Advanced Parallel Architecture

Lesson 12

Annalisa Massini - 2016/2017

Exercise 1

- Compute Area $\mathrm{A}_{\text {CLA }}$ and Time $\mathrm{T}_{\text {CLA }}$ for the 4-bit carrylookahead adder using the model for gate-count and gate-delay

Exercise 1

- Compute Area $\mathrm{A}_{\text {CLA }}$ and Time TCLA for the 4-bit carrylookahead adder using the model for gate-count and gate-delay
- Remember that:
- Any gate (but the EX-OR) counts as one gate for both area and delay $\rightarrow \mathrm{A}_{\text {gate }}$ and $\mathrm{T}_{\text {gate }}$
- An exclusive-OR gate counts as two elementary gates for both area and delay $\rightarrow A_{E X-O R}=2 \mathrm{~A}_{\text {gate }}$ and $\mathrm{T}_{\text {EX-OR }}=2 \mathrm{~T}_{\text {gate }}$
- An \boldsymbol{m}-input gate counts as $\boldsymbol{m}-1$ gates for area and $\log _{2} m$ gates for delay $\rightarrow A_{\text {m-gate }}=(m-1) A_{\text {gate }}$ and $T_{\text {m-gate }}=\log _{2} m T_{\text {gate }}$

Carry-Lookahead Adder

- The carry-lookahead adder uses the bits:

Carry Generate $\quad g_{i}=a_{i} b_{i}$
Carry propagate $\quad p_{i}=a_{i} \oplus b_{i}$

Then the expression of the carry is:

$$
c_{i+1}=a_{i} b_{i}+\left(a_{i} \oplus b_{i}\right) c_{i}=g_{i}+p_{i} c_{i}
$$

And the expression of the sum is:

$$
s_{i}=a_{i} \bar{b}_{i} \bar{c}_{i}+\bar{a}_{i} b_{i} \bar{c}_{i}+\bar{a}_{i} \bar{b}_{i} c_{i}+a_{i} b_{i} c_{i}=\left(a_{i} \oplus b_{i}\right) \oplus c_{i}=p_{i} \oplus c_{i}
$$

Carry-Lookahead Adder

If we consider 4 bits, we have that $c_{1}, c_{2}, c_{3}, c_{4}$, depend only on c_{0} :

$$
c_{1}=a_{0} b_{0}+\left(a_{0}+b_{0}\right) c_{0}=g_{0}+p_{0} c_{0}
$$

$$
c_{2}=a_{1} b_{1}+\left(a_{1}+b_{1}\right) c_{1}=g_{1}+p_{1} c_{1}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
$$

$$
c_{3}=a_{2} b_{2}+\left(a_{2}+b_{2}\right) c_{2}=g_{2}+p_{2} c_{2}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}
$$

$$
c_{4}=a_{3} b_{3}+\left(a_{3}+b_{3}\right) c_{3}=g_{3}+p_{3} c_{3}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1+} p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}
$$

$\mathbf{a}_{0} \mathbf{b}_{0}$

Carry-Lookahead Addition

- Structure of a 4 bit CLA
- A CLA requires one logic level to form p and g, two levels for the carries, and two for the sum, for total of five logic levels
- Unfortunately, a carrylookahead adder on n bits requires a fan-in of $n+1$ at the OR and at the rightmost AND gate

Carry-Lookahead Adder

If we consider 4 bits, we have that $c_{1}, c_{2}, c_{3}, c_{4}$, depend only on c_{0} :

- $c_{1}=g_{0}+p_{0} c_{0}$

$$
\begin{aligned}
& T_{c 1}=2 T_{\text {gate }} \\
& A_{c 1}=2 A_{\text {gate }}
\end{aligned}
$$

- $C_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} C_{0}$

$$
\mathrm{T}_{\mathrm{c} 2}=3 \mathrm{~T}_{\text {gate }}
$$

$$
A_{c 2}=5 A_{\text {gate }}
$$

- $\mathrm{C}_{3}=\mathrm{g}_{2}+\mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{0}+\mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{C}_{0}$

$$
\begin{aligned}
& T_{c 3}=4 T_{\text {gate }} \\
& A_{c 3}=9 A_{\text {gate }}
\end{aligned}
$$

- $c_{4}=g_{3}+p_{3} C_{3}=g_{3}+p_{3} g_{2}+p_{3} P_{2} g_{1}+p_{3} P_{2} p_{1} g_{0}+p_{3} P_{2} P_{1} P_{0} C_{0}$

$$
\begin{aligned}
& T_{c 4}=5 T_{\text {gate }} \\
& A_{c 4}=14 A_{\text {gate }}
\end{aligned}
$$

Carry-Lookahead Adder

- If we consider that:

Carry Generate $\quad g_{i}=a_{i} b_{i}$
Carry propagate $\quad p_{i}=a_{i} \oplus b_{i}$

$$
\begin{aligned}
& >\mathrm{T}_{g i}=\mathrm{T}_{\text {gate }} \text { and } \mathrm{A}_{g i}=\mathrm{A}_{\text {gate }} \\
& \mathrm{T}_{p i}=2 \mathrm{~T}_{\text {gate }} \text { and } \mathrm{A}_{p i}=2 \mathrm{~A}_{\text {gate }}
\end{aligned}
$$

The total is:

- $\mathrm{T}_{\text {CLA }}=2 \mathrm{~T}_{\text {gate }}+5 \mathrm{~T}_{\text {gate }}+2 \mathrm{~T}_{\text {gate }}=9 \mathrm{~T}_{\text {gate }}$
- $\mathrm{A}_{\text {CLA }}=12 \mathrm{~A}_{\text {gate }}+30 \mathrm{~A}_{\text {gate }}+8 \mathrm{~A}_{\text {gate }}=$

$$
=50 \mathrm{~A}_{\text {gate }}
$$

Carry-Lookahead Addition

- A 16-bit adder can be built from four 4-bit adders, and a 4bit carry look-ahead unit at the second level

- A 64-bit adder can be built from sixteen 4-bit adders, four 4-bit carry look-ahead units at the second level, and a single 4-bit carry look-ahead unit at the third level

Pipelined Addition

Pipelined Unsigned Multiplication

Pipelined Signed Multiplication

