
Advanced Parallel Architecture
Lesson 5

Annalisa Massini - 2016/2017

Pipelining

Hennessy, Patterson

Computer architecture A quantitive approach

Appendix C – Sections C.1, C.2

Pipelining

 Pipelining is an implementation technique whereby
multiple instructions are overlapped in execution

 Pipelining takes advantage of parallelism that exists
among the actions needed to execute an instruction

 In a computer pipeline:

 Each step in the pipeline completes a part of an instruction

 Different steps are completing different parts of different
instructions in parallel.

 Each of these steps is called a pipe stage or a pipe segment

 The stages are connected one to the next to form a pipe
instructions enter at one end, progress through the stages,
and exit at the other end, as cars in an assembly line

2016/2017Advanced and Parallel Architectures3

Pipelining

 The throughput of an instruction pipeline is determined
by how often an instruction exits the pipeline

 Because the pipe stages are hooked together, all the
stages must be ready to proceed at the same time, just as
we would require in an assembly line

 The time required between moving an instruction one
step down the pipeline is a processor cycle

 The length of a processor cycle is determined by the time
required for the slowest pipe stage

 In a computer, this processor cycle is usually 1 clock cycle

2016/2017Advanced and Parallel Architectures4

Pipelining

 The goal is to balance the length of each pipeline stage

 If the stages are perfectly balanced, assuming ideal
conditions:

 The time per instruction , on the pipelined processor is

 the ideal speedup due to pipelining is equal to the number
of pipeline stages

2016/2017Advanced and Parallel Architectures5

stages pipelineof number

 processor dunpipeline the on ninstructio per time

Pipelining

 Usually, however, the stages will not be perfectly balanced

 Thus, the time per instruction on the pipelined processor
will not have its minimum possible value (it can be close)

 Pipelining yields a reduction in the average execution time
per instruction

 The reduction can be viewed as:

 decreasing the number of clock cycles per instruction (CPI)

 decreasing the clock cycle time

 a combination

2016/2017Advanced and Parallel Architectures6

Pipelining

 Pipelining:

 is an implementation technique that exploits parallelism among
the instructions in a sequential instruction stream

 is not visible to the programmer

 In the follow, we use a RISC architecture characterized by a
few key properties, which simplify its implementation:

 All operations on data apply to data in registers

 The only operations that affect memory are load (move data
from memory to a register) and store (to memory from a
register) operations

 The instruction formats are few in number

2016/2017Advanced and Parallel Architectures7

Pipelining

 Most RISC architectures have three classes of instructions:

 ALU instructions—These instructions take either two registers
or a register and a sign-extended immediate, operate on
them, and store the result into a third register

 Load and store instructions—These instructions take a register
source, called the base register and an offset, to compute
effective address, as well as a second register operand

 Branches and jumps—Branches are conditional transfers of
control. Unconditional jumps are provided in many RISC
architectures

2016/2017Advanced and Parallel Architectures8

Pipelining

 Every instruction in this RISC subset can be implemented in
at most 5 clock cycles:

 Instruction fetch cycle (IF)

 Instruction decode/register fetch cycle (ID) - Decode the
instruction and read the registers. Do the equality test on the
registers as they are read, for a possible branch. Compute the
possible branch target address by adding the sign-extended
offset to the incremented PC

2016/2017Advanced and Parallel Architectures9

Pipelining

 Every instruction in this RISC subset can be implemented in
at most 5 clock cycles:

 Execution/effective address cycle (EX) - The ALU operates
on the operands prepared in the prior cycle, performing
one of three functions depending on the instruction type:

 Memory reference—The ALU adds the base register and the
offset to form the effective address

 Register-Register ALU instruction—The ALU performs the
operation (ALU opcode) on the values read from the register file

 Register-Immediate ALU instruction—The ALU performs the
operation (ALU opcode) on the first value read from the register
file and the sign-extended immediate

2016/2017Advanced and Parallel Architectures10

Pipelining

 Every instruction in this RISC subset can be implemented in
at most 5 clock cycles:

 Memory access (MEM): If the instruction is a load, the
memory does a read using the effective address. If it is a
store, then the memory writes the data from the second
register using the effective address

 Write-back cycle (WB): Register-Register ALU instruction or
load instruction: Write the result into the register file,
whether it comes from the memory system (for a load) or
from the ALU (for an ALU instruction)

 Branch instructions require 2 cycles, store instructions
require 4 cycles, and all other instructions require 5 cycles

2016/2017Advanced and Parallel Architectures11

Pipelining

 Each of the clock cycles from the previous section becomes
a pipe stage—a cycle in the pipeline

 This results in the execution pattern above, which is the
typical way a pipeline structure is drawn

2016/2017Advanced and Parallel Architectures12

Clock number

1 2 3 4 5 6 7 8 9

Instruction number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

 Each instruction takes 5 clock cycles to complete

 During each clock cycle the hardware:

 will initiate a new instruction

 will be executing some part of the five different instructions

2016/2017Advanced and Parallel Architectures13

Clock number

1 2 3 4 5 6 7 8 9

Instruction number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

 Pipelining seems simple, but it’s not

 two different operations cannot be performed with the same
data path resource on the same clock cycle for example, a
single ALU cannot be asked to compute an effective address and
perform a subtract operation at the same time

2016/2017Advanced and Parallel Architectures14

Clock number

1 2 3 4 5 6 7 8 9

Instruction number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

Observations

 The use of separate caches eliminates a conflict for a single
memory that would arise between instruction fetch and
data memory access

 The register file is used in the two stages: one for reading
in ID and one for writing in WB. These uses are distinct

 To start a new instruction every clock, we must increment
and store the PC every clock (IF stage). Furthermore, we
must also have an adder to compute the potential branch
target during ID. One further problem is that a branch does
not change the PC until the ID stage. This causes a problem

2016/2017Advanced and Parallel Architectures15

Pipelining

 To ensure that instructions in different stages of the
pipeline do not interfere with one another pipeline
registers are introduced between successive stages of the
pipeline:

 at the end of a clock cycle all the results from a given stage are
stored into a register that is used as the input to the next stage
on the next clock cycle

2016/2017Advanced and Parallel Architectures16

Performance Issues in Pipelining

 Pipelining increases the CPU instruction throughput — the
number of instructions completed per unit of time — but it
does not reduce the execution time of a single instruction

 The increase in instruction throughput means that a
program runs faster and has lower total execution time,
even though no single instruction runs faster!

2016/2017Advanced and Parallel Architectures17

Performance Issues in Pipelining

 In fact, the execution time of each instruction is slightly
increased due to:

 imbalance among the pipe stages

 overhead in the control of the pipeline

 Imbalance among the pipe stages reduces performance
since the clock can run no faster than the time needed for
the slowest pipeline stage

 Pipeline overhead arises from the combination of pipeline
register delay and clock skew

2016/2017Advanced and Parallel Architectures18

Example

 Assume that an unpipelined processor has a 1 ns clock
cycle and that it uses 4 cycles for ALU operations and
branches and 5 cycles for memory operations

 Assume that the relative frequencies of these operations
are 40%, 20%, and 40%, respectively

 Suppose that due to clock skew and setup, pipelining the
processor adds 0.2 ns of overhead to the clock

 How much speedup in the instruction execution rate will
we gain from a pipeline?

2016/2017Advanced and Parallel Architectures19

Example

 The average instruction execution time on the unpipelined
processor is:

Average instruction execution time =

= Clock cycle × Average CPI =

= 1 ns × [(40% + 20%) × 4 + 40% × 5] =

=1 ns × 4.4 = 4.4 ns

2016/2017Advanced and Parallel Architectures20

Example

 In the pipelined implementation, the clock must run at the
speed of the slowest stage plus overhead

 Average instruction execution time is (1 + 0.2)ns = 1.2 ns

 Thus, the speedup from pipelining is

 The 0.2 ns overhead establishes a limit on the effectiveness
of pipelining

2016/2017Advanced and Parallel Architectures21

times3.7
ns1.2

ns4.4

pipelined time ninstructio Average

dunpipeline time ninstructio Average

pipelining from Speedup

