
Advanced Parallel Architecture
Lesson 4

Annalisa Massini - 2014/2015

Modules and connections

2016/2017Advanced and Parallel Architectures2

Components and connections

 A computer consists of a set of components or modules of
three basic types (processor, memory, I/O) that
communicate with each other

 In effect, a computer is a network of basic modules

 Thus, there must be paths for connecting the modules

 The collection of paths connecting the various modules is
called the interconnection structure

2016/2017Advanced and Parallel Architectures3

Components and connections

 The design of this structure depends on the exchanges that
must be made among modules

 Different type of connection for different type of unit

 Memory

 Input/Output

 CPU

2016/2017Advanced and Parallel Architectures4

Memory Connection

 A memory module will consist of N words of equal length

 Each word is assigned a unique address (0, 1, . . . ,N – 1)

 Receives

 data

 addresses (of locations)

 control signals (Read, Write, Timing)

 Sends

 data

2016/2017Advanced and Parallel Architectures5

Input/Output Connection

 From an internal (to the computer system) point of view,
I/O is functionally similar to memory

 An I/O module may control more than one external
device by means of an interface (port) associated to an
address (e.g., 0, 1, . . . ,M– 1)

2016/2017Advanced and Parallel Architectures6

Input/Output Connection

 Receives

 data from peripheral and from computer

 control signals (read/write)

 addresses from computer (e.g. port number to identify peripheral)

 Sends

 data to peripheral and to computer

 interrupt signals (control)

2016/2017Advanced and Parallel Architectures7

CPU Connection

 Receives

 instruction

 Data

 interrupts

 Sends

 data (after processing)

 control signals to other units

2016/2017Advanced and Parallel Architectures8

Components and connections

 Hence, the interconnection structure must support the
following types of transfers:

 Memory to processor: The processor reads an instruction or a
unit of data from memory

 Processor to memory: The processor writes a unit of data to
memory

 I/O to processor:The processor reads data from an I/O device
via an I/O module

 Processor to I/O: The processor sends data to the I/O device

 I/O to or from memory: For these two cases, an I/O module is
allowed to exchange data directly with memory, without going
through the processor, using direct memory access (DMA)

2016/2017Advanced and Parallel Architectures9

Bus

2016/2017Advanced and Parallel Architectures10

Buses

 There are a number of possible interconnection systems

 Single and multiple BUS structures are most common

 A bus is a communication pathway connecting two or
more devices

 Usually broadcast

 Often grouped

 A number of channels in one bus

 e.g. 32 bit data bus is 32 separate single bit channels

 Power lines may not be shown

2016/2017Advanced and Parallel Architectures11

Bus structure

 Data Bus - Carries data

 there is no difference between “data” and “instruction”

 Width is a key determinant of performance (8, 16, 32, 64 bit)

2016/2017Advanced and Parallel Architectures12

Bus structure

 Address Bus - Identify the source or destination of data

 e.g. CPU needs to read an instruction (data) from a given
location in memory

 Bus width determines maximum memory capacity of system

2016/2017Advanced and Parallel Architectures13

Bus structure

 Control Bus - Control and timing information

 Memory read/write signal

 Interrupt request

 Clock signals

2016/2017Advanced and Parallel Architectures14

Physical Realization of Bus Architecture

2016/2017Advanced and Parallel Architectures15

Single Bus Problems

 Lots of devices on one bus leads to:

 Propagation delays

 Co-ordination of bus use can affect performance (long data paths)

 If aggregate data transfer approaches bus capacity

 Most systems use multiple buses to overcome these
problems

2016/2017Advanced and Parallel Architectures16

High Performance Bus

2016/2017Advanced and Parallel Architectures17

Memory Hierarchy

Memory Hierarchy

 the three key characteristics of memory:

 Capacity

 Access time

 Cost

 A variety of technologies are used to implement memory
systems.

 The following relationships hold:

 Faster access time, greater cost per bit

 Greater capacity, smaller cost per bit

 Greater capacity, slower access time

2016/2017Advanced and Parallel Architectures19

Memory Hierarchy

The solution is to employ

a memory hierarchy

As one goes down the hierarchy:

 Decreasing cost per bit

 Increasing capacity

 Increasing access time

 Decreasing frequency

of access of the memory

by the processor

2016/2017Advanced and Parallel Architectures20

Memory Hierarchy

 During the execution of a program, memory references for
instructions and data tend to cluster: locality of reference

 Programs typically contain a number of iterative loops and
subroutines (repeated references to a small set of
instructions)

 Similarly, operations on tables and arrays involve access to
a clustered set of data words

 It is possible to organize data across the hierarchy such
that the percentage of accesses to each successively lower
level is substantially less than that of the level above

2016/2017Advanced and Parallel Architectures21

Memory Hierarchy

2016/2017Advanced and Parallel Architectures22

 The fastest, smallest,
and most expensive
type of memory
consists of the registers
internal to the
processor

 Main memory is the
principal internal
memory system of the
computer

Memory Hierarchy

 Main memory is usually
extended with a higher-
speed, smaller cache

 The cache is not usually
visible to the
programmer or, indeed,
to the processor

 It is a device for staging
the movement of data
between main memory
and processor registers
to improve performance

2016/2017Advanced and Parallel Architectures23

Memory Hierarchy

 These three forms of
memory are volatile and
employ semiconductor
technology

 The use of three levels
exploits the fact that
semiconductor memory
comes in a variety of
types, which differ in
speed and cost

2016/2017Advanced and Parallel Architectures24

Memory Hierarchy

 Data are stored more
permanently on external
mass storage devices

 The most common ones
are hard disk and
removable media
(removable magnetic and
optical storage)

 External, nonvolatile
memory is also referred
to as secondary memory

 or auxiliary memory
2016/2017Advanced and Parallel Architectures25

Characteristics of memory systems

 Location

 Internal (e.g. processor registers, main memory, cache)

 External (e.g. optical disks, magnetic disks, tapes)

 Capacity

 Word size

 Number of words, Number of bytes

 Unit of transfer

 Word

 Block

2016/2017Advanced and Parallel Architectures26

Characteristics

 Access method

 Sequential (e.g. tape)

 Start at the beginning and read through in order

 Access time depends on location of data and previous location

 Direct (e.g. disk)

 Individual blocks have unique address

 Access time depends on location and previous location

 Random (e.g. RAM)

 Individual addresses identify locations exactly

 Access time is independent of location or previous access

 Associative (e.g. Cache)

 Data is located by a comparison with contents of a portion of the store

 Access time is independent of location or previous access

2016/2017Advanced and Parallel Architectures27

Characteristics

 Performance

 Access time

 Time between presenting the address and getting the valid data

 Memory Cycle time

 Time may be required for the memory to “recover” before next access

 Cycle time is access + recovery

 Transfer Rate

 Rate at which data can be moved

2016/2017Advanced and Parallel Architectures28

Characteristics

 Physical type

 Semiconductor (RAM)

 Magnetic (Disk & Tape)

 Optical (CD & DVD)

 Physical characteristics

 Volatile/nonvolatile

 Erasable/nonerasable

 Power consumption

 Organization

 Physical arrangement of bits into words

 Memory modules

2016/2017Advanced and Parallel Architectures29

Hierarchy List

 Registers

 L1 Cache

 L2 Cache

 L3 Cache

 Main memory

 Disk cache

 Disk

 Optical

 Tape

2016/2017Advanced and Parallel Architectures30

Cache Memory

Cache and Main Memory

2016/2017Advanced and Parallel Architectures32

 A relatively
large and slow
main memory
together with a
smaller, faster
cache memory

 The cache
contains a copy
of portions of
main memory

Cache and Main Memory

2016/2017Advanced and Parallel Architectures33

 Multiple levels of
cache

 The L2 cache is
slower and
typically larger
than the L1 cache

 The L3 cache is
slower and
typically larger
than the L2 cache

Cache and Main Memory

2016/2017Advanced and Parallel Architectures34

 When the
processor
attempts to
read a word of
memory, a
check is made
to determine if
the word is in
the cache

Cache/Main Memory Structure

2016/2017Advanced and Parallel Architectures35

 Main memory - up to 2n addressable words

 Each word - unique n-bit address

 Main memory is considered to consist of

 M blocks of K words each M=2n/K blocks

Cache/Main Memory Structure

2016/2017Advanced and Parallel Architectures36

 The cache consists of C lines

 Each line contains K words, plus a tag

 Each line of cache corresponds to a block in
main memory

Cache/Main Memory Structure

2016/2017Advanced and Parallel Architectures37

 The number of lines is considerably less than
the number of main memory blocks

 At any time, some subset of the blocks of
memory resides in lines in the cache

Cache/Main Memory Structure

2016/2017Advanced and Parallel Architectures38

 If a word in a block of memory is read, that
block is transferred to one of cache lines

 An individual line cannot be uniquely and
permanently dedicated to a particular block
 tag identifying the block is being stored

Cache – Read operation

 CPU requests contents of
memory location

 Check cache for this data

 If present:

 get from cache

 else read required block
from main memory to cache

 Then deliver to CPU

2016/2017Advanced and Parallel Architectures39

Cache Design

 Addressing

 Size

 Mapping Function

 Direct

 Associative

 Set Associative

 Replacement Algorithm

 Least recently used (LRU)

 First in first out (FIFO)

 Least frequently used (LFU)

 Random

 Write Policy

 Write through

 Write back

 Write once

 Line(Block) Size

 Number of Caches

 Levels

 Unified or split

2016/2017Advanced and Parallel Architectures40

Cache Addresses

 Cache can be located

 Between processor and virtual MMU

 Between MMU and main memory

 Logical cache (virtual cache) stores data using virtual addresses

 Processor accesses cache directly, not thorough physical cache

 Cache access faster, before MMU address translation

 Virtual addresses use same address space for different applications

 Physical cache stores data using main memory physical
addresses

2016/2017Advanced and Parallel Architectures41

Processor

MMU

Main

memoryCache Cache

Logical address Physical address

Data

Mapping function

 Fewer cache lines than main memory blocks:

 algorithm for mapping main memory blocks into cache
lines

 means for determining which main memory block currently
occupies a cache line

 Mapping function  cache organization

 Three techniques can be used:

 Direct

 Associative

 Set associative

2016/2017Advanced and Parallel Architectures42

Direct Mapping

 Each block of main memory maps to only one cache line

 i.e. if a block is in cache, it must be in one specific place

 Main memory address can be divided in two parts fields:

 Least significant w bits identify unique word

 Most significant s bits specify one of the 2s memory blocks:

 cache line - r bits

 tag - (s-r) bits

s bits

Line r bits

Word w bits

2016/2017Advanced and Parallel Architectures43

Tag s-r bits

Direct Mapping from Cache to Main Memory

2016/2017Advanced and Parallel Architectures44

Direct Mapping Cache Organization

2016/2017Advanced and Parallel Architectures45

Direct Mapping pros & cons

 Simple

 Inexpensive

 Fixed location for given block

 If a program accesses 2 blocks that map to the same line
repeatedly, cache misses are very high

2016/2017Advanced and Parallel Architectures46

Associative Mapping

 A main memory block can be loaded into any line of cache

 Memory address is interpreted as

 Tag field

 Word field

 Tag uniquely identifies block of memory

 No field in the address corresponds to the line number

Tag Word

2016/2017Advanced and Parallel Architectures47

Associative Mapping from Cache to Main Memory

2016/2017Advanced and Parallel Architectures48

 To determine whether a block is in the cache, the cache
control logic must simultaneously examine every line’s
tag for a match

Fully Associative Cache Organization

2016/2017Advanced and Parallel Architectures49

Associative Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2 s+w/2w = 2s

 Number of lines in cache = undetermined

 Size of tag = s bits

2016/2017Advanced and Parallel Architectures50

Set Associative Mapping

 Set-associative mapping exhibits the strengths of both
the direct and associative approaches while reducing
their disadvantages

 Cache is divided into a number of sets

 Each set contains a number of lines

 A given block maps to any line in a given set

 e.g. Block B can be in any line of set i

 e.g. 2 lines per set

 2 way associative mapping

 A given block can be in one of 2 lines in only one set

2016/2017Advanced and Parallel Architectures51

Mapping From Main Memory to Cache: v Associative

2016/2017Advanced and Parallel Architectures52

Mapping From Main Memory to Cache:
k-way Associative

2016/2017Advanced and Parallel Architectures53

K-Way Set Associative Cache Organization

2016/2017Advanced and Parallel Architectures54

Set Associative Mapping Address Structure

 Use set field to determine cache set to look in

 Compare tag field to see if we have a hit

 e.g

 Address Tag Data Set number

 1FF 7FFC 1FF 12345678 1FFF

 001 7FFC 001 11223344 1FFF

Tag 9 bit Set 13 bit
Word

2 bit

2016/2017Advanced and Parallel Architectures55

Set Associative Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2d

 Number of lines in set = k

 Number of sets = v = 2d

 Number of lines in cache = kv = k * 2d

 Size of tag = (s – d) bits

2016/2017Advanced and Parallel Architectures56

Replacement Algorithms

 Direct mapping

 No choice

 Each block only maps to one line

 Replace that line

 Associative & Set Associative

 Hardware implemented algorithm (speed)

 Least Recently used (LRU)

 but in 2 way set associative “Which of the 2 block is lru?”

 First in first out (FIFO)

 Least frequently used

 replace block which has had fewest hits

 Random

2016/2017Advanced and Parallel Architectures57

Write Policy

 Write through

 All writes go to main memory as well as cache

 Lots of traffic

 Slows down writes

 Write back

 Updates initially made in cache only and update bit is set

 If block is to be replaced, write to main memory if update bit

 Other caches get out of sync

 I/O must access main memory through cache

2016/2017Advanced and Parallel Architectures58

Write Policy

 In a bus organization we can have:

 more than one device (typically a processor) has a cache

 main memory is shared, a new problem is introduced

 If data in one cache are altered, this invalidates:

 not only the corresponding word in main memory

 but also that same word in other caches (if any other cache
happens to have that word)

2016/2017Advanced and Parallel Architectures59

Line Size

 When a block of data is retrieved and placed in the cache

 not only the desired word is retrieved

 but also some number of adjacent words

 Increased block size will increase hit ratio

 principle of locality

 Hit ratio will decreases as block becomes even bigger

 Probability of using newly fetched information becomes
less than probability of reusing replaced

2016/2017Advanced and Parallel Architectures60

Line Size

 Larger blocks

 Reduce number of blocks that fit in cache

 Data overwritten shortly after being fetched

 Each additional word is less local so less likely to be needed

 No definitive optimum value has been found

 8 to 64 bytes seems reasonable close to optimum

 For HPC systems, 64 and 128 byte most common

2016/2017Advanced and Parallel Architectures61

Multilevel Caches

 The use of multiple caches has become the norm

 High logic density enables caches on chip

 Faster than bus access

 When the requested instruction or data is found in the on-
chip cache, the bus access is eliminated

 Bus is free for other transfers

2016/2017Advanced and Parallel Architectures62

Multilevel Caches

 Common to use both on and off chip cache

 L1 on chip, L2 off chip in static RAM

 L2 access much faster than DRAM or ROM

 L2 often uses separate data path

 L2 may be on chip

 Resulting in L3 cache

2016/2017Advanced and Parallel Architectures63

Unified versus Split Caches

 It is quite common to split the cache into two:

 one dedicated to instructions

 one dedicated to data

 These two caches both exist at the same level, typically as
two L1 caches

 When the processor attempts to fetch an instruction from
main memory, it first consults the instruction L1 cache

 when the processor attempts to fetch data from main
memory, it first consults the data L1 cache

2016/2017Advanced and Parallel Architectures64

Unified versus Split Caches

 Advantages of unified cache

 Higher hit rate

 Balances load of instruction and data fetch
 if many more instruction fetches are involved in the execution,

then the cache will tend to fill up with instructions

 if an execution pattern involves relatively more data fetches, the
opposite will occur

 Only one cache to design & implement

 Advantages of split cache

 Eliminates cache contention between instruction
fetch/decode unit and execution unit

 Important in pipelining

2016/2017Advanced and Parallel Architectures65

