Advanced Parallel ArchitectureLesson 12

Annalisa Massini - 2016/2017

Exercise 1

 Compute Area A_{CLA} and Time T_{CLA} for the 4-bit carrylookahead adder using the model for gate-count and gate-delay

Exercise 1

 Compute Area A_{CLA} and Time T_{CLA} for the 4-bit carrylookahead adder using the model for gate-count and gate-delay

Remember that:

- ▶ Any gate (but the EX-OR) counts as one gate for both area and delay \rightarrow A_{gate} and T_{gate}
- ► An exclusive-OR gate counts as two elementary gates for both area and delay \rightarrow $A_{EX-OR} = 2A_{gate}$ and $T_{EX-OR} = 2T_{gate}$
- ▶ An *m*-input gate counts as m 1 gates for area and log_2m gates for delay \rightarrow $A_{m\text{-gate}} = (m-1)A_{gate}$ and $T_{m\text{-gate}} = log_2m$ T_{gate}

The carry-lookahead adder uses the bits:

Carry Generate
$$g_i = a_i b_i$$

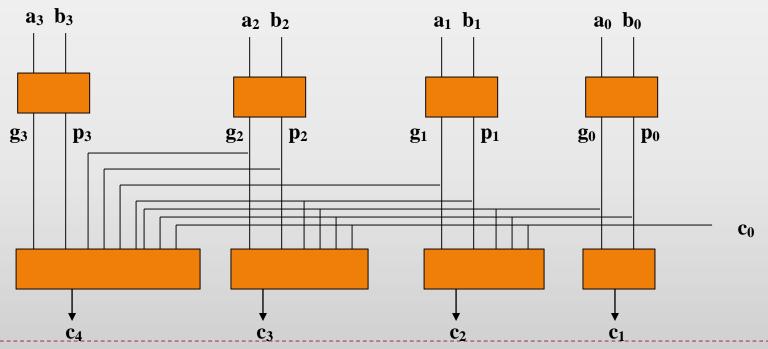
Carry propagate
$$p_i = a_i \oplus b_i$$

Then the expression of the carry is:

$$c_{i+1} = a_i b_i + (a_i \oplus b_i) c_i = g_i + p_i c_i$$

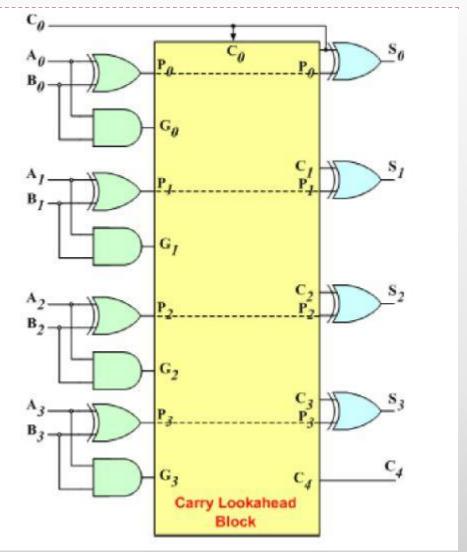
And the expression of the sum is:

$$s_i = a_i \overline{b_i} \overline{c_i} + \overline{a_i} \overline{b_i} \overline{c_i} + \overline{a_i} \overline{b_i} \overline{c_i} + \overline{a_i} \overline{b_i} c_i + a_i b_i c_i = (a_i \oplus b_i) \oplus c_i = p_i \oplus c_i$$


If we consider 4 bits, we have that c_1 , c_2 , c_3 , c_4 , depend only on c_0 :

$$c_1 = a_0b_0 + (a_0+b_0)c_0 = g_0 + p_0c_0$$

$$c_2 = a_1b_1 + (a_1+b_1)c_1 = g_1 + p_1c_1 = g_1 + p_1g_0 + p_1p_0c_0$$


$$c_3 = a_2b_2 + (a_2+b_2)c_2 = g_2 + p_2c_2 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

$$c_4 = a_3b_3 + (a_3+b_3)c_3 = g_3 + p_3c_3 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$$

Carry-Lookahead Addition

- Structure of a 4 bit CLA
- A CLA requires one logic level to form p and g, two levels for the carries, and two for the sum, for total of five logic levels
- Unfortunately, a carrylookahead adder on n bits requires a fan-in of n + 1 at the OR and at the rightmost AND gate

If we consider 4 bits, we have that c_1 , c_2 , c_3 , c_4 , depend only on c_0 :

•
$$c_1 = g_0 + p_0c_0$$

 $T_{c1} = 2T_{gate}$
 $A_{c1} = 2A_{gate}$
• $c_2 = g_1 + p_1g_0 + p_1p_0c_0$

•
$$c_2 = g_1 + p_1g_0 + p_1p_0c_0$$

 $T_{c2} = 3T_{gate}$
 $A_{c2} = 5A_{gate}$

•
$$c_3 = g_2 + p_2g_{1+} p_2p_1g_{0+} p_2p_1p_0c_0$$

 $T_{c3} = 4T_{gate}$
 $A_{c3} = 9A_{gate}$

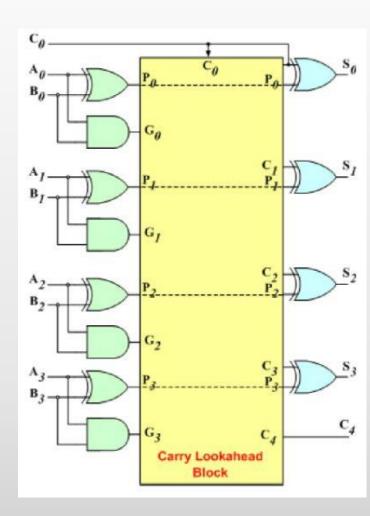
•
$$c_4 = g_3 + p_3c_3 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$$

 $T_{c4} = 5T_{gate}$
 $A_{c4} = 14A_{gate}$

• If we consider that:

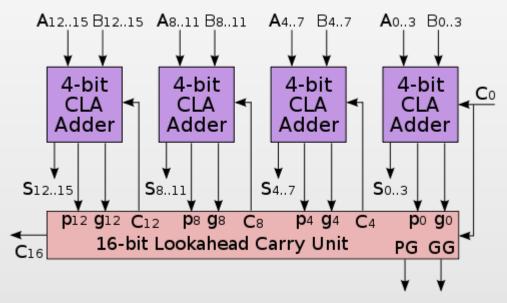
Carry Generate
$$g_i = a_i b_i$$

Carry propagate $p_i = a_i \oplus b_i$

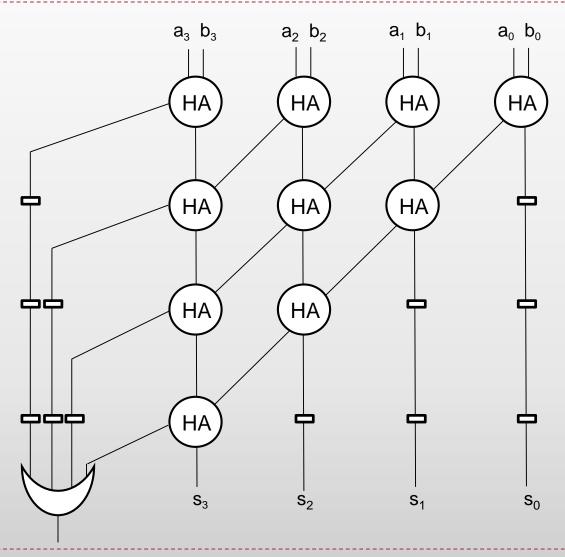

$$ightharpoonup T_{gi} = T_{gate}$$
 and $A_{gi} = A_{gate}$

$$T_{pi} = 2T_{gate}$$
 and $A_{pi} = 2A_{gate}$

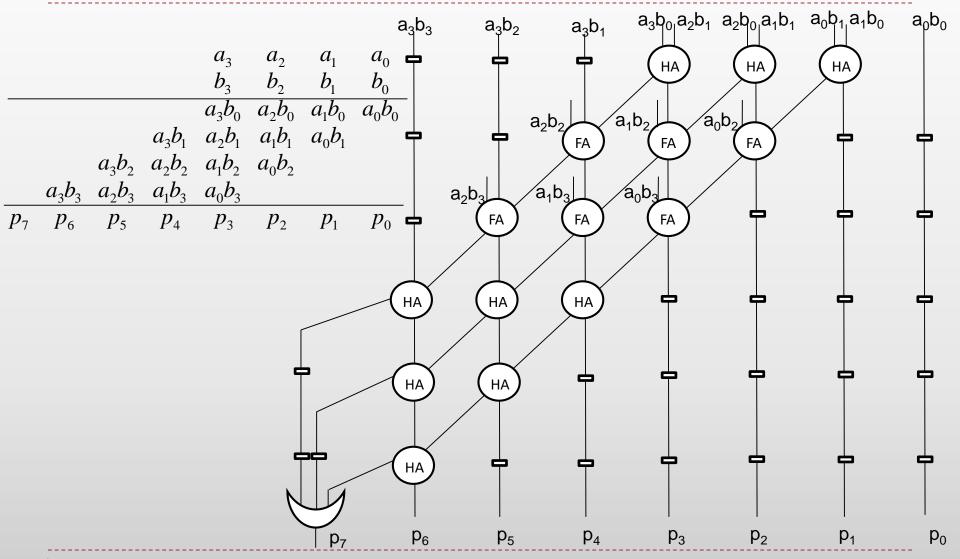
The total is:


$$T_{CLA} = 2T_{gate} + 5T_{gate} + 2T_{gate} = 9T_{gate}$$

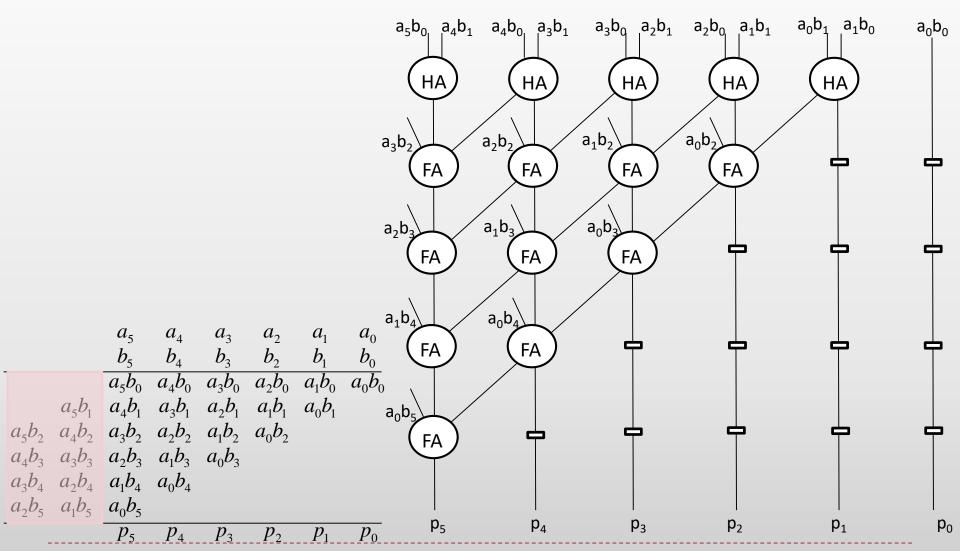
$$A_{CLA} = 12A_{gate} + 30A_{gate} + 8A_{gate} = 50A_{gate}$$


Carry-Lookahead Addition

A 16-bit adder can be built from four 4-bit adders, and a 4bit carry look-ahead unit at the second level



A 64-bit adder can be built from sixteen 4-bit adders, four 4-bit carry look-ahead units at the second level, and a single 4-bit carry look-ahead unit at the third level


Pipelined Addition

Pipelined Unsigned Multiplication

Pipelined Signed Multiplication

