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Comparison of Interconnection Networks

 Intuitively, one network topology is more desirable than 
another if it is:
 More efficient

 More convenient

 More regular (i.e. easy to implement)

 More expandable (i.e. highly modular)

 Unlikely to experience bottlenecks

 Clearly no one interconnection network maximizes all 
these criteria

 Some tradeoffs are needed
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Comparison of Interconnection Networks

 Standard criteria:

 Network diameter Max. number of hops necessary to link up 
two most distant processors

 Maximum-Degree of PEs max number of links to/from one PE

 Minimum-Degree of PEs min number of links to/from one PE

 Network bisection width Minimum number of links to be cut 

for a network to be into two halves 

 Symmetry The network looks the same from any node

 Scalability The network is expandable with scalable 
performance when the machine resources are increased
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Network Topology: Evolution

 One switch suffices to connect a small number of devices

 Number of switch ports limited by VLSI technology, power 
consumption, packaging, and other such cost constraints

 A fabric of interconnected switches (i.e., switch fabric or 
network fabric) is needed when the number of devices is 
much larger

 The topology must make a path(s) available for every pair of  
devices
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Network Topology: Evolution

 Several tens of topologies proposed, but less than a dozen 
used

 1970s and 1980s

 Topologies were proposed to reduce hop count

 1990s 

 Pipelined transmission and switching techniques

 Packet latency became decoupled from hop count

 2000s

 Topology still important (especially OCNs, SANs) when N is high

 Topology impacts performance and has a major impact on cost
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Network Topology

 Crossbar network

 Crosspoint switch complexity increases quadratically with the 
number of crossbar input/output ports, N, i.e., grows as O(N2)

 Has the property of being non-blocking
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Network Topology

 Multistage interconnection networks (MINs)

 Crossbar split into several stages consisting of smaller crossbars

 Complexity grows as O(N × log N), where N is # of end nodes

 Inter-stage connections represented by a set of permutation 
functions
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Network Topology

 Multistage interconnection networks (MINs)
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Network Topology

 Multistage interconnection networks (MINs)
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Network Topology

 Multistage interconnection networks (MINs)

2016/2017Advanced and Parallel Architectures12

4 stage 
Reverse 
Butterfly
network

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111



Network Topology

 Multistage interconnection networks (MINs)

 MINs interconnect N input/output ports using k x k switches 

 logkN switch stages, each with N/k switches 

 N/k(logkN) total number of switches

 Example: Compute the switch and link costs of interconnecting 
4096 nodes using a crossbar relative to a MIN, assuming that 
switch cost grows quadratically with the number of 
input/output ports (k).  Consider the following values of k:

 MIN with 2 x 2 switches

 MIN with 4 x 4 switches

 MIN with 16 x 16 switches
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Network Topology

 Multistage interconnection networks (MINs)

 Example: Compute the switch and link costs N=4096 nodes
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relative_cost(2 × 2)switches = 40962 / (22 × 4096/2 × log2 4096) = 170

relative_cost(4 × 4)switches = 40962 / (42 × 4096/4 × log4 4096) = 170

relative_cost(16 × 16)switches = 40962 / (162 × 4096/16 × log16 4096) = 85

relative_cost(2 × 2)links = 8192 / (4096 × (log2 4096 + 1)) = 2/13 = 0.1538

relative_cost(4 × 4)links = 8192 / (4096 × (log4 4096 + 1)) = 2/7 = 0.2857

relative_cost(16 × 16)links = 8192 / (4096 × (log16 4096 + 1)) = 2/4 = 0.5

cost(crossbar)switches = 40962

cost(crossbar)links = 8192



Network Topology

 Reduction in MIN switch cost performance reduction

 Network has the property of being blocking

 Paths from different sources to different destinations share 
one or more links
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Network Topology

 To reduce blocking in MINs  Provide alternative paths

 Use larger switches (can equate to using more switches)

 Clos network: minimally three stages (non-blocking)

 A larger switch in the middle of two other switch stages provides enough 
alternative paths to avoid all conflicts

 Use more switches 

 Add logkN - 1 stages, mirroring the original topology

 Rearrangeably non-blocking

 Allows for non-conflicting paths

 Doubles network hop count (distance), d

 Centralized control can rearrange established paths

 Benes topology: 2(log2N) - 1 stages (rearrangeably non-blocking)

 Recursively applies the three-stage Clos network concept to the middle-
stage set of switches to reduce all switches to 2 x 2
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Clos network
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Clos network

 Clos network is a multistage switching network

 Clos networks have three stages - the ingress stage, 
middle stage, and the egress stage - made up of crossbars
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Clos network

 Each call entering an ingress crossbar can be routed 
through any of the available middle stage crossbar, to the 
relevant egress crossbar switch
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Clos network

 A middle stage crossbar is available for a new call if both
the link connecting the ingress switch to the middle stage 
switch, and the link connecting the middle stage switch to 
the egress switch, are free
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Clos network

 Clos networks are defined by three integers n, m, and r

 n represents the number of sources which feed into each 
of r ingress stage crossbar switches
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Clos network

 Each ingress stage crossbar switch has m outlets, and 
there are m middle stage crossbar switches

 There is exactly one connection between each ingress 
stage switch and each middle stage switch
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Clos network

 There are r egress stage switches, each with m inputs 
and n outputs

 Each middle stage switch is connected exactly once to 
each egress stage switch
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Clos network

 Thus

 the ingress stage has r switches- - n inputs and m outputs

 The middle stage has m switches - r inputs and r outputs

 The egress stage has r switches - m inputs and n outputs
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Clos network

 The advantage of Clos network is that connection 
between a large number of input and output ports can be 
made by using only small-sized switches
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Strict-sense nonblocking Clos networks

 If m ≥ 2n−1, the Clos network is strict-sense nonblocking 
(Clos's paper 1953)

 This means that an unused input on an ingress switch can 
always be connected to an unused output on an egress 
switch, without having to re-arrange existing calls

 Assume that there is a free terminal on the input of an 
ingress switch, and this has to be connected to a free 
terminal on a particular egress switch

2016/2017Advanced and Parallel Architectures26



Strict-sense nonblocking Clos networks

 In the worst case, n−1 other calls are active on the ingress 
switch in question, and n−1 other calls are active on the 
egress switch in question

 Assume, also in the worst case, that each of these calls 
passes through a different middle-stage switch

 Hence in the worst case, 2n−2 of the middle stage 
switches are unable to carry the new call

 Therefore, to ensure strict-sense nonblocking operation, 
another middle stage switch is required, making a total of 
2n−1
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Rearrangeably nonblocking Clos networks

 If m ≥ n, the Clos network is rearrangeably nonblocking

 This means that an unused input on an ingress switch can 
always be connected to an unused output on an egress 
switch, but for this to take place, existing calls may have 
to be rearranged by assigning them to different centre 
stage switches in the Clos network

 To prove this, it is sufficient to consider m = n, with the 
Clos network fully utilised; that is, r×n calls in progress
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Rearrangeably nonblocking Clos networks

 The proof shows how any permutation of these r×n input 
terminals onto r×n output terminals may be broken down 
into smaller permutations which may each be 
implemented by the individual crossbar switches in a Clos 
network with m = n

 The proof uses Hall's marriage theorem

 Suppose there are r boys and r girls

 The theorem states that if every subset of k boys (for each 
k such that 0 ≤ k ≤ r) between them know k or more girls, 
then each boy can be paired off with a girl that he knows

 This is a (obvious) necessary condition for pairing to take 
place; and it is also sufficient
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Rearrangeably nonblocking Clos networks

 In the context of a Clos network, each boy represents an 
ingress switch, and each girl represents an egress switch

 A boy is said to know a girl if the corresponding ingress 
and egress switches carry the same call 

 Each set of k boys must know at least k girls because 
k ingress switches are carrying k×n calls and these cannot 
be carried by less than k egress switches
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Rearrangeably nonblocking Clos networks

 Hence each ingress switch can be paired off with an 
egress switch that carries the same call, via a one-to-one 
mapping

 These r calls can be carried by one middle-stage switch

 If this middle-stage switch is now removed from the Clos 
network, m is reduced by 1, and we are left with a smaller 
Clos network

 The process then repeats itself until m = 1, and every call 
is assigned to a middle-stage switch
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Network Topology
 Myrinet-2000 Clos Network for 128 hosts

Backplane of the  
M3-E128 Switch

http://myri.com
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Looping algorithm
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 Realizing permutations on a Benes network
 The algorithm starts from arbitrarily chosen input by arbitrarily setting the 

corresponding switch 
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected back to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input



Looping algorithm
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 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm

2016/2017Advanced and Parallel Architectures47

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1
0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm

2016/2017Advanced and Parallel Architectures50

7

6

5
4

3

2

1

0

7
6

5

4

3

2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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log N stage MIN equivalence
(and Layered Cross Product)
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Topological and functional equivalence

 There are two different concepts of equivalence:

 Topological equivalence: isomorphism

 Functional equivalence: capability of always performing the 
same set of assignments 

 Topological equivalence is different from functional 
equivalence:

 All rearrangeable MINs are functionally equivalent though not 
necessarily topologically equivalent

 Not rearrangeable N-MINs could be topologically equivalent 
but not functionally equivalent
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Topological equivalence

Bermond, Fourneau and Jean-Marie (1987) give the  
characterization of MINs topologically equivalent to the 
Reverse Baseline network. It is based on:

 the Banyan property 

 A MIN has the Banyan property if and only if for any input and 
any output there exists a unique path connecting them, passing 
through each stage once

2016/2017Advanced and Parallel Architectures54
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Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the  
characterization of MINs topologically equivalent to the 
Reverse Baseline network. It is based on:

 the P(∗, ∗) property 

 Property P(i,j) An N-MIN has property P(i, j) for 1 ≤ i ≤ j ≤ log N if 
the subgraph Gi,j induced by the nodes of the stage from i to j 
has exactly 2log N−1−j+i connected components

 Property P(*,*) An N-MIN has property P(∗, ∗) if and only if it 
satisfies P(i, j) for every ordered pair i, j such that 1 ≤ i ≤ j ≤ log N
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Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the  
characterization of MINs topologically equivalent to the 
Reverse Baseline network

Theorem All the MINs satisfying the Banyan Property and 
P(∗, ∗) are topologically equivalent to the Reverse Baseline

2016/2017Advanced and Parallel Architectures56
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Topological equivalence

 Another way to prove the equivalence of log N stage 
MINs – Calamoneri and  Massini (2004) – is based on the 
Layered Cross Product Even and Litman (1992)

 An l-layered graph, G = (V1, V2, . . . , Vl , E) consists of l layers of 
nodes, Vi is the set of nodes in layer i, where 1 ≤ i ≤ l; E is a set 
of edges connecting nodes of two adjacent layers

 The Layered Cross Product, G = G’⊗G’’, of two l-layered 
graphs G’ = (V’1, V’2, . . . , V’l, E’ ) and G’’ = (V’’1, V’’2, . . . , V’’l, 
E’’) is an l-layered graph G = (V1, V2, . . . , Vl , E) where Vi is the 
cartesian product of V’i and V’’i , 1 ≤ i ≤ l, and an edge <(u’, 
u’’),(v’, v’’)> belongs to E if and only if <u’ , v’> ∈ E’ and <u’’ , 
v’’> ∈ E’’. G’ and G’’ are called the first and second factor of G, 
respectively
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Topological equivalence

 The operation of decomposition in factors is the inverse 
operation of the LCP 

 Theorem Let G′ and G′′ be two s stage MINs, and let G′ 
decomposable as G′1 ⊗ G′2 . Then G′′ is topologically 
equivalent to G′ if and only if G′′ can be decomposed as 
G′1 ⊗ G′2

 Corollary Given two N-MINs G′ = G′1⊗G′2 and G′′ = 
G′′1⊗G′′2 , they are topologically equivalent if their 
factors are topologically equivalent
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Topological equivalence

 Lemma A MIN G satisfies the Banyan and P(∗, ∗) 
properties if and only if it can be decomposed as ∆ ⊗∇, 
where ∆ and ∇ denote binary trees with the root on the 
top and in the bottom, respectively

 Theorem A MIN G is decomposable as ∆ ⊗∇ if and only 
if G is topologically equivalent to the Reverse Baseline
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Topological equivalence
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Topological equivalence

 MINs consisting of log N stages such as Omega, Flip 
(Reverse Omega), Baseline and Reverse Baseline, 
Butterfly and Reverse Butterfly are all equivalent 
networks

 They have attractive features, but they are not 
rearrangeable
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Topological equivalence

 For this reason, MINs obtained by concatenating two 
logN stage MINs with the center stage overlapped, have 
been intensively studied

 Indeed, 2 log N − 1 is the theoretically minimum number 
of stages required for obtaining rearrangeable multistage 
interconnection networks
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2logN-1 stage MIN equivalence
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2logN-1 stage MIN equivalence

 The popular (2 log N − 1) stage Benes network is 
rearrangeable and the Looping algorithm provides a 
method and a proof for its rearrangeability

 Unfortunately the Looping algorithm can be used only on 
(2 log N − 1) stage symmetric MINs with recursive 
structure such as Baseline-Reverse Baseline and Butterfly-
Reverse Butterfly networks 

 Looping algorithm does not work on the Omega-Omega−1

or Double Baseline even if they are equivalent to the 
Benes network
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2logN-1 stage MIN equivalence

 It is typical to concatenate all the combinations of pairs of 
networks among Butterfly, Omega, Flip, Baseline, their 
reverses, etc. to obtain a new N-MIN

 Both the two log N stage MINs constituting a (2log N- 1) 
stage MIN can be decomposed as LCP of ∆ ⊗∇

 As a consequence, we obtain that the factors of (2log N-
1) stage MIN are the concatenation of a ∆ and a ∇ (roots 
merging) and of a ∇ and a ∆ (leaves merging), r
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2logN-1 stage MIN equivalence

 It is obvious how to merge the last layer of a ∇ with the 
first layer of a ∆, but there are many ways of merging the 
last layer of a ∆ and the first layer of a ∇ respectively
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2logN-1 stage MIN equivalence
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2logN-1 stage MIN equivalence

 Theorem The number of distinct equivalence classes of  
(2 logN - 1) MIN s is (log N − 1)!

 We can represent these classes representing the MINs 
using butterfly stages

 In particular we can represent the first half of the MIN as 
a butterfly and the second half by a permutation of 
butterfly stages (that are: log N -1)
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Classes for N=16


