
Advanced Parallel Architecture

Annalisa Massini - 2016/2017

Cache Coherence

Advanced and Parallel Architectures 2016/20172

Computer Architecture - A Quantitative Approach, Fifth Edition

Hennessy Patterson

 Chapter 5 - Thread-Level Parallelism

 Section 5.2 - Centralized Shared Memory Architectures

 Section 5.4 - Distributed Shared-Memory and Directory-Based Coherence

Advanced and Parallel Architectures 2016/20173

Introduction

 Our focus is on multiprocessors, which we define as
computers consisting of tightly coupled processors
whose coordination and usage are typically controlled by
a single operating system and that share memory
through a shared address space

 Observe sharing through memory implies a shared
address space, it does not necessarily mean there is a
single physical memory

Advanced and Parallel Architectures 2016/20174

Introduction

 The multiprocessors we consider range in size from a
dual processor to dozens of processors

 Multiprocessors include both single-chip systems with
multiple cores, that is multicore, and computers with
multiple chips, each of which may be a multicore

 Thread-level parallelism is obtained through two different
software models:

 the execution of a tightly coupled set of threads collaborating
on a single task, typically called parallel processing

 the execution of multiple, relatively independent processes
that may originate from one or more users, which is a form of
request level parallelism

Advanced and Parallel Architectures 2016/20175

Shared-memory multiprocessors

 Shared-memory multiprocessors
fall into two classes, depending:

 on the number of processors
involved

 a memory organization and
interconnect strategy

Advanced and Parallel Architectures 2016/20176

Shared-memory multiprocessors
 Symmetric multiprocessors (SMP)

 Small number of cores

 Have equal access to memory, hence
the term symmetric

 Share single memory with uniform
memory latency

 Distributed shared memory (DSM)
 Memory distributed among processors

 Non-uniform memory access/latency
(NUMA)

 Processors connected via direct
(switched) and non-direct (multi-hop)
interconnection networks

Advanced and Parallel Architectures 2016/20177

Shared-memory multiprocessors

 In both SMP and DSM
architectures, communication
among threads occurs through a
shared address space

 A memory reference can be
made by any processor to any
memory location, assuming it
has the correct access rights

 The term shared memory
associated with both SMP and
DSM refers to the fact that the
address space is shared

Advanced and Parallel Architectures 2016/20178

Centralized Shared-Memory Architectures

 Symmetric shared-memory machines usually support the
caching of both shared and private data

 Private data are used by a single processor, whereas
shared data are used by multiple processors, providing
communication among the processors through reads and
writes of the shared data

 When a private item is cached, its location is put in cache

 When shared data are cached, the shared value may be
replicated in multiple caches

 Both reduce average access time and memory bandwidth

 Caching of shared data  cache coherence problem

Advanced and Parallel Architectures 2016/20179

Cache Coherence

 The view of memory by two different processors:

 is through their individual caches

 without any additional precautions, could see different values

We assume a write-through cache. After the value of X has been written by A,
A’s cache and the memory both contain the new value, but B’s cache does
not, and if B reads the value of X it will receive 1!

Advanced and Parallel Architectures 2016/201710

Cache Coherence

 The view of memory by two different processors:

 is through their individual caches

 without any additional precautions, could see different values

We assume a write-through cache. After the value of X has been written by A,
A’s cache and the memory both contain the new value, but B’s cache does
not, and if B reads the value of X it will receive 1!

Advanced and Parallel Architectures 2016/2017

Write-through
• All writes go to main memory as

well as cache
• Lots of traffic
• Slows down writes

Write-back
• Updates initially made in cache only

and update bit is set
• If block is to be replaced, write to

main memory only if update bit is set

11

Cache Coherence

A memory system is coherent if

1. Processor P writes to location X, then P reads location X,
with no writes of X by another processor occurring
between the write and the read by P

 the read by P always returns the value written by P

This property preserves program order (true in uniprocessors too)

2. Processor P’ writes to location X, then P reads location X,
with no writes to X occur between the two accesses

 the read by P returns the written value (if the read and
write are sufficiently separated in time)

This property defines the notion of coherent view of memory

Advanced and Parallel Architectures 2016/201712

Cache Coherence

A memory system is coherent if

3. Writes to the same location are serialized; that is, two
writes to the same location by any two processors are
seen in the same order by all processors

 For example, if processors P1 and P2 are write to location X,
serializing the writes ensures that every processor will see writes
in the same order

Advanced and Parallel Architectures 2016/201713

Coherence and Consistency

 The three properties are sufficient to ensure coherence

 The question of when a written value will be seen is also
important

 We cannot require that a read of X instantaneously see the
value written for X by some other processor

 Example

 a write of X on one processor precedes a read of X on another
processor by a very small time

 It is impossible to ensure that the read returns the value written,
since the written data may not even have left the processor

 The issue of exactly when a written value must be seen by a
reader is defined by a memory consistency model

Advanced and Parallel Architectures 2016/201714

Coherence and Consistency

 Coherence defines the behavior of reads and writes to the
same memory location

 Consistency defines the behavior of reads and writes with
respect to accesses to other memory locations

 Assumptions:

 a write does not complete (and allow the next write to occur)
until all processors have seen the effect of that write

 the processor does not change the order of any write with
respect to any other memory access

 These restrictions allow the processor to reorder reads, but
forces the processor to finish a write in program order

Advanced and Parallel Architectures 2016/201715

Enforcing Coherence

 Program running on multiple processors will normally
have copies of the same data in several caches

 In a coherent multiprocessor, the caches provide:
 Migration: movement of data

 Replication: multiple copies of data

 Cache coherence protocols track the state of any sharing
of a data block
 Directory based

 Sharing status of each block kept in one location

 Snooping

 Each core tracks sharing status of each block

Advanced and Parallel Architectures 2016/201716

Coherence Protocols

 Snooping protocols became popular with
multiprocessors using microprocessors (single-core) and
caches attached to a single shared memory by a bus

 The bus provided a convenient broadcast medium to
implement the snooping protocols

 Multicore architectures changed the picture significantly,
since all multicores share some level of cache on the chip

 Thus, some designs switched to using directory protocols,
since the overhead was small

Advanced and Parallel Architectures 2016/201717

Snooping Coherence Protocols

 One method to maintain the coherence requirement is to
ensure that a processor has exclusive access to a data
item before it writes that item

 The other copies of the block are invalidated on a write
and the protocol is called a write invalidate

 Exclusive access ensures that no other readable or
writable copies of an item exist when the write occurs: all
other cached copies of the item are invalidated

 It is the most common protocol

Advanced and Parallel Architectures 2016/201718

Snooping Coherence Protocols

Example of an invalidation protocol with write-back caches in action

Consider:

 a write followed by a read by another processor

 since the write requires exclusive access, any copy held by the
reading processor must be invalidated

 when the read occurs, it misses and must fetch a new copy

Advanced and Parallel Architectures 2016/201719

Snooping Coherence Protocols

Example of an invalidation protocol with write-back caches in action

Observe:

 when the second miss by B occurs, processor A responds with
the value canceling the response from memory

 in addition, both the contents of B’s cache and the memory
contents of X are updated

Advanced and Parallel Architectures 2016/201720

Snooping Coherence Protocols

Example of an invalidation protocol with write-back caches in action

Observe:

 introduction of additional state, owner

 It indicates that a block may be shared, but the owning
processor is responsible for updating any other processors
and memory when it changes the block or replaces it

Advanced and Parallel Architectures 2016/201721

Snooping Coherence Protocols

 If two processors do attempt to write the same data
simultaneously:

 one of them wins the race

 the other processor’s copy to be invalidated

 For the other processor to complete its write, it must
obtain a new copy of the data, which must now contain
the updated value

 This protocol enforces write serialization

Advanced and Parallel Architectures 2016/201722

Snooping Coherence Protocols

 The alternative to an invalidate protocol is to update all
the cached copies of a data item when that item is
written

 This protocol is called a write update or write broadcast
protocol

 Because a write update protocol must broadcast all
writes to shared cache lines, it consumes considerably
more bandwidth

 Recent multiprocessors have opted to implement a write
invalidate protocol

Advanced and Parallel Architectures 2016/201723

Basic Implementation Techniques

 An invalidate protocol in a multicore is based on the use
of the bus, or another broadcast medium, to perform
invalidates

 In older multiple-chip multiprocessors, the bus used for
coherence is the shared-memory access bus

 In a multicore, the bus can be the connection between
the private caches and the shared outer cache (in the
Intel Core i7, L1 and L2 are private and L3 is shared)

 To perform an invalidate, the processor simply acquires
bus access and broadcasts the address to be invalidated
on the bus

Advanced and Parallel Architectures 2016/201724

Basic Implementation Techniques

 Actions

 All processors continuously snoop on the bus, watching
the addresses

 The processors check whether the address on the bus
is in their cache

 If so, the corresponding data in the cache are
invalidated

Advanced and Parallel Architectures 2016/201725

Basic Implementation Techniques

 We saw that:

 when a write to a block that is shared occurs, the writing
processor must acquire bus access to broadcast its invalidation

 If two processors attempt to write shared blocks at the
same time, their attempts to broadcast an invalidate
operation will be serialized when they arbitrate for the bus

 The first processor:

 obtains bus access

 causes other copies of the block it is writing to be invalidated

 If the processors were attempting to write the same block,
the serialization enforced by the bus also serializes their
writes

Advanced and Parallel Architectures 2016/201726

Basic Implementation Techniques

 In addition to invalidating outstanding copies of a cache
block that is being written into, we also need to locate a
data item when a cache miss occurs

 In a write-through cache, it is easy to find the recent value
of a data item:

 all written data are always sent to the memory, from which the
most recent value of a data item can always be fetched

 For a write-back cache, the problem of finding the most
recent data value is harder:

 the most recent value of a data item can be in a private cache
rather than in the shared cache or memory

Advanced and Parallel Architectures 2016/201727

Basic Implementation Techniques

 Write-back caches can use the same snooping scheme both
for cache misses and for writes:
 Each processor snoops every address placed on the shared bus

 If a processor finds that it has a dirty copy of the requested cache
block, it provides that cache block in response to the read request
and causes the memory (or L3) access to be aborted

 Retrieving the cache block from another processor’s private
cache (L1-L2) takes longer than retrieving it from L3

 Write-back caches
 generate lower requirements for memory bandwidth

 can support larger numbers of faster processors

 then multicore processors use write-back at the outermost levels of
the cache

Advanced and Parallel Architectures 2016/201728

Basic Implementation Techniques

 The normal cache tags can be used to implement the
process of snooping

 The valid bit for each block makes invalidation easy to
implement

 Read misses, whether generated by an invalidation or by
some other event, are also straightforward since they
simply rely on the snooping capability

 For writes if there are no other cached copies of the block

 then the write need not be placed on the bus in a write-back
cache

 both the time to write and the required bandwidth are reduces

Advanced and Parallel Architectures 2016/201729

Basic Implementation Techniques

 To track whether or not a cache block is shared, we can add
an extra state bit associated with each cache block, just as
we have a valid bit and a dirty bit

 By adding a bit indicating whether the block is shared, we
can decide whether a write must generate an invalidate

 When a write to a block in the shared state occurs, the
cache generates an invalidation on the bus and marks the
block as exclusive

 No further invalidations will be sent by that core for that
block

Advanced and Parallel Architectures 2016/201730

Basic Implementation Techniques

 The core with the sole copy of a cache block is called the
owner of the cache block

 When an invalidation is sent, the state of the owner’s cache
block is changed from shared to unshared (or exclusive)

 If another processor later requests this cache block, the
state must be made shared again

 Since our snooping cache also sees any misses, it knows
when the exclusive cache block has been requested by
another processor and the state should be made shared

Advanced and Parallel Architectures 2016/201731

Snooping Coherence Protocols

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent to the

requesting processor

 Cache lines marked as shared or exclusive/modified
 Only writes to shared lines need an invalidate broadcast

 After this, the line is marked as exclusive

Advanced and Parallel Architectures 2016/201732

Snooping Coherence Protocols

 A snooping coherence protocol is usually implemented by
incorporating a finite state controller in each core

 This controller:

 responds to requests from the processor in the core and from
the bus (or other broadcast medium)

 changes the state of the selected cache block

 uses the bus to access data or to invalidate it

Advanced and Parallel Architectures 2016/201733

Snooping Coherence Protocols

 Consider a simple protocol with three states:

 invalid indicates that the block has been updated somewhere

 shared indicates that the block in the private cache is
potentially shared

 modified/exclusive indicates that the block has been updated
in the private cache

Advanced and Parallel Architectures 2016/201734

Snooping Coherence Protocols

 Table shows the requests generated by a core for a
write-back cache

Advanced and Parallel Architectures 2016/201735

Snooping Coherence Protocols

 Table shows the requests generated by the bus for a
write-back cache

 When an invalidate or a write miss is placed on the bus,
any cores whose private caches have copies of the cache
block invalidate it

Advanced and Parallel Architectures 2016/201736

Snooping Coherence Protocols

 Figure shows a finite-state transition diagram for a single private cache
block using a write invalidation protocol and a write-back cache

Advanced and Parallel Architectures 2016/201737

Snooping Coherence Protocols

 The three states of the protocol are duplicated to represent
transitions based on processor requests (left), and bus requests (right)

Advanced and Parallel Architectures 2016/201738

Snooping Coherence Protocols

 There is only one finite-state machine per cache, with stimuli coming
either from the attached processor or from the bus

Advanced and Parallel Architectures 2016/201739

Snooping Coherence Protocols

 The stimulus causing a state change is shown on the transition arcs in regular
type, and any bus actions generated as part of the state transition are shown
on the transition arc in bold

Advanced and Parallel Architectures 2016/201740

Snooping Coherence Protocols

 The simple cache protocol is referred to by the first letter
of the states, making it a MSI (Modified, Shared, Invalid)

 It is correct, but omits a number of complications:
 Operations are not atomic

 E.g. detect miss, acquire bus, receive a response is not atomic

 Non atomic actions creates possibility of deadlock

 One solution: processor that sends invalidate can hold bus until other
processors receive the invalidate

 Extensions:
 Add exclusive state to indicate clean block in only one cache

(MESI protocol)

 Add owned state to indicate that the associated block is
owned by that cache and out-of-date in memory

Advanced and Parallel Architectures 2016/201741

 Any centralized resource in
the system can become a
bottleneck:

 As the number of processors in
a multiprocessor grows

 or as the memory demands of
each processor grow,

shared memory bus and
snooping bandwidth is
bottleneck for scaling
symmetric multiprocessors

Coherence Protocols

Advanced and Parallel Architectures 2016/201742

 Solutions to bus and snooping
bottlenecks:
 Duplicating tags to have direct

snoop access without interfering
with processor cache accesses

 Place directory in outermost
cache  the directory indicates
whether a given block is shared
and possibly which cores have
copies

 Interconnection networks
(crossbars or small point-to-
point networks) or multiple
buses with banked memory

Coherence Protocols: Extensions

Advanced and Parallel Architectures 2016/201743

Distributed Shared-Memory

 The development of multiprocessors composed of multicores
forced designers to some form of distributed memory:

 local memory traffic is separated from remote memory traffic

 bandwidth demands on the memory system and on the
interconnection network is reduced

Advanced and Parallel Architectures 2016/201744

Distributed Shared-Memory

 The absence of any centralized data structure for caches is both

 fundamental advantage of a snooping-based scheme - inexpensive

 its Achilles’ heel - scalability

 The introduction of distributed memory is useful if broadcast
on every cache miss in the coherence protocol is eliminated

Advanced and Parallel Architectures 2016/201745

Directory-Based Coherence

 Directory protocols instead of snooping coherence protocol

 Directory keeps track of every block
 Which caches have copy of the block

 Dirty status of each block

 Implement in shared L3 cache
 Keep bit vector of size = # cores for each block in L3

 bit vector indicates which private caches may have copies of a block
in L3

 invalidations are only sent to those caches

 (scheme is the one used in the Intel i7)

Advanced and Parallel Architectures 2016/201746

Directory-Based Coherence

 A single directory used in a multicore is not scalable, even
though it avoids broadcast

 The directory must be distributed, along with the memory

 different coherence requests can go to different directories, just as
different memory requests go to different memories

Advanced and Parallel Architectures 2016/201747

Directory-Based Coherence

 The distribution must allow the coherence protocol knows
where to find the directory information for any cached block
to avoid broadcast

 The coherence protocol in a distributed directory is based on

 the characteristic that the sharing status of a block is always in a
single known location

 the maintenance of information that says what other nodes may be
caching the block

Advanced and Parallel Architectures 2016/201748

Directory-Based Coherence Protocols

 Just as with a snooping protocol, there are two primary
operations that a directory protocol must implement:

 handling a read miss

 handling a write to a shared, clean cache block

 Observe that handling a write miss to a block that is
currently shared is a simple combination of the previous
two

 To implement these operations, a directory must track
the state of each cache block

Advanced and Parallel Architectures 2016/201749

Directory-Based Coherence Protocols

 For each block, state could be:
 Shared

 One or more nodes have the block cached, value in memory is
up-to-date

 Set of node IDs

 Uncached

 No node has a copy of the cache block

 Modified

 Exactly one node has a copy of the cache block, value in
memory is out-of-date

 Owner node ID

 Directory maintains block states and sends invalidation
messages

Advanced and Parallel Architectures 2016/201750

Directory-Based Coherence Protocols

 In addition to tracking the state of each potentially shared
memory block, we must track which nodes have copies
of that block, to invalidated them on a write

 The simplest way to do this is:

 To keep a bit vector for each memory block

 When the block is shared, each bit of the vector indicates
whether the corresponding processor chip (which is likely a
multicore) has a copy of that block

 The bit vector keeps also track of the owner of the block when
the block is in the exclusive state

 The state of each cache block at the individual caches is also
tracked

Advanced and Parallel Architectures 2016/201751

Directory-Based Coherence Protocols

 The states and transitions for the state machine at each
cache

 Are identical to what we used for the snooping cache

 But the actions on a transition are slightly different

 Infact

 The processes of invalidating and locating an exclusive copy of
a data item are different, since they both involve
communication between the requesting node and the
directory and between the directory and one or more remote
nodes

 In a snooping protocol, these two steps are combined through
the use of a broadcast to all the nodes

Advanced and Parallel Architectures 2016/201752

Messages

The possible messages sent among nodes to maintain coherence, with
source and destination node, contents, and function of the message

P = requesting node number, A = requested address, and D = data contents

Advanced and Parallel Architectures 2016/201753

Directory-Based Coherence Protocols

 State transition diagram for
an individual cache block in a
directory based system

 Observe that there is also a
state diagram for the
directory entry corresponding
to each block in memory

 Requests

 by the local processor are black

 from the home directory gray

Advanced and Parallel Architectures 2016/201754

Directory-Based Coherence Protocols

 States are identical to those in
the snooping case

 Transitions are similar, with
explicit invalidate and write-
back requests replacing the
write misses that were
broadcast on the bus

 An attempt to write a shared
cache block is treated as a
miss

Advanced and Parallel Architectures 2016/201755

Directory-Based Coherence Protocols

 The state transitions for an
individual cache are
caused by read misses,
write misses, invalidates,
and data fetch requests

 An individual cache also
generates read miss, write
miss, and invalidate
messages that are sent to
the home directory

Advanced and Parallel Architectures 2016/201756

Directory-Based Coherence Protocols

 Like the snooping protocol
 any cache block must be in the exclusive state when it is

written, and

 any shared block must be up to date in memory

 In many multicore processors, the outermost level in the
processor cache is shared among the cores (L3 in the
Intel i7, the AMD Opteron, and the IBM Power7), and
hardware at that level maintains coherence among the
private caches of each core on the same chip, using
either an internal directory or snooping

 In a directory-based protocol, the directory implements
the other half of the coherence protocol

Advanced and Parallel Architectures 2016/201757

Directory-Based Coherence Protocols

 A message sent to a directory causes two different types
of actions:
 updating the directory state

 sending additional messages to satisfy the request

 The states in the directory represent the three standard
states for a block

 Unlike in a snooping scheme, however, the directory state
indicates the state of all the cached copies of a memory
block, rather than for a single cache block

 The memory block may be
 uncached by any node,
 cached in multiple nodes and readable (shared), or
 cached exclusively and writable in exactly one node

Advanced and Parallel Architectures 2016/201758

Directory-Based Coherence Protocols

 For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the only
sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and becomes the

sharing node, block is now exclusive

 For shared block:
 Read miss

 The requesting node is sent the requested data from memory, node is
added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the sharing set are

sent invalidate messages, sharing set only contains requesting node,
block is now exclusive

Advanced and Parallel Architectures 2016/201759

Directory-Based Coherence Protocols

 For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes shared,
owner sends data to the directory, data written back to memory,
sharers set contains old owner and requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the value to

the directory, requestor becomes new owner, block remains
exclusive

Advanced and Parallel Architectures 2016/201760

