

for (i =0; i < N; i ++)



vectA[i] = vectB[i]

vectB[i] = vectB[i] + 4;



 The program in MIPS
assembly code is:

FOR: beq $t6,$t7,END

lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

 Registers $t6 and $t7 are
initialized with 0 and 4N

 VECTB is a 16-bit constant

2016/2017Advanced and Parallel Architectures74

Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard)

 Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

2016/2017Advanced and Parallel Architectures75

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

lw $t2,VECTB($t6) IF ID EX ME WB

sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard)

 Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

2016/2017Advanced and Parallel Architectures76

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard)

 Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

2016/2017Advanced and Parallel Architectures77

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard)

 Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

2016/2017Advanced and Parallel Architectures78

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard)

 Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

2016/2017Advanced and Parallel Architectures79

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

Exercise

 Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:

 Identify the Hazard Type (Data Hazard or Control Hazard)

 Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

 For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

2016/2017Advanced and Parallel Architectures80

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

Exercise

 For each instruction

 Write the phases and insert the stalls to solve the hazards
identified  take into account that solving some hazards can
help to solve those that follow

 Specify the number of stalls actually inserted

2016/201781

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END

lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

Exercise

 For each instruction

 Write the phases and insert the stalls to solve the hazards
identified  take into account that solving some hazards can
help to solve those that follow

 Specify the number of stalls actually inserted

2016/201782

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

Exercise

 For each instruction

 Write the phases and insert the stalls to solve the hazards
identified  take into account that solving some hazards can
help to solve those that follow

 Specify the number of stalls actually inserted

2016/201783

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB

3 sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

3 sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB

3 IF ID

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

