
Advanced Parallel Architecture
Lesson 3

Annalisa Massini - 2014/2015

Von Neumann Architecture

2016/2017Advanced and Parallel Architectures2

 Summary of the traditional computer architecture:
Von Neumann architecture

 http://WilliamStallings.com/COA/COA7e.html

2016/2017Advanced and Parallel Architectures3

Architecture & Organization

In describing computers, a distinction is often made:

 Architecture - attributes visible to the programmer

 Instruction set, number of bits used for data representation, I/O
mechanisms, addressing techniques

 e.g. Is there a multiply instruction?

 Organization - operational units and their interconnections
that realize the architectural specifications

 Control signals, interfaces, memory technology

 e.g. Is there a hardware multiply unit or is it done by repeated
addition?

2016/2017Advanced and Parallel Architectures4

Structure & Function

 A computer is a complex system containing millions of
elementary electronic components

 The key to describe a computer is to recognize its
hierarchical nature, as for most complex systems:

 At each level, the system consists of a set of components

 The interrelationships between components

 The behavior at each level depends only on a simplified,
abstracted characterization of the system at the next lower
level

2016/2017Advanced and Parallel Architectures5

Structure & Function

 At each level, we are concerned with:

 Structure - the way in which components relate to each other

 Function - the operation of individual components as part of
the structure

 The basic functions that a computer can perform are:

 Data processing

 Data storage

 Data movement

 Control

2016/2017Advanced and Parallel Architectures6

Structure & Function

2016/2017Advanced and Parallel Architectures7

The computer must be able:
• To process data, that may take

a wide variety of forms
• To store data - temporarily

store at least those pieces of
data that are being worked on
at any given moment

• To move data between itself
and the outside world

• To control these three
functions

Operations - Data movement

2016/2017Advanced and Parallel Architectures8

Four possible types of
operations

The computer can function
as a data movement
device, simply transferring
data from one peripheral
or communications line to
another

Operations - Storage

2016/2017Advanced and Parallel Architectures9

Four possible types of
operations

The computer can function
as a data data storage
device, with data
transferred from the
external environment
to computer storage
(read) and vice versa
(write)

Operation - Processing from/to storage

2016/2017Advanced and Parallel Architectures10

Four possible types of
operations

The computer can execute
operations involving data
processing, on data in
storage

Operation - Processing from storage to I/O

2016/2017Advanced and Parallel Architectures11

Four possible types of
operations

The computer can execute
operations involving data
processing, on data en
route between storage
and the external
environment

Structure - Top Level

Computer

The internal structure of the computer consists
of four main structural components:

 Central processing unit (CPU): Controls the
operation of the computer and performs its
data processing functions (processor)

 Main memory: Stores data

 I/O: Moves data between the computer and
its external environment

 System interconnection: Some mechanism
that provides for communication among CPU,
main memory, and I/O (for example a system
bus)

Peripherals

Communication

lines

2016/2017Advanced and Parallel Architectures12

Structure - Top Level

Central

Processing

Unit

Computer

Main

Memory

Input/

Output

Systems

Intercon-

nection

Peripherals

Communication

lines

Computer

2016/2017Advanced and Parallel Architectures13

Structure - Top Level

Computer

Peripherals

Communication

lines

 The Central Processing Unit is
constituted by:

 Control Unit

 Arithmetic and Logic Unit

 Data and instructions get into the
system and results out

 Input/output

 Temporary storage of code and
results is needed

 Main memory

2016/2017Advanced and Parallel Architectures14

Structure - The CPU

Computer

Arithmetic

and

Login Unit

Control

Unit

Internal CPU

Inter-

connection

Registers

CPU

I/O

Main

Memory

System

Bus

CPU

2016/2017Advanced and Parallel Architectures15

Components

Basic element of a Central Processing Unit (processor)

 Control Unit

 ALU Arithmetic and Logic Unit

 Registers

 Internal data paths

 External data paths

2016/2017Advanced and Parallel Architectures16

Structure - The Control Unit

CPU

Control

Memory

Control Unit

Registers and

Decoders

Sequencing

Login

Control

Unit

ALU

Registers

Internal

Bus

Control Unit

2016/2017Advanced and Parallel Architectures17

Observations

 Traditionally, the computer has been viewed as a
sequential machine

 Most computer programming languages require the
programmer to specify algorithms as sequences of
instructions

 Processors execute programs by executing machine
instructions in a sequence and one at a time

 Each instruction is executed in a sequence of operations
(fetch instruction, fetch operands, perform operation,
store results)

 This view of the computer has never been entirely true

2016/2017Advanced and Parallel Architectures18

Instruction execution

2016/2017Advanced and Parallel Architectures19

Instruction Cycle

 The processing required for a single instruction is called
an instruction cycle

 The instruction cycle can be illustrated using a simplified
two-step description

 The two steps are referred to as the fetch cycle and the
execute cycle

2016/2017Advanced and Parallel Architectures20

Fetch Cycle

 Program Counter (PC) holds address of next instruction to
fetch

 Processor fetches instruction from memory location
pointed to by PC

 Increment PC

 Unless told otherwise

 Instruction loaded into Instruction Register (IR)

 Processor interprets instruction and performs required
actions

2016/2017Advanced and Parallel Architectures21

Execute Cycle

 Processor-memory

 data transfer between CPU and main memory

 Processor I/O

 Data transfer between CPU and I/O module

 Data processing

 Some arithmetic or logical operation on data

 Control

 Alteration of sequence of operations

 e.g. jump

 Combination of above

2016/2017Advanced and Parallel Architectures22

Instruction Execution

The requirements placed on the processor (that is the
things that it must do):

 Fetch instruction: The processor reads an instruction from
memory (register, cache, main memory)

 Interpret instruction: The instruction is decoded to determine
what action is required

 Fetch data: The execution of an instruction may require
reading data from memory or an I/O module

 Process data: The execution of an instruction may require
performing some arithmetic or logical operation on data.

 Write data: The results of an execution may require writing
data to memory or an I/O module

2016/2017Advanced and Parallel Architectures23

Instruction Cycle State Diagram

2016/2017Advanced and Parallel Architectures24

Instruction address calculation (iac): Determine the address of the next instruction
to be executed (usually, adding a fixed number to the address of the previous instr.)

Instruction Cycle State Diagram

2016/2017Advanced and Parallel Architectures25

Instruction fetch (if): Read instruction from its memory location into the
processor

Instruction Cycle State Diagram

2016/2017Advanced and Parallel Architectures26

Instruction operation decoding (iod): Analyze instruction to determine
type of operation to be performed and operand(s) to be used

Instruction Cycle State Diagram

2016/2017Advanced and Parallel Architectures27

Operand address calculation (oac): If the operation involves reference to an operand
in memory or available via I/O, then determine the address of the operand

Instruction Cycle State Diagram

2016/2017Advanced and Parallel Architectures28

Operand fetch (of): Fetch the operand from memory or read it in from I/O

Instruction Cycle State Diagram

2016/2017Advanced and Parallel Architectures29

Data operation (do): Perform the operation indicated in the instruction

Instruction Cycle State Diagram

2016/2017Advanced and Parallel Architectures30

Operand store (os): Write the result into memory or out to I/O

Constituent Elements of Program Execution

2016/2017Advanced and Parallel Architectures31

The instruction cycle is decomposed into sequence of elementary micro-operations

Interrupts

 Mechanism by which other modules may interrupt
normal sequence of processing

 Program

 e.g. overflow, division by zero

 Timer

 Generated by internal processor timer

 Used in pre-emptive multi-tasking

 I/O

 from I/O controller

 Hardware failure

 e.g. memory parity error

2016/2017Advanced and Parallel Architectures32

Interrupt Cycle

 Added to instruction cycle

 Processor checks for interrupt

 Indicated by an interrupt signal

 If no interrupt, fetch next instruction

 If interrupt pending:

 Suspend execution of current program

 Save context

 Set PC to start address of interrupt handler routine

 Process interrupt

 Restore context and continue interrupted program

2016/2017Advanced and Parallel Architectures33

Instruction Cycle with Interrupts

2016/2017Advanced and Parallel Architectures34

Instruction Cycle with Interrupts - State Diagram

2016/2017Advanced and Parallel Architectures35

Multiple Interrupts

 Disable interrupts

 Processor will ignore further interrupts whilst processing one
interrupt

 Interrupts remain pending and are checked after first interrupt
has been processed

 Interrupts handled in sequence as they occur

 Define priorities

 Low priority interrupts can be interrupted by higher priority
interrupts

 When higher priority interrupt has been processed, processor
returns to previous interrupt

2016/2017Advanced and Parallel Architectures36

Multiple Interrupts - Sequential

2016/2017Advanced and Parallel Architectures37

Multiple Interrupts – Nested

2016/2017Advanced and Parallel Architectures38

Instruction characteristics

2016/2017Advanced and Parallel Architectures39

Instruction Set

 The instruction set is the complete collection of
instructions that the processor can execute

 Each instruction must contain the information required
by the processor for execution

2016/2017Advanced and Parallel Architectures40

Elements of an Instruction

Elements of a machine instruction are:

 Operation code (Op code)

 Do this

 Source Operand reference

 To this

 Result Operand reference

 Put the answer here

 Next Instruction Reference

 When you have done that, do this...

2016/2017Advanced and Parallel Architectures41

Instruction Representation

 In machine code each instruction has a unique bit pattern

 For human understanding (e.g., programmers) a symbolic
representation is used

 Opcodes - e.g. ADD, SUB, LOAD

 Operands can also be represented symbolically

 ADD A,B

2016/2017Advanced and Parallel Architectures42

Instruction Types

We can categorize instruction types as follows:

 Data processing - Arithmetic and logic instructions

 Data storage (main memory) - Movement of data into or
out of register and or memory locations

 Data movement - I/O instructions

 Control - Test and branch instructions

2016/2017Advanced and Parallel Architectures43

Number of Addresses

 An instruction could plausibly be required to contain
four address references:

 two source operands

 one destination operand

 the address of the next instruction

 In most architectures, most instructions have:

 one, two, or three operand addresses,

 address of the next instruction implicit (obtained from
the program counter)

2016/2017Advanced and Parallel Architectures44

Number of Addresses

 3 addresses (not common)

 Operand 1, Operand 2, Result -> a = b + c;

 May be a forth - next instruction (usually implicit)

 Needs very long words to hold everything

 Three-address instruction formats are not common
because they require a relatively long instruction format
to hold the three address references

2016/2017Advanced and Parallel Architectures45

Number of Addresses

 2 addresses

 One address doubles as operand and result - a = a + b

 Reduces length of instruction

 Requires some extra work (to avoid altering the value of an
operand, a MOVE instruction is used to move one of the values
to a temporary location before performing the operation)

 1 address (Common on early machines)

 Implicit second address - Usually a register (accumulator)

 0 addresses

 All addresses implicit - applicable to a memory organization as
a stack

2016/2017Advanced and Parallel Architectures46

How Many Addresses

 More addresses

 More complex (powerful?) instructions

 More registers

 Inter-register operations are quicker

 Fewer instructions per program

 Fewer addresses

 Less complex (powerful?) instructions

 More instructions per program

 Faster fetch/execution of instructions

2016/2017Advanced and Parallel Architectures47

Instruction Set Design

 The design of an instruction set is very complex because it
affects so many aspects of the computer system

 The instruction set:

 defines many of the functions performed by the processor

 has a significant effect on the implementation of the
processor

 is the programmer’s means of controlling the processor

2016/2017Advanced and Parallel Architectures48

Instruction Set Design

The most important of fundamental design issues include:

 Operation repertoire

 How many and which operations to provide, and how
complex operations should be

 Data types

 Various types of data upon which operations are performed

 Instruction formats

 Instruction length (in bits)

 Number of addresses

 Size of various fields

 Registers

 Number of CPU registers available

 Which operations can be performed on which registers?

Addressing modes

2016/2017Advanced and Parallel Architectures49

Instruction Set Design

The most important of fundamental design issues include:

 Registers

 Number of CPU registers available

 Which operations can be performed on which registers

 Addressing modes

 The modes by which the address of an operand is specified

 RISC v CISC

2016/2017Advanced and Parallel Architectures50

Types of Operand

 Machine instructions operate on data

 The most important general categories of data are:

 Addresses

 Numbers

 Integer/floating point

 Characters

 ASCII etc.

 Logical Data

 Bits or flags

2016/2017Advanced and Parallel Architectures51

Addressing Modes and Formats

2016/2017Advanced and Parallel Architectures52

Addressing Modes

 The address field or fields in a typical instruction format
are relatively small

 We would like to be able to reference a large range of
locations in main memory

 A variety of addressing techniques has been employed

 Immediate

 Direct

 Indirect

 Register

 Register Indirect

 Displacement (Indexed)

 Stack
2016/2017Advanced and Parallel Architectures53

Immediate Addressing

 Operand is part of instruction

 Operand = address field

 e.g. ADD 5

 Add 5 to contents of accumulator

 5 is operand

 No memory reference to fetch data

 Fast

 Limited range Instruction

2016/2017Advanced and Parallel Architectures54

Direct Addressing

 Address field contains address of operand

 Effective address (EA) = address field (A)

 Single memory reference to access data

 No additional calculations to work out effective address

 Limited address space

Address AOpcode

Instruction

Memory

Operand

2016/2017Advanced and Parallel Architectures55

Indirect Addressing

 Memory cell pointed to by address field contains the
address of (pointer to) the operand

 EA = (A)

 Look in A, find address (A) and look there for operand

 Large address space - 2n where n = word length

 Multiple memory accesses to find operand - hence slower

Address AOpcode

Instruction

Memory

Operand

Pointer to operand

2016/2017Advanced and Parallel Architectures56

Register Addressing

 Operand is held in register named in address filed

 Limited number of registers

 Very small address field needed

 Shorter instructions - Faster instruction fetch

 No memory access -Very fast execution

 Very limited address space

 Multiple registers helps performance

Register Address ROpcode

Instruction

Registers

Operand

2016/2017Advanced and Parallel Architectures57

Register Indirect Addressing

 C.f. indirect addressing

 EA = (R)

 Operand is in memory cell pointed to by contents of
register R

 Large address space (2n)

 One fewer memory access than indirect addressing

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

2016/2017Advanced and Parallel Architectures58

Displacement Addressing

 EA = A + (R)

 Address field hold two values

 A = base value

 R = register that holds displacement

 or vice versa

Register ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Address A

+

2016/2017Advanced and Parallel Architectures59

Relative Addressing

 A version of displacement addressing

 R = Program counter, PC

 EA = A + (PC)

 i.e. get operand from A cells from current location
pointed to by PC

 c.f locality of reference & cache usage

2016/2017Advanced and Parallel Architectures60

Base-Register Addressing

 A holds displacement

 R holds pointer to base address

 R may be explicit or implicit

 e.g. segment registers in 80x86

2016/2017Advanced and Parallel Architectures61

Indexed Addressing

 A = base

 R = displacement

 EA = A + R

 Good for accessing arrays

 EA = A + R

 R++

2016/2017Advanced and Parallel Architectures62

Stack Addressing

 A stack is a linear array of reserved memory locations

 Can be sometimes referred to as a pushdown list or last-
in-first-out queue

 Items are appended to the top of the stack

 At any given time, the location block is partially filled

 Associated with the stack is a pointer - stack pointer -
whose value is the address of the top of the stack

2016/2017Advanced and Parallel Architectures63

Control unit

2016/2017Advanced and Parallel Architectures64

Control unit

 The control unit is that portion of the processor that
actually causes things to happen

 The control unit issues:

 Control signals external to the processor to cause data
exchange with memory and I/O modules

 Control signals internal to the processor to move data between
registers, to cause the ALU to perform a specified function, and
to regulate other internal operations

 Input to the control unit consists of the instruction
register, flags, and control signals from external sources
(e.g., interrupt signals).

2016/2017Advanced and Parallel Architectures65

Model of Control Unit

2016/2017Advanced and Parallel Architectures66

Control Unit Organization

2016/2017Advanced and Parallel Architectures67

Types of Micro-operation

 The execution of a program consists of operations involving
different processor elements

 Operations consist of a sequence of micro-operations

 All micro-operations fall into one of the following
categories:

 Transfer data between registers

 Transfer data from register to external

 Transfer data from external to register

 Perform an arithmetic or logical operation, using registers for
input and output

2016/2017Advanced and Parallel Architectures68

Functions of Control Unit

 Sequencing

 Causing the CPU to step through a series of micro-operations

 Execution

 Causing the performance of each micro-op

 This is done using Control Signals

2016/2017Advanced and Parallel Architectures69

Control Signals

 Clock
 One micro-instruction (or set of parallel micro-instructions) per

clock cycle

 Instruction register
 Op-code for current instruction

 Determines which micro-instructions are performed

 Flags
 State of CPU

 Results of previous operations

 From control bus
 Interrupts

 Acknowledgements

2016/2017Advanced and Parallel Architectures70

Control Signals - output

 Within CPU

 Cause data movement

 Activate specific functions

 Via control bus

 To memory

 To I/O modules

2016/2017Advanced and Parallel Architectures71

Example Control Signal Sequence - Fetch

 MAR  (PC)

 Control unit activates signal to open gates between PC and
MAR

 MBR  (memory)

 Open gates between MAR and address bus

 Memory read control signal

 Open gates between data bus and MBR

2016/2017Advanced and Parallel Architectures72

Internal Organization

 Usually a single internal bus

 Gates control movement of data onto and off the bus

 Control signals control data transfer to and from external
systems bus

 Temporary registers needed for proper operation of ALU

2016/2017Advanced and Parallel Architectures73

Implementations

 We have discussed the control unit in terms of its inputs,
output, and functions

 A wide variety of techniques for the control unit
implementation have been used

 Most of these fall into one of two categories:

 Hardwired implementation

 Microprogrammed implementation

 In a hardwired implementation, the control unit is
essentially a state machine circuit:

 Its input logic signals are transformed into a set of output logic
signals, which are the control signals

2016/2017Advanced and Parallel Architectures74

Hardwired Implementation

 Control unit inputs

 Flags and control bus (each bit means something)

 Instruction register

 Different control signals for each different instruction

 Unique logic for each op-code

 Decoder takes encoded input and produces single output

 n binary inputs and 2n outputs

 Clock

 Repetitive sequence of pulses

 Must be long enough to allow signal propagation

 Different control signals at different times within instruction
cycle

2016/2017Advanced and Parallel Architectures75

Control Unit with Decoded Inputs

2016/2017Advanced and Parallel Architectures76

Problems With Hardwired Designs

 Complex sequencing & micro-operation logic

 Difficult to design and test

 Inflexible design

 Difficult to add new instructions

2016/2017Advanced and Parallel Architectures77

Microprogrammed Control

 An alternative to a hardwired control unit is a
microprogrammed control unit

 The logic of the control unit is specified by a
microprogram, consisting of a sequence of instructions in
a microprogramming language

 The (very simple) instructions specifies micro-operations

 A microprogrammed control unit is a relatively simple
logic circuit that is capable of

 sequencing through microinstructions

 generating control signals to execute each microinstruction

2016/2017Advanced and Parallel Architectures78

Microprogrammed Control

 Each microinstruction line describes a set of micro-
operations occurring at one time

 For each micro-operation, all that the control unit is
allowed to do is generate a set of control signals

 Thus, for any micro-operation, each control line
emanating from the control unit is either on or off

 Each micro-operation is represented by a different
pattern of 1s and 0s: the control word

 In a control word each bit represents one control line

 A sequence of control words represents the sequence of
micro-operations performed by the control unit

2016/2017Advanced and Parallel Architectures79

Implementation

 Control words are put in a memory and each word has a
unique address

 An address field is added to each control word indicating
the location of the next control word to be executed if a
certain condition is true

 There is a sequence of control words for each machine
code instruction

 Today’s large microprocessor

 Many instructions and associated register-level hardware

 Many control points to be manipulated

2016/2017Advanced and Parallel Architectures80

Micro-instruction Types

 Vertical micro-programming: each micro-instruction
specifies (single or few) micro-operations to be performed

 Horizontal micro-programming: each micro-instruction
specifies many different micro-operations to be performed
in parallel

2016/2017Advanced and Parallel Architectures81

Organization of
Control Memory

2016/2017Advanced and Parallel Architectures82

 Microinstructions (or control
words) are arranged in a
control memory (rom)

 Microinstructions in a routine
are executed sequentially

 Each routine ends with a
branch or jump instruction
indicating where to go next

 A special execute cycle routine
specifies the instruction
routine (AND, ADD, and so on)
to be executed next (according
to the current opcode)

Control Unit

2016/2017Advanced and Parallel Architectures83

Key elements of microprogrammed
implementation:

 The set of microinstructions is
stored in the control memory

 The control address register
contains the address of the next
microinstruction to be read

Control Unit

2016/2017Advanced and Parallel Architectures84

Key elements of microprogrammed
implementation:

 When a microinstruction is read
from the control memory, it is
transferred to a control buffer
register

 Reading a microinstruction from
the control memory is the same as
executing that microinstruction

 The sequencing unit loads the
control address register and issues
a read command

Functioning of Microprogrammed Control Unit

2016/201785 Advanced and Parallel Architectures

The control unit functions as
follows:

1. To execute an instruction,
the sequencing logic unit
issues a READ command
to the control memory

2. The word whose address
is specified in the control
address register is read into
the control buffer register

Functioning of Microprogrammed Control Unit

2016/201786 Advanced and Parallel Architectures

3. The content of the control
buffer register generates
control signals and next
address information for the
sequencing logic unit
4. The sequencing logic unit
loads a new address into the
control address register
(based on the next-address
information from the control
buffer register and the
ALU flags)

All this happens during one
clock pulse

Functioning of Microprogrammed Control Unit

2016/201787 Advanced and Parallel Architectures

Figure shows two decoder:

 The upper decoder
translates the opcode of
the IR into a control
memory address

 The lower decoder is
used for vertical
microinstructions

