Advanced Parallel Architecture

Annalisa Massini - 2016/2017

Parallelism and Performance

Computer Architecture - A Quantitative Approach, Hennessy Patterson
Chapter 1 - Fundamentals of Quantitative Design and Analysis

Section 1.9 - Quantitative Principles of Computer Design

Advanced and Parallel Architectures 2016/2017

Introduction

In the design and analysis of computers, we need
» Principles and guidelines

» Observations about design

» Equations to evaluate alternatives

Taking advantage of parallelism is one of the most
important methods for improving performance
» Parallelism at the system level — scalability

» Parallelism at the level of an individual processor - parallelism
among instructions

» Parallelism at the level of digital design - memories and ALUs

p 3 Advanced and Parallel Architectures 2016/2017

Introduction

Fundamental observations come from properties of
programs

The most important program property that we regularly

exploit is the principle of locality

» Temporal locality states that recently accessed items are likely
to be accessed in the near future

» Spatial locality says that items whose addresses are near one
another tend to be referenced close together in time

b 4 Advanced and Parallel Architectures 2016/2017

Introduction

An important and pervasive principle of computer design
is to focus on the common case:

» In making a design trade-off, favor the frequent case over the
infrequent case
This principle applies when determining how to spend

resources, since the impact of the improvement is higher
if the occurrence is frequent

In applying this simple principle, we have to decide what
the frequent case is and how much performance can be
improved by making that case faster

p 5 Advanced and Parallel Architectures 2016/2017

Amdahl’s Law

The performance gain that is obtained by improving some
portion of a computer can be calculated using Amdahl’s law

Amdahl’s law:

» states that the performance improvement is limited by the
fraction of the time the faster mode can be used

» defines the speedup that can be gained by using a particular
feature

Speedup = (Performance for entire task using the enhancement when possible)/
(Performance for entire task without using the enhancement)

Speedup = (Execution time for entire task without using the enhancement)/
(Execution time for entire task using the enhancement when possible)

p 6 Advanced and Parallel Architectures 2016/2017

Amdahl’s law

Amdahl’s law gives us a quick way to find the speedup
from some enhancement, which depends on two factors:

1) The fraction of the computation time in the original
computer that can be converted to take advantage of the
enhancement, that is

Fraction = time with enhancement/total time

enhanced
Example:
A program that takes 60 seconds in total
20 seconds of the execution time can use an enhancement
The fraction is: 20/60
» This value is always less than or equal to 1

p 7 Advanced and Parallel Architectures 2016/2017

Amdahl’s law

Amdahl’s law gives us a quick way to find the speedup
from some enhancement, which depends on two factors:
2) The improvement gained by the enhanced execution mode,

that is, how much faster the task would run if the enhanced
mode were used for the entire program:

Speedup, .q = Original mode time / enhanced mode time

Example:

» A portion of the program in the original mode is 5 seconds
» Inthe enhanced mode takes 2 seconds

» The improvement is 5/2

» This value is always greater than 1

p 8 Advanced and Parallel Architectures 2016/2017

Amdahl’s law

The execution time using the original computer with the
enhanced mode will be the time spent using the

unenhanced portion of the computer plus the time spent
using the enhancement:

Speedup

enhanced

Fraction
. enhanced
Executiontime,, = Executiontime,, x ((1— Fraction_, . ..q) +

The overall speedup is the ratio of the execution times:

Executiontime, 1
Speedupoverall = = =

Executiontime__,

Fraction

enhanced

Speed u penhanced

(1- Fraction

enhanced) +

P 9 Advanced and Parallel Architectures 2016/2017

Example

We want to enhance the processor used for Web serving

The new processor is 10 times faster on computation in the
Web serving application than the original processor

Assume that the original processor is busy with computation
40% of the time and is waiting for I/O 60% of the time

what is the overall speedup gained by incorporating the
enhancement?

p 10 Advanced and Parallel Architectures 2016/2017

Example

We want to enhance the processor used for Web serving

The new processor is 10 times faster on computation in the
Web serving application than the original processor

Assume that the original processor is busy with computation
40% of the time and is waiting for I/O 60% of the time

What is the overall speedup gained by incorporating the

enhancement?
Fraction, hanceq = 0-4 Speedup, hanceq = 10
1 1 1
SPeEdUPera = Fraction B 0.4 S
(1_ FraCtionenhanced) + enhanced (1_ 04) 4 0.64
SpEEdUI:)enhanced 10

p 11 Advanced and Parallel Architectures 2016/2017

Amdahl’s law

» Amdahl’s law can serve as a guide to:
» how much an enhancement will improve performance
» how to distribute resources to improve cost-performance

» The goal is to spend resources proportional to where time is
spent

» Amdahl’s law is useful

» for comparing the overall system performance of two alternatives
» to compare two processor design alternatives

p 12 Advanced and Parallel Architectures 2016/2017

Example

A common transformation in graphics processors is square root

Implementations of floating-point square root (FPSQR) vary
significantly in performance among processors for graphics

Suppose FPSQR is responsible for 20% of the execution time of
a critical graphics benchmark and FP instructions are
responsible for half of the execution time for the application

Two proposals:

» To enhance the FPSQR hardware and speed up this operation by a
factor of 10

» To try to make all FP instructions in the graphics processor run faster
by a factor of 1.6

Compare these two design alternatives

p 13 Advanced and Parallel Architectures 2016/2017

Example

We can compare these two alternatives by comparing the
speedups

1 1
Speedup,,qz = = =1.22
2
(1-0.2)+ 22 082
10

p 14 Advanced and Parallel Architectures 2016/2017

Example

We can compare these two alternatives by comparing the
speedups

1 1
Speedup,,qz = = =1.22
2
(1-0.2)+ 22 082
10
1 1
Speedup,, = = =1.23
(1-0.5) +E 0.8125
1.6

p 15 Advanced and Parallel Architectures 2016/2017

Example

We can compare these two alternatives by comparing the
speedups

1 1
Speedup,,qz = = =1.22
2
(1-0.2)+ 22 082
10
1 1
Speedup,, = = =1.23

Improving the performance of the FP operations overall is
slightly better because of the higher frequency

p 16 Advanced and Parallel Architectures 2016/2017

Processor Performance Equation

All computers are constructed using a clock running at a
constant rate

Discrete time events are called ticks, clock ticks, clock
periods, clocks, cycles, or clock cycles

Computer designers refer to the time of a clock period by
its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz)

CPU time for a program can then be expressed two ways:
» CPU time = CPU clock cycles for a program x Clock cycle time
or

» CPU time = CPU clock cycles for a program / Clock rate

p 17 Advanced and Parallel Architectures 2016/2017

Processor Performance Equation

We can also count the number of instructions executed -
the instruction path length or instruction count (IC)

If we know the number of clock cycles and the
instruction count, we can calculate the average number
of clock cycles per instruction (CPI):

CPI = CPU clock cycles for a program / Instruction count

From this formula we obtain
CPU clock cycles for a program = CPI x IC

p 18 Advanced and Parallel Architectures 2016/2017

Processor Performance Equation

This allows us to use CPI in the execution time formula and
obtain the performance equation:

» CPU time = IC x CPI x Clock cycle time
In fact using the units of measurement we have:

Instructions Clockcycles Seconds
ICx CPIx Clock cycle time = X y. X =
Program Instructions Clockcycles
S d
_ >econ S:CPUtime
Program

Observe that processor performance is equally dependent
upon three characteristics: clock cycle (or rate), clock cycles
per instruction, and instruction count

p 19 Advanced and Parallel Architectures 2016/2017

Processor Performance Equation

It is useful to calculate the number of total processor
clock cycles as

n
CPUclock cycles= Z:ICi x CPl.
i=1
where
» Ic; is the number of times instruction I is executed in a program

» CPI. is the average number of clocks per instruction for instr. |

p 20 Advanced and Parallel Architectures 2016/2017

Processor Performance Equation

This expression can be used to express CPU time as

CPUtime= [Z:ICi X CPIij x Clock cycle time

i=1

and the overall CPI as

n
> 'IC; x P, i c
CP| = i=1 : — . | x CPI.
Instructioncount 5= Instructioncount

p 21 Advanced and Parallel Architectures 2016/2017

Example

Suppose we have made the following measurements in
the previous example :

Frequency of FP operations = 25%

Average CPI of FP operations = 4.0

Frequency of FPSQR = 2%
CPI of FPSQR = 20

Assume that the two design alternatives are to decrease
the CPI of FPSQR to 2 or to decrease the average CPI of all
FP operations to 2.5.

>
>
» Average CPI of other instructions = 1.33
4
4

Compare these two design alternatives using the
processor performance equation

p 22 Advanced and Parallel Architectures 2016/2017

Example

Observe that only the CPI changes; the clock rate and
instruction count remain identical

We start by finding the original CPl with neither enhancement:

IC.

n
cPl, = CPlLx | -
original ,Z:;‘ " Instructioncount

=(4 x25%) +(1.33 x 75%) =2.0

We can compute the CPI for the enhanced FPSR by subtracting
the cycles saved from the original CPI:

CPI v rpse = CPI -2%x(CPI oiarpsr™ CP newFPSRonIy) =

original

=2-2%x(20-2)=1.64

p 23 Advanced and Parallel Architectures 2016/2017

Example

We can compute the CPI for the enhancement of all FP
instructions (the same way or) by summing the FP and non-FP

CPls:

CPl__ =(2.5%25%) +(1.33 x 75%) =1.625

new FP

Since the CPI of the overall FP enhancement is slightly lower,
its performance will be marginally better

The speedup for the overall FP enhancement is

CPUtime .., ICxClockcyclexCPI .. .
SpeedupnewFP = . — —
CPUtime__ ., |CxClockcyclexCPI

CPI_ ..
original 2.0 —1.23
CPI

 1.625

p 24 Advanced and Parallel Architectures 2016/2017

new FP

Conclusions

» It is easier to use the processor performance equation
than Amdahl’s law. In fact,

» It is often possible to measure the constituent parts of the
processor performance equation

» It may be difficult to measure things such as the fraction of
execution time for which a set of instructions is responsible

» In practice, this would probably be computed by summing the
product of the instruction count and the CPI for each of the
instructions in the set

» Hence the starting point is often individual instruction
count and CPl measurements =2 performance equation

p 25 Advanced and Parallel Architectures 2016/2017

