
Advanced Parallel Architecture
Lesson 3

Annalisa Massini - 2014/2015



Von Neumann Architecture
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 Summary of the traditional computer architecture:
Von Neumann architecture

 http://WilliamStallings.com/COA/COA7e.html
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Architecture & Organization

In describing computers, a distinction is often made:

 Architecture - attributes visible to the programmer

 Instruction set, number of bits used for data representation, I/O 
mechanisms, addressing techniques

 e.g. Is there a multiply instruction?

 Organization - operational units and their interconnections 
that realize the architectural specifications

 Control signals, interfaces, memory technology

 e.g. Is there a hardware multiply unit or is it done by repeated 
addition?
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Structure & Function

 A computer is a complex system containing millions of 
elementary electronic components

 The key to describe a computer is to recognize its 
hierarchical nature, as for most complex systems:

 At each level, the system consists of a set of components

 The interrelationships between components

 The behavior at each level depends only on a simplified, 
abstracted characterization of the system at the next lower 
level
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Structure & Function

 At each level, we are concerned with: 

 Structure - the way in which components relate to each other

 Function - the operation of individual components as part of 
the structure

 The basic functions that a computer can perform are:

 Data processing

 Data storage

 Data movement

 Control
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Structure & Function
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The computer must be able:
• To process data, that may take 

a wide variety of forms
• To store data - temporarily 

store at least those pieces of 
data that are being worked on 
at any given moment

• To move data between itself 
and the outside world

• To control these three 
functions



Operations - Data movement

2016/2017Advanced and Parallel Architectures8

Four possible types of 
operations

The computer can function
as a data movement 
device, simply transferring
data from one peripheral 
or communications line to 
another



Operations - Storage 
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Four possible types of 
operations

The computer can function
as a data data storage 
device, with data 
transferred from the 
external environment
to computer storage 
(read) and vice versa 
(write)



Operation - Processing from/to storage 
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Four possible types of 
operations

The computer can execute
operations involving data 
processing, on data in 
storage



Operation - Processing from storage to I/O
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Four possible types of 
operations

The computer can execute
operations involving data 
processing, on data en
route between storage 
and the external 
environment



Structure - Top Level

Computer

The internal structure of the computer consists 
of four main structural components:

 Central processing unit (CPU): Controls the 
operation of the computer and performs its 
data processing functions (processor)

 Main memory: Stores data

 I/O: Moves data between the computer and 
its external environment

 System interconnection: Some mechanism 
that provides for communication among CPU, 
main memory, and I/O (for example  a system 
bus)

Peripherals

Communication

lines
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Structure - Top Level
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Structure - Top Level

Computer

Peripherals

Communication

lines

 The Central Processing Unit is
constituted by:

 Control Unit

 Arithmetic and Logic Unit

 Data and instructions get into the 
system and results out

 Input/output

 Temporary storage of code and 
results is needed

 Main memory
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Structure - The CPU
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Components

Basic element of a Central Processing Unit (processor)

 Control Unit

 ALU Arithmetic and Logic Unit 

 Registers

 Internal data paths

 External data paths
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Structure - The Control Unit
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Observations

 Traditionally, the computer has been viewed as a 
sequential machine

 Most computer programming languages require the 
programmer to specify algorithms as sequences of 
instructions

 Processors execute programs by executing machine 
instructions in a sequence and one at a time

 Each instruction is executed in a sequence of operations 
(fetch instruction, fetch operands, perform operation, 
store results)

 This view of the computer has never been entirely true
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Instruction execution
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Instruction Cycle

 The processing required for a single instruction is called 
an instruction cycle

 The instruction cycle can be illustrated using a simplified 
two-step description

 The two steps are referred to as the fetch cycle and the 
execute cycle
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Fetch Cycle

 Program Counter (PC) holds address of next instruction to 
fetch

 Processor fetches instruction from memory location 
pointed to by PC

 Increment PC

 Unless told otherwise

 Instruction loaded into Instruction Register (IR)

 Processor interprets instruction and performs required 
actions
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Execute Cycle

 Processor-memory

 data transfer between CPU and main memory

 Processor I/O

 Data transfer between CPU and I/O module

 Data processing

 Some arithmetic or logical operation on data

 Control

 Alteration of sequence of operations

 e.g. jump

 Combination of above
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Instruction Execution

The requirements placed on the processor (that is the 
things that it must do):

 Fetch instruction: The processor reads an instruction from 
memory (register, cache, main memory)

 Interpret instruction: The instruction is decoded to determine 
what action is required

 Fetch data: The execution of an instruction may require 
reading data from memory or an I/O module

 Process data: The execution of an instruction may require 
performing some arithmetic or logical operation on data.

 Write data: The results of an execution may require writing 
data to memory or an I/O module
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Instruction Cycle State Diagram
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Instruction address calculation (iac): Determine the address of the next instruction
to be executed (usually, adding a fixed number to the address of the previous instr.)



Instruction Cycle State Diagram
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Instruction fetch (if): Read instruction from its memory location into the
processor



Instruction Cycle State Diagram
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Instruction operation decoding (iod): Analyze instruction to determine 
type of operation to be performed and operand(s) to be used



Instruction Cycle State Diagram
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Operand address calculation (oac): If the operation involves reference to an operand 
in memory or available via I/O, then determine the address of the operand



Instruction Cycle State Diagram
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Operand fetch (of): Fetch the operand from memory or read it in from I/O



Instruction Cycle State Diagram
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Data operation (do): Perform the operation indicated in the instruction



Instruction Cycle State Diagram
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Operand store (os): Write the result into memory or out to I/O



Constituent Elements of Program Execution
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The instruction cycle is decomposed into sequence of elementary micro-operations



Interrupts

 Mechanism by which other modules may interrupt 
normal sequence of processing

 Program

 e.g. overflow, division by zero

 Timer

 Generated by internal processor timer

 Used in pre-emptive multi-tasking

 I/O

 from I/O controller

 Hardware failure

 e.g. memory parity error
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Interrupt Cycle

 Added to instruction cycle

 Processor checks for interrupt

 Indicated by an interrupt signal

 If no interrupt, fetch next instruction

 If interrupt pending:

 Suspend execution of current program 

 Save context

 Set PC to start address of interrupt handler routine

 Process interrupt

 Restore context and continue interrupted program
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Instruction Cycle with Interrupts
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Instruction Cycle with Interrupts - State Diagram
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Multiple Interrupts

 Disable interrupts

 Processor will ignore further interrupts whilst processing one 
interrupt

 Interrupts remain pending and are checked after first interrupt 
has been processed

 Interrupts handled in sequence as they occur

 Define priorities

 Low priority interrupts can be interrupted by higher priority 
interrupts

 When higher priority interrupt has been processed, processor 
returns to previous interrupt
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Multiple Interrupts - Sequential
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Multiple Interrupts – Nested
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Instruction characteristics
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Instruction Set

 The instruction set is the complete collection of 
instructions that the processor can execute

 Each instruction must contain the information required 
by the processor for execution
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Elements of an Instruction

Elements of a machine instruction are:

 Operation code (Op code)

 Do this

 Source Operand reference

 To this

 Result Operand reference

 Put the answer here

 Next Instruction Reference

 When you have done that, do this...
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Instruction Representation

 In machine code each instruction has a unique bit pattern

 For human understanding (e.g., programmers) a symbolic 
representation is used

 Opcodes - e.g. ADD, SUB, LOAD

 Operands can also be represented symbolically

 ADD A,B
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Instruction Types

We can categorize instruction types as follows:

 Data processing - Arithmetic and logic instructions

 Data storage (main memory) - Movement of data into or 
out of register and or memory locations

 Data movement - I/O instructions

 Control - Test and branch instructions
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Number of Addresses

 An instruction could plausibly be required to contain 
four address references: 

 two source operands

 one destination operand

 the address of the next instruction

 In most architectures, most instructions have:

 one, two, or three operand addresses, 

 address of the next instruction implicit (obtained from 
the program counter)
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Number of Addresses

 3 addresses (not common)

 Operand 1, Operand 2, Result ->  a = b + c;

 May be a forth - next instruction (usually implicit)

 Needs very long words to hold everything

 Three-address instruction formats are not common 
because they require a relatively long instruction format 
to hold the three address references
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Number of Addresses

 2 addresses

 One address doubles as operand and result - a = a + b

 Reduces length of instruction

 Requires some extra work (to avoid altering the value of an 
operand, a MOVE instruction is used to move one of the values 
to a temporary location before performing the operation)

 1 address  (Common on early machines)

 Implicit second address - Usually a register (accumulator)

 0 addresses

 All addresses implicit - applicable to a memory organization as 
a stack
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How Many Addresses

 More addresses

 More complex (powerful?) instructions

 More registers

 Inter-register operations are quicker

 Fewer instructions per program

 Fewer addresses

 Less complex (powerful?) instructions

 More instructions per program

 Faster fetch/execution of instructions
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Instruction Set Design

 The design of an instruction set is very complex because it 
affects so many aspects of the computer system

 The instruction set:

 defines many of the functions performed by the processor 

 has a significant effect on the implementation of the 
processor

 is the programmer’s means of controlling the processor
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Instruction Set Design

The most important of fundamental design issues include:

 Operation repertoire

 How many and which operations to provide, and how 
complex operations should be

 Data types

 Various types of data upon which operations are performed

 Instruction formats

 Instruction length (in bits)

 Number of addresses

 Size of various fields

 Registers

 Number of CPU registers available

 Which operations can be performed on which registers?

Addressing modes

2016/2017Advanced and Parallel Architectures49



Instruction Set Design

The most important of fundamental design issues include:

 Registers

 Number of CPU registers available

 Which operations can be performed on which registers

 Addressing modes

 The modes by which the address of an operand is specified

 RISC v CISC
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Types of Operand

 Machine instructions operate on data

 The most important general categories of data are:

 Addresses

 Numbers

 Integer/floating point

 Characters

 ASCII etc.

 Logical Data

 Bits or flags
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Addressing Modes and Formats
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Addressing Modes

 The address field or fields in a typical instruction format 
are relatively small

 We would like to be able to reference a large range of 
locations in main memory 

 A variety of addressing techniques has been employed

 Immediate

 Direct

 Indirect

 Register

 Register Indirect

 Displacement (Indexed) 

 Stack
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Immediate Addressing

 Operand is part of instruction

 Operand = address field

 e.g. ADD 5

 Add 5 to contents of accumulator

 5 is operand

 No memory reference to fetch data

 Fast

 Limited range Instruction
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Direct Addressing

 Address field contains address of operand

 Effective address (EA) = address field (A)

 Single memory reference to access data

 No additional calculations to work out effective address

 Limited address space

Address AOpcode

Instruction

Memory

Operand
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Indirect Addressing

 Memory cell pointed to by address field contains the 
address of (pointer to) the operand

 EA = (A)

 Look in A, find address (A) and look there for operand

 Large address space - 2n where n = word length

 Multiple memory accesses to find operand - hence slower

Address AOpcode

Instruction

Memory

Operand

Pointer to operand
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Register Addressing 

 Operand is held in register named in address filed

 Limited number of registers

 Very small address field needed 

 Shorter instructions - Faster instruction fetch

 No memory access -Very fast execution

 Very limited address space

 Multiple registers helps performance

Register Address ROpcode

Instruction

Registers

Operand
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Register Indirect Addressing

 C.f. indirect addressing

 EA = (R)

 Operand is in memory cell pointed to by contents of 
register R

 Large address space (2n)

 One fewer memory access than indirect addressing

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers
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Displacement Addressing

 EA = A + (R)

 Address field hold two values

 A = base value 

 R = register that holds displacement

 or vice versa

Register ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Address A

+
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Relative Addressing

 A version of displacement addressing

 R = Program counter, PC

 EA = A + (PC)

 i.e. get operand from A cells from current location 
pointed to by PC

 c.f locality of reference & cache usage
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Base-Register Addressing

 A holds displacement

 R holds pointer to base address

 R may be explicit or implicit

 e.g. segment registers in 80x86
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Indexed Addressing

 A = base

 R = displacement

 EA = A + R

 Good for accessing arrays

 EA = A + R

 R++
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Stack Addressing

 A stack is a linear array of reserved memory locations

 Can be sometimes referred to as a pushdown list or last-
in-first-out queue

 Items are appended to the top of the stack 

 At any given time, the location block is partially filled

 Associated with the stack is a pointer - stack pointer -
whose value is the address of the top of the stack
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Control unit
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Control unit

 The control unit is that portion of the processor that 
actually causes things to happen

 The control unit issues:

 Control signals external to the processor to cause data 
exchange with memory and I/O modules

 Control signals internal to the processor to move data between 
registers, to cause the ALU to perform a specified function, and 
to regulate other internal operations

 Input to the control unit consists of the instruction 
register, flags, and control signals from external sources 
(e.g., interrupt signals).
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Model of Control Unit
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Control Unit Organization

2016/2017Advanced and Parallel Architectures67



Types of Micro-operation

 The execution of a program consists of operations involving 
different processor elements

 Operations consist of a sequence of micro-operations

 All micro-operations fall into one of the following 
categories:

 Transfer data between registers

 Transfer data from register to external

 Transfer data from external to register

 Perform an arithmetic or logical operation, using registers for 
input and output
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Functions of Control Unit

 Sequencing

 Causing the CPU to step through a series of micro-operations

 Execution

 Causing the performance of each micro-op

 This is done using Control Signals
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Control Signals

 Clock
 One micro-instruction (or set of parallel micro-instructions) per 

clock cycle

 Instruction register
 Op-code for current instruction

 Determines which micro-instructions are performed

 Flags
 State of CPU

 Results of previous operations

 From control bus
 Interrupts

 Acknowledgements
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Control Signals - output

 Within CPU

 Cause data movement

 Activate specific functions

 Via control bus

 To memory

 To I/O modules
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Example Control Signal Sequence - Fetch

 MAR  (PC)

 Control unit activates signal to open gates between PC and 
MAR

 MBR  (memory)

 Open gates between MAR and address bus

 Memory read control signal

 Open gates between data bus and MBR
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Internal Organization

 Usually a single internal bus

 Gates control movement of data onto and off the bus

 Control signals control data transfer to and from external 
systems bus

 Temporary registers needed for proper operation of ALU
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Implementations

 We have discussed the control unit in terms of its inputs, 
output, and functions 

 A wide variety of techniques for the control unit 
implementation have been used

 Most of these fall into one of two categories:

 Hardwired implementation

 Microprogrammed implementation

 In a hardwired implementation, the control unit is 
essentially a state machine circuit:

 Its input logic signals are transformed into a set of output logic 
signals, which are the control signals

2016/2017Advanced and Parallel Architectures74



Hardwired Implementation

 Control unit inputs

 Flags and control bus (each bit means something)

 Instruction register

 Different control signals for each different instruction

 Unique logic for each op-code

 Decoder takes encoded input and produces single output

 n binary inputs and 2n outputs

 Clock

 Repetitive sequence of pulses

 Must be long enough to allow signal propagation

 Different control signals at different times within instruction 
cycle
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Control Unit with Decoded Inputs
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Problems With Hardwired Designs

 Complex sequencing & micro-operation logic

 Difficult to design and test

 Inflexible design

 Difficult to add new instructions
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Microprogrammed Control

 An alternative to a hardwired control unit is a 
microprogrammed control unit

 The logic of the control unit is specified by a 
microprogram, consisting of a sequence of instructions in 
a microprogramming language

 The (very simple) instructions specifies micro-operations

 A microprogrammed control unit is a relatively simple 
logic circuit that is capable of 

 sequencing through microinstructions

 generating control signals to execute each microinstruction
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Microprogrammed Control

 Each microinstruction line describes a set of micro-
operations occurring at one time

 For each micro-operation, all that the control unit is 
allowed to do is generate a set of control signals

 Thus, for any micro-operation, each control line 
emanating from the control unit is either on or off

 Each micro-operation is represented by a different 
pattern of 1s and 0s: the control word

 In a control word each bit represents one control line

 A sequence of control words represents the sequence of 
micro-operations performed by the control unit
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Implementation

 Control words are put in a memory and each word has a 
unique address

 An address field is added to each control word indicating 
the location of the next control word to be executed if a 
certain condition is true

 There is a sequence of control words for each machine 
code instruction

 Today’s large microprocessor

 Many instructions and associated register-level hardware

 Many control points to be manipulated
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Micro-instruction Types

 Vertical micro-programming: each micro-instruction 
specifies (single or few) micro-operations to be performed

 Horizontal micro-programming: each micro-instruction 
specifies many different micro-operations to be performed 
in parallel
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Organization of
Control Memory
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 Microinstructions (or control 
words) are arranged in a 
control memory (rom)

 Microinstructions in a routine 
are executed sequentially

 Each routine ends with a 
branch or jump instruction 
indicating where to go next 

 A special execute cycle routine 
specifies the instruction 
routine (AND, ADD, and so on) 
to be executed next (according 
to the current opcode)



Control Unit
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Key elements of microprogrammed  
implementation: 

 The set of microinstructions is 
stored in the control memory

 The control address register 
contains the address of the next 
microinstruction to be read



Control Unit
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Key elements of microprogrammed  
implementation: 

 When a microinstruction is read
from the control memory, it is 
transferred to a control buffer 
register

 Reading a microinstruction from 
the control memory is the same as 
executing that  microinstruction

 The sequencing unit loads the 
control address register and issues 
a read command



Functioning of Microprogrammed Control Unit
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The control unit functions as 
follows:

1. To execute an instruction, 
the sequencing logic unit 
issues a READ command
to the control memory

2. The word whose address 
is specified in the control 
address register is read into
the control buffer register



Functioning of Microprogrammed Control Unit
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3. The content of the control 
buffer register generates 
control signals and next 
address information for the 
sequencing logic unit
4. The sequencing logic unit 
loads a new address into the 
control address register
(based on the next-address 
information from the control 
buffer register and the
ALU flags)

All this happens during one 
clock pulse



Functioning of Microprogrammed Control Unit
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Figure shows two decoder:

 The upper decoder 
translates the opcode of 
the IR into a control 
memory address

 The lower decoder is 
used for vertical
microinstructions


