
Advanced Parallel Architecture

Annalisa Massini - 2016/2017

2

References

 Computer Architecture: A Quantitative Approach
5th Edition, Appendix F Interconnection Networks Ch. F.4
Hennessy Patterson

Slides: Timothy Mark Pinkston and José Duato

 Advanced Computer Architecture and Parallel Processing

H. El-Rewini, M. Abd-El-Barr, John Wiley and Sons, 2005

 Parallel computing for real-rime signal processing and
control – Ch. 2 Parallel Architectures

M. O. Tokhi, M. A. Hossain, M. H. Shaheed, Springer, 2003
Advanced and Parallel Architectures 2016/2017

Interconnection Networks

Advanced and Parallel Architectures3 2016/2017

Comparison of Interconnection Networks

 Intuitively, one network topology is more desirable than
another if it is:
 More efficient

 More convenient

 More regular (i.e. easy to implement)

 More expandable (i.e. highly modular)

 Unlikely to experience bottlenecks

 Clearly no one interconnection network maximizes all
these criteria

 Some tradeoffs are needed

4 Advanced and Parallel Architectures 2016/2017

Comparison of Interconnection Networks

 Standard criteria:

 Network diameter Max. number of hops necessary to link up
two most distant processors

 Maximum-Degree of PEs max number of links to/from one PE

 Minimum-Degree of PEs min number of links to/from one PE

 Network bisection width Minimum number of links to be cut

for a network to be into two halves

 Symmetry The network looks the same from any node

 Scalability The network is expandable with scalable
performance when the machine resources are increased

5 Advanced and Parallel Architectures 2016/2017

Network Topology: Evolution

 One switch suffices to connect a small number of devices

 Number of switch ports limited by VLSI technology, power
consumption, packaging, and other such cost constraints

 A fabric of interconnected switches (i.e., switch fabric or
network fabric) is needed when the number of devices is
much larger

 The topology must make a path(s) available for every pair of
devices

2016/2017Advanced and Parallel Architectures6

Network Topology: Evolution

 Several tens of topologies proposed, but less than a dozen
used

 1970s and 1980s

 Topologies were proposed to reduce hop count

 1990s

 Pipelined transmission and switching techniques

 Packet latency became decoupled from hop count

 2000s

 Topology still important (especially OCNs, SANs) when N is high

 Topology impacts performance and has a major impact on cost

2016/2017Advanced and Parallel Architectures7

Network Topology

 Crossbar network

 Crosspoint switch complexity increases quadratically with the
number of crossbar input/output ports, N, i.e., grows as O(N2)

 Has the property of being non-blocking

2016/2017Advanced and Parallel Architectures8

7

6

5

4

3

2

1

0

76543210

7

6

5

4

3

2

1

0

76543210

Network Topology

 Multistage interconnection networks (MINs)

 Crossbar split into several stages consisting of smaller crossbars

 Complexity grows as O(N × log N), where N is # of end nodes

 Inter-stage connections represented by a set of permutation
functions

2016/2017Advanced and Parallel Architectures9

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Omega
topology,
perfect-shuffle
exchange

Network Topology

 Multistage interconnection networks (MINs)

2016/2017Advanced and Parallel Architectures10

4 stage
Omega
network

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Network Topology

 Multistage interconnection networks (MINs)

2016/2017Advanced and Parallel Architectures11

4 stage
Baseline
network

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Network Topology

 Multistage interconnection networks (MINs)

2016/2017Advanced and Parallel Architectures12

4 stage
Reverse
Butterfly
network

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Network Topology

 Multistage interconnection networks (MINs)

 MINs interconnect N input/output ports using k x k switches

 logkN switch stages, each with N/k switches

 N/k(logkN) total number of switches

 Example: Compute the switch and link costs of interconnecting
4096 nodes using a crossbar relative to a MIN, assuming that
switch cost grows quadratically with the number of
input/output ports (k). Consider the following values of k:

 MIN with 2 x 2 switches

 MIN with 4 x 4 switches

 MIN with 16 x 16 switches

2016/2017Advanced and Parallel Architectures13

Network Topology

 Multistage interconnection networks (MINs)

 Example: Compute the switch and link costs N=4096 nodes

2016/2017Advanced and Parallel Architectures14

relative_cost(2 × 2)switches = 40962 / (22 × 4096/2 × log2 4096) = 170

relative_cost(4 × 4)switches = 40962 / (42 × 4096/4 × log4 4096) = 170

relative_cost(16 × 16)switches = 40962 / (162 × 4096/16 × log16 4096) = 85

relative_cost(2 × 2)links = 8192 / (4096 × (log2 4096 + 1)) = 2/13 = 0.1538

relative_cost(4 × 4)links = 8192 / (4096 × (log4 4096 + 1)) = 2/7 = 0.2857

relative_cost(16 × 16)links = 8192 / (4096 × (log16 4096 + 1)) = 2/4 = 0.5

cost(crossbar)switches = 40962

cost(crossbar)links = 8192

Network Topology

 Reduction in MIN switch cost performance reduction

 Network has the property of being blocking

 Paths from different sources to different destinations share
one or more links

2016/2017Advanced and Parallel Architectures15

7

6

5

4

3

2

1

0

76543210

X

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Network Topology

 To reduce blocking in MINs  Provide alternative paths

 Use larger switches (can equate to using more switches)

 Clos network: minimally three stages (non-blocking)

 A larger switch in the middle of two other switch stages provides enough
alternative paths to avoid all conflicts

 Use more switches

 Add logkN - 1 stages, mirroring the original topology

 Rearrangeably non-blocking

 Allows for non-conflicting paths

 Doubles network hop count (distance), d

 Centralized control can rearrange established paths

 Benes topology: 2(log2N) - 1 stages (rearrangeably non-blocking)

 Recursively applies the three-stage Clos network concept to the middle-
stage set of switches to reduce all switches to 2 x 2

2016/2017Advanced and Parallel Architectures16

Clos network

Advanced and Parallel Architectures17 2016/2017

Clos network

 Clos network is a multistage switching network

 Clos networks have three stages - the ingress stage,
middle stage, and the egress stage - made up of crossbars

2016/2017Advanced and Parallel Architectures18

Clos network

 Each call entering an ingress crossbar can be routed
through any of the available middle stage crossbar, to the
relevant egress crossbar switch

2016/2017Advanced and Parallel Architectures19

Clos network

 A middle stage crossbar is available for a new call if both
the link connecting the ingress switch to the middle stage
switch, and the link connecting the middle stage switch to
the egress switch, are free

2016/2017Advanced and Parallel Architectures20

Clos network

 Clos networks are defined by three integers n, m, and r

 n represents the number of sources which feed into each
of r ingress stage crossbar switches

2016/2017Advanced and Parallel Architectures21

Clos network

 Each ingress stage crossbar switch has m outlets, and
there are m middle stage crossbar switches

 There is exactly one connection between each ingress
stage switch and each middle stage switch

2016/2017Advanced and Parallel Architectures22

Clos network

 There are r egress stage switches, each with m inputs
and n outputs

 Each middle stage switch is connected exactly once to
each egress stage switch

2016/2017Advanced and Parallel Architectures23

Clos network

 Thus

 the ingress stage has r switches- - n inputs and m outputs

 The middle stage has m switches - r inputs and r outputs

 The egress stage has r switches - m inputs and n outputs

2016/2017Advanced and Parallel Architectures24

Clos network

 The advantage of Clos network is that connection
between a large number of input and output ports can be
made by using only small-sized switches

2016/2017Advanced and Parallel Architectures25

Strict-sense nonblocking Clos networks

 If m ≥ 2n−1, the Clos network is strict-sense nonblocking
(Clos's paper 1953)

 This means that an unused input on an ingress switch can
always be connected to an unused output on an egress
switch, without having to re-arrange existing calls

 Assume that there is a free terminal on the input of an
ingress switch, and this has to be connected to a free
terminal on a particular egress switch

2016/2017Advanced and Parallel Architectures26

Strict-sense nonblocking Clos networks

 In the worst case, n−1 other calls are active on the ingress
switch in question, and n−1 other calls are active on the
egress switch in question

 Assume, also in the worst case, that each of these calls
passes through a different middle-stage switch

 Hence in the worst case, 2n−2 of the middle stage
switches are unable to carry the new call

 Therefore, to ensure strict-sense nonblocking operation,
another middle stage switch is required, making a total of
2n−1

2016/2017Advanced and Parallel Architectures27

Rearrangeably nonblocking Clos networks

 If m ≥ n, the Clos network is rearrangeably nonblocking

 This means that an unused input on an ingress switch can
always be connected to an unused output on an egress
switch, but for this to take place, existing calls may have
to be rearranged by assigning them to different centre
stage switches in the Clos network

 To prove this, it is sufficient to consider m = n, with the
Clos network fully utilised; that is, r×n calls in progress

2016/2017Advanced and Parallel Architectures28

Rearrangeably nonblocking Clos networks

 The proof shows how any permutation of these r×n input
terminals onto r×n output terminals may be broken down
into smaller permutations which may each be
implemented by the individual crossbar switches in a Clos
network with m = n

 The proof uses Hall's marriage theorem

 Suppose there are r boys and r girls

 The theorem states that if every subset of k boys (for each
k such that 0 ≤ k ≤ r) between them know k or more girls,
then each boy can be paired off with a girl that he knows

 This is a (obvious) necessary condition for pairing to take
place; and it is also sufficient

2016/2017Advanced and Parallel Architectures29

Rearrangeably nonblocking Clos networks

 In the context of a Clos network, each boy represents an
ingress switch, and each girl represents an egress switch

 A boy is said to know a girl if the corresponding ingress
and egress switches carry the same call

 Each set of k boys must know at least k girls because
k ingress switches are carrying k×n calls and these cannot
be carried by less than k egress switches

2016/2017Advanced and Parallel Architectures30

Rearrangeably nonblocking Clos networks

 Hence each ingress switch can be paired off with an
egress switch that carries the same call, via a one-to-one
mapping

 These r calls can be carried by one middle-stage switch

 If this middle-stage switch is now removed from the Clos
network, m is reduced by 1, and we are left with a smaller
Clos network

 The process then repeats itself until m = 1, and every call
is assigned to a middle-stage switch

2016/2017Advanced and Parallel Architectures31

32

Network Topology
 Myrinet-2000 Clos Network for 128 hosts

Backplane of the
M3-E128 Switch

http://myri.com

M3-SW16-8F fiber
line card (8 ports)

Benes Network

Advanced and Parallel Architectures33 2016/2017

Benes Network

2016/2017Advanced and Parallel Architectures34

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port Crossbar network

Benes Network

2016/2017Advanced and Parallel Architectures35

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port, 3 stage Clos network

Benes Network

2016/2017Advanced and Parallel Architectures36

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port, 5 stage Clos network

Benes Network

2016/2017Advanced and Parallel Architectures37

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port, 7 stage Clos network = Benes topology

Benes Network

2016/2017Advanced and Parallel Architectures38

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

Alternative paths from 0 to 1 in a 16 port Benes topology

Benes Network

2016/2017Advanced and Parallel Architectures39

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

Alternative paths from 4 to 0 in a 16 port Benes topology

Benes Network

2016/2017Advanced and Parallel Architectures40

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

Contention free, paths 0 to 1 and 4 to 1 in a 16 port Benes topology

Looping algorithm

2016/2017Advanced and Parallel Architectures41

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

 Realizing permutations on a Benes network
 The algorithm starts from arbitrarily chosen input by arbitrarily setting the

corresponding switch
 The input is connected to the requested output
 The other output of the switch in the last stage is connected back to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

Looping algorithm

2016/2017Advanced and Parallel Architectures42

7

6

5

4

3
2

1

0

7

6

5

4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures43

7

6

5

4

3
2

1

0

7

6

5

4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures44

7

6

5

4

3

2

1

0

7

6

5

4

3
2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures45

7

6

5

4

3

2

1

0

7

6

5

4

3
2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures46

7
6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7
5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures47

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1
0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures48

7

6

5

4

3

2

1

0

7

6

5
4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures49

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures50

7

6

5
4

3

2

1

0

7
6

5

4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

2016/2017Advanced and Parallel Architectures51

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

log N stage MIN equivalence
(and Layered Cross Product)

Advanced and Parallel Architectures52 2016/2017

Topological and functional equivalence

 There are two different concepts of equivalence:

 Topological equivalence: isomorphism

 Functional equivalence: capability of always performing the
same set of assignments

 Topological equivalence is different from functional
equivalence:

 All rearrangeable MINs are functionally equivalent though not
necessarily topologically equivalent

 Not rearrangeable N-MINs could be topologically equivalent
but not functionally equivalent

2016/2017Advanced and Parallel Architectures53

Topological equivalence

Bermond, Fourneau and Jean-Marie (1987) give the
characterization of MINs topologically equivalent to the
Reverse Baseline network. It is based on:

 the Banyan property

 A MIN has the Banyan property if and only if for any input and
any output there exists a unique path connecting them, passing
through each stage once

2016/2017Advanced and Parallel Architectures54

BaselineOmega Reverse Baseline Butterfly

Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the
characterization of MINs topologically equivalent to the
Reverse Baseline network. It is based on:

 the P(∗, ∗) property

 Property P(i,j) An N-MIN has property P(i, j) for 1 ≤ i ≤ j ≤ log N if
the subgraph Gi,j induced by the nodes of the stage from i to j
has exactly 2log N−1−j+i connected components

 Property P(*,*) An N-MIN has property P(∗, ∗) if and only if it
satisfies P(i, j) for every ordered pair i, j such that 1 ≤ i ≤ j ≤ log N

2016/2017Advanced and Parallel Architectures

Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the
characterization of MINs topologically equivalent to the
Reverse Baseline network

Theorem All the MINs satisfying the Banyan Property and
P(∗, ∗) are topologically equivalent to the Reverse Baseline

2016/2017Advanced and Parallel Architectures56

BaselineOmega Reverse Baseline Butterfly

Topological equivalence

 Another way to prove the equivalence of log N stage
MINs – Calamoneri and Massini (2004) – is based on the
Layered Cross Product Even and Litman (1992)

 An l-layered graph, G = (V1, V2, . . . , Vl , E) consists of l layers of
nodes, Vi is the set of nodes in layer i, where 1 ≤ i ≤ l; E is a set
of edges connecting nodes of two adjacent layers

 The Layered Cross Product, G = G’⊗G’’, of two l-layered
graphs G’ = (V’1, V’2, . . . , V’l, E’) and G’’ = (V’’1, V’’2, . . . , V’’l,
E’’) is an l-layered graph G = (V1, V2, . . . , Vl , E) where Vi is the
cartesian product of V’i and V’’i , 1 ≤ i ≤ l, and an edge <(u’,
u’’),(v’, v’’)> belongs to E if and only if <u’ , v’> ∈ E’ and <u’’ ,
v’’> ∈ E’’. G’ and G’’ are called the first and second factor of G,
respectively

2016/2017Advanced and Parallel Architectures57

Topological equivalence

 The operation of decomposition in factors is the inverse
operation of the LCP

 Theorem Let G′ and G′′ be two s stage MINs, and let G′
decomposable as G′1 ⊗ G′2 . Then G′′ is topologically
equivalent to G′ if and only if G′′ can be decomposed as
G′1 ⊗ G′2

 Corollary Given two N-MINs G′ = G′1⊗G′2 and G′′ =
G′′1⊗G′′2 , they are topologically equivalent if their
factors are topologically equivalent

2016/2017Advanced and Parallel Architectures58

Topological equivalence

 Lemma A MIN G satisfies the Banyan and P(∗, ∗)
properties if and only if it can be decomposed as ∆ ⊗∇,
where ∆ and ∇ denote binary trees with the root on the
top and in the bottom, respectively

 Theorem A MIN G is decomposable as ∆ ⊗∇ if and only
if G is topologically equivalent to the Reverse Baseline

2016/2017Advanced and Parallel Architectures59

Topological equivalence

2016/2017Advanced and Parallel Architectures60

(,8)1 (,12)1 (,10)1 (,14)1 (,9)1 (,13)1 (,11)1 (,15)1

(,4)2 (,4)3 (,6)2 (,6)3 (,5)2 (,5)3 (,7)2 (,7)3

(,2)4 (,2)5 (,2)6 (,2)7 (,3)4 (,3)5 (,3)6 (,3)7

(,1)8 (,1)9 (,1)10 (,1)11 (,1)12 (,1)13 (,1)14 (,1)15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

15

1

2 3

4 5 6 7

8 9 10 11 12 13 14

(1,8) (1,9) (1,10) (1,11) (1,12) (1,13) (1,14) (1,15)

(2,4) (2,5) (2,6) (2,7) (3,4) (3,5) (3,6) (3,7)

(4,2) (4,3) (6,2) (6,3) (5,2) (5,3) (7,2) (7,3)

(8,1) (12,1) (10,1) (14,1) (9,1) (13,1) (11,1) (15,1)

(1,15)(1,8) (1,12) (1,10) (1,14) (1,9) (1,13) (1,11)

(2,4) (2,6) (2,5) (2,7) (3,4) (3,6) (3,5) (3,7)

(4,2) (4,3) (5,2) (5,3) (6,2) (6,3) (7,2) (7,3)

(8,1) (9,1) (10,1) (11,1) (12,1) (13,1) (14,1) (15,1)

(1,8) (1,9) (1,10) (1,11) (1,12) (1,14) (1,15)(1,13)

(2,4) (3,4) (2,5) (3,5) (2,6) (3,6) (2,7) (3,7)

(4,2) (5,2) (6,2) (7,2) (4,3) (5,3) (6,3) (7,3)

(8,1) (9,1) (10,1) (11,1) (12,1) (13,1) (14 ,1) (15,1)



Omega Flip

Butterfly Reverse Baseline

Nabla

Topological equivalence

 MINs consisting of log N stages such as Omega, Flip
(Reverse Omega), Baseline and Reverse Baseline,
Butterfly and Reverse Butterfly are all equivalent
networks

 They have attractive features, but they are not
rearrangeable

2016/2017Advanced and Parallel Architectures61

BaselineOmega Reverse Baseline Butterfly

Topological equivalence

 For this reason, MINs obtained by concatenating two
logN stage MINs with the center stage overlapped, have
been intensively studied

 Indeed, 2 log N − 1 is the theoretically minimum number
of stages required for obtaining rearrangeable multistage
interconnection networks

2016/2017Advanced and Parallel Architectures62

BaselineOmega Reverse Baseline Butterfly

2logN-1 stage MIN equivalence

Advanced and Parallel Architectures63 2016/2017

2logN-1 stage MIN equivalence

 The popular (2 log N − 1) stage Benes network is
rearrangeable and the Looping algorithm provides a
method and a proof for its rearrangeability

 Unfortunately the Looping algorithm can be used only on
(2 log N − 1) stage symmetric MINs with recursive
structure such as Baseline-Reverse Baseline and Butterfly-
Reverse Butterfly networks

 Looping algorithm does not work on the Omega-Omega−1

or Double Baseline even if they are equivalent to the
Benes network

2016/2017Advanced and Parallel Architectures64

2logN-1 stage MIN equivalence

 It is typical to concatenate all the combinations of pairs of
networks among Butterfly, Omega, Flip, Baseline, their
reverses, etc. to obtain a new N-MIN

 Both the two log N stage MINs constituting a (2log N- 1)
stage MIN can be decomposed as LCP of ∆ ⊗∇

 As a consequence, we obtain that the factors of (2log N-
1) stage MIN are the concatenation of a ∆ and a ∇ (roots
merging) and of a ∇ and a ∆ (leaves merging), r

2016/2017Advanced and Parallel Architectures65

2logN-1 stage MIN equivalence

 It is obvious how to merge the last layer of a ∇ with the
first layer of a ∆, but there are many ways of merging the
last layer of a ∆ and the first layer of a ∇ respectively

2016/2017Advanced and Parallel Architectures66

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

16 17

18 19 20 21

22 23 24 25 26 27 28 29

15

1

2 3

4 5 6 7

8 9 10 11 12 13 14

16 17 18 19

20 21

22

(17,19)

(21,21)

(13,4)

(15,8)
(15,12) (15,10) (15,14) (15,9)

(15,13) (15,11)

(16,16)

(16,18) (16,17) (16,19) (17,16) (17,18)
(17,17)

(18,20)

(18,21) (19,20)

(19,21) (20,20)

(20,21)
(21,20)

(22,22) (23,22) (24,22) (25,22) (26,22) (27,22) (28,22) (29,22)

(9,2)
(9,3) (10,2) (10,3)

(11,2)
(11,3) (12,2)

(12,3)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(13,6) (13,5)
(13,7)

(14,4) (14,6) (14,5)
(14,7)

(15,15)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(9,2)
(9,3)

(10,2) (10,3)(11,2) (11,3)
(12,2)

(12,3)

(13,4) (13,6)
(13,5)

(13,7)(14,4)
(14,6)

(14,5)

(14,7)

(15,8) (15,12) (15,10)
(15,14) (15,9)

(15,13)
(15,11)

(15,15)

(17,19)(16,16)

(16,18)
(16,17)

(16,19)(17,16)
(17,18)

(17,17)

(21,21)(18,20) (18,21)

(19,20) (19,21)(20,20) (20,21)

(21,20)

(22,22)(23,22) (24,22) (25,22) (26,22) (27,22) (28,22) (29,22)

A Flip and a OmegaA reverse Butterfly and a Butterfly

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

16 17

18 19 20 21

22 23 24 25 26 27 28 29

15

1

2 3

4 5 6 7

8 9 10 11 12 13 14

16 17 18 19

20 21

22

(17,19)

(21,21)

(13,4)

(15,8)

(15,12) (15,10) (15,14) (15,9) (15,13) (15,11)

(16,16) (16,18)(16,17) (16,19)(17,16) (17,18)(17,17)

(18,20) (18,21)(19,20) (19,21)(20,20) (20,21)(21,20)

(22,22) (23,22)(24,22) (25,22)(26,22) (27,22)(28,22) (29,22)

(9,2)
(9,3) (10,2) (10,3)

(11,2)
(11,3) (12,2)

(12,3)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(13,6) (13,5)
(13,7)

(14,4) (14,6) (14,5)
(14,7)

(15,15)

(1,1) (2,1)(3,1) (4,1)(5,1) (6,1)(7,1) (8,1)

(9,2) (9,3) (10,2)
(10,3)(11,2)

(11,3) (12,2)

(12,3)

(13,4)

(13,6)(13,5)
(13,7) (14,4)

(14,6)(14,5)

(14,7)

(15,8)
(15,12)

(15,10) (15,14)(15,9) (15,13)
(15,11)

(15,15)

(17,19)(16,16)

(16,18)
(16,17)

(16,19)(17,16)
(17,18)

(17,17)

(21,21)(18,20) (18,21)

(19,20) (19,21)(20,20) (20,21)

(21,20)

(22,22)(23,22) (24,22) (25,22) (26,22) (27,22) (28,22) (29,22)

Two reverse Butterflies Two Omega

2logN-1 stage MIN equivalence

2016/2017Advanced and Parallel Architectures67

2logN-1 stage MIN equivalence

 Theorem The number of distinct equivalence classes of
(2 logN - 1) MIN s is (log N − 1)!

 We can represent these classes representing the MINs
using butterfly stages

 In particular we can represent the first half of the MIN as
a butterfly and the second half by a permutation of
butterfly stages (that are: log N -1)

2016/2017Advanced and Parallel Architectures68

Classes for N=16

