
Advanced Parallel Architecture
Lesson 10

Annalisa Massini - 2016/2017

Instruction-Level Parallelism

Hennessy, Patterson

Computer architecture A quantitive approach

Section 3.1

2016/2017Advanced and Parallel Architectures2

Instruction-Level Parallelism

 All processors since about 1985 use pipelining to overlap
the execution of instructions and improve performance

 This potential overlap among instructions is called
instruction-level parallelism (ILP), since the instructions
can be evaluated in parallel

 There is a wide range of techniques for extending the
basic pipelining concepts by increasing the amount of
parallelism exploited among instructions

2016/2017Advanced and Parallel Architectures3

Instruction-Level Parallelism

 There are two largely separable approaches to exploiting
ILP:

 an approach that relies on hardware to help discover and
exploit the parallelism dynamically

 an approach that relies on software technology to find
parallelism statically at compile time

 In the past few years, many of the techniques
developed for one approach have been exploited
within a design relying primarily on the other

2016/2017Advanced and Parallel Architectures4

Instruction-Level Parallelism

 It is interesting to discuss:

 features of both programs and processors that limit the
amount of parallelism that can be exploited among
instructions,

 the critical mapping between program structure and
hardware structure, which is key to understanding whether a
program property will actually limit performance and under
what circumstances

 The CPI (cycles per instruction) for a pipelined processor is
the sum of the base CPI and contributions from stalls:

Pipeline CPI = Ideal pipeline CPI +

+ Structural stalls + Data hazard stalls + Control stalls

2016/2017Advanced and Parallel Architectures5

Instruction-Level Parallelism

 The amount of parallelism available within a basic block -
code sequence with no branches in except to the entry and
no branches out except at the exit - is quite small

 To obtain substantial performance enhancements, we
must exploit ILP across multiple basic blocks

 The simplest and most common way to increase the ILP is
to exploit parallelism among iterations of a loop

2016/2017Advanced and Parallel Architectures6

Instruction-Level Parallelism

 This type of parallelism is often called loop-level
parallelism

 Example: loop that adds two 1000-element arrays
for (i=0; i<=999; i=i+1)

x[i] = x[i] + y[i];

 It is completely parallel

 Every iteration of the loop can overlap with any other
iteration

2016/2017Advanced and Parallel Architectures7

Instruction-Level Parallelism

 Techniques for converting loop-level parallelism into
instruction-level parallelism work by unrolling the loop
either statically (compiler) or dynamically (hardware)

 An alternative method for exploiting loop-level parallelism
is the use of SIMD in both vector processors and GPUs

 A SIMD instruction exploits data-level parallelism by operating
on a small to moderate number of data items in parallel
(typically two to eight)

 A vector instruction exploits data-level parallelism by operating
on many data items in parallel using both parallel execution
units and a deep pipeline

2016/2017Advanced and Parallel Architectures8

Instruction-Level Parallelism

 Example: loop that adds two 1000-element arrays
for (i=0; i<=999; i=i+1)

x[i] = x[i] + y[i];

 This code sequence, requires seven instructions per
iteration (two loads, an add, a store, two address updates,
and a branch) for a total of 7000 instructions

 It might execute in one-quarter as many instructions in a SIMD
architecture where four data items are processed per
instruction

 On vector processors, this sequence might take only four
instructions: two instructions to load the vectors x and y from
memory, one instruction to add the two vectors, and an
instruction to store back the result vector

2016/2017Advanced and Parallel Architectures9

Data Dependences and Hazards

 Determining how one instruction depends on another is
critical to determining how much parallelism exists in a
program and how that parallelism can be exploited

 To exploit instruction-level parallelism we must determine
which instructions can be executed in parallel
 If two instructions are parallel, they can execute simultaneously in

a pipeline of arbitrary depth without causing any stalls, assuming
the pipeline has sufficient resources (and hence no structural
hazards exist)

 If two instructions are dependent, they are not parallel and must
be executed in order

 The key is to determine whether an instruction is
dependent on another instruction

2016/2017Advanced and Parallel Architectures10

Data Dependences and Hazards

 There are three different types of dependences:

 data dependences (also called true data dependences)

 name dependences

 control dependences

 An instruction j is data dependent on instruction i if either
of the following holds:

 Instruction i produces a result that may be used by
instruction j

 Instruction j is data dependent on instruction k, and
instruction k is data dependent on instruction i

2016/2017Advanced and Parallel Architectures11

Data Dependences

 The second condition simply states that one instruction is
dependent on another if there exists a chain of
dependences of the first type between the two
instructions

 This dependence chain can be as long as the entire
program

 Note that a dependence within a single instruction (such
as ADDD R1,R1,R1) is not considered a dependence

2016/2017Advanced and Parallel Architectures12

Data Dependences

 Example: MIPS code sequence that increments a vector of
values in memory (starting at 0(R1) and with the last
element at 8(R2)) by a scalar in register F2

Loop: L.D F0,0(R1) ;F0=array element

ADD.D F4,F0,F2 ;add scalar in F2

S.D F4,0(R1) ;store result

DADDUI R1,R1,#-8 ;decrement pointer 8 bytes

BNE R1,R2,LOOP ;branch R1!=R2

2016/2017Advanced and Parallel Architectures13

Data Dependences

 Example
Loop: L.D F0,0(R1) ;F0=array element

ADD.D F4,F0,F2 ;add scalar in F2

S.D F4,0(R1) ;store result

DADDUI R1,R1,#-8 ;decrement pointer 8 bytes

BNE R1,R2,LOOP ;branch R1!=R2

The data dependences in this code sequence involve:

2016/2017Advanced and Parallel Architectures14

integer data
DADDIU R1,R1,#-8

;decrement pointer

;8 bytes (per DW)

BNE R1,R2,Loop

;branch R1!=R2

floating-point data
Loop: L.D F0,0(R1)

;F0=array element

ADD.D F4,F0,F2

;add scalar in F2

S.D F4,0(R1)

;store result

Data Dependences

 In both of the above dependent sequences, as shown by
the arrows, each instruction depends on the previous one

 The arrows show the order that must be preserved for
correct execution

 The arrow points from an instruction that must precede
the instruction that the arrowhead points to

 If two instructions are data dependent, they must execute
in order and cannot execute simultaneously or be
completely overlapped

2016/2017Advanced and Parallel Architectures15

Data Dependences

 The dependence implies that there would be a chain of
one or more data hazards between the two instructions

 Dependences are a property of programs

 Whether a given dependence results in an actual hazard
being detected and whether that hazard actually causes a
stall are properties of the pipeline organization

 This difference is critical to understanding how
instruction-level parallelism can be exploited

2016/2017Advanced and Parallel Architectures16

Data Dependences

 A dependence can be overcome in two different ways:

 maintaining the dependence but avoiding a hazard

 eliminating a dependence by transforming the code

 Scheduling the code is the primary method used to avoid
a hazard without altering a dependence, and such
scheduling can be done both by the compiler and by the
hardware

2016/2017Advanced and Parallel Architectures17

Data Dependences

 A data value may flow between instructions either
through registers or through memory locations

 When the data flow occurs in a register, detecting the
dependence

 Is straightforward since the register names are fixed in the
instructions

 Gets more complicated when branches intervene and
correctness concerns force a compiler or hardware to be
conservative

2016/2017Advanced and Parallel Architectures18

Data Dependences

 Dependences that flow through memory locations are
more difficult to detect

 Two addresses may refer to the same location but look
different

 For example, 100(R4) and 20(R6) may be identical memory
addresses

 In addition, the effective address of a load or store may
change from one execution of the instruction to another
(so that 20(R4) and 20(R4) may be different), further
complicating the detection of a dependence

2016/2017Advanced and Parallel Architectures19

Name Dependences

 The second type of dependence is a name dependence

 A name dependence occurs when two instructions use the
same register or memory location, name, but there is no flow
of data between instructions associated with that name

 There are two types of name dependences between an
instruction i that precedes instruction j in program order:

 An antidependence between instruction i and instruction j occurs when
instruction j writes a register or memory location that instruction i reads.
The original ordering must be preserved to ensure that i reads the
correct value

 An output dependence occurs when instruction i and instruction j write
the same register or memory location. The ordering between the
instructions must be preserved to ensure that the value finally written
corresponds to instruction j

2016/2017Advanced and Parallel Architectures20

Name Dependences

 Both antidependences and output dependences are
name dependences, as opposed to true data
dependences, since there is no value being transmitted
between the instructions

 Solution Instructions involved in a name dependence
can execute simultaneously or be reordered, if the name
used in the instructions is changed so the instructions do
not conflict

 Renaming can be more easily done for register operands,
where it is called register renaming, and can be done
either statically (compiler) or dynamically (hardware)

2016/2017Advanced and Parallel Architectures21

Data Hazards

 A hazard exists whenever:

 there is a name or data dependence between instructions

 instructions are close enough that the overlap during execution
would change the order of access to the operand involved in
the dependence

 Because of the dependence, we must preserve the
program order  order that the instructions would
execute in if executed sequentially one at a time as
determined by the original source program

 The goal of both software and hardware techniques is to
exploit parallelism by preserving program order only
where it affects the outcome of the program

2016/2017Advanced and Parallel Architectures22

Data Hazards

 Detecting and avoiding hazards ensures that necessary
program order is preserved

 Data hazards may be classified depending on the order of
read and write accesses in the instructions

 By convention, the hazards are named by the ordering in
the program that must be preserved by the pipeline

 Consider two instructions i and j, with i preceding j in
program order

2016/2017Advanced and Parallel Architectures23

Data Hazards

RAW (read after write)

Two instructions i and j, with i preceding j in program order

 j tries to read a source before i writes it, so j incorrectly
gets the old value

 This hazard is the most common type and corresponds to
a true data dependence

 Program order must be preserved to ensure that j receives
the value from i

2016/2017Advanced and Parallel Architectures24

Data Hazards

WAW (write after write)

Two instructions i and j, with i preceding j in program order

 j tries to write an operand before it is written by i

 The writes end up being performed in the wrong order,
leaving the value written by i rather than the value written
by j in the destination

 This hazard corresponds to an output dependence

 WAW hazards are present only in pipelines that write in
more than one pipe stage or allow an instruction to
proceed even when a previous instruction is stalled

2016/2017Advanced and Parallel Architectures25

Data Hazards

WAR (write after read)

Two instructions i and j, with i preceding j in program order

 j tries to write a destination before it is read by i, so i
incorrectly gets the new value

 A WAR hazard arises from an antidependence

 WAR hazards

 cannot occur in most static issue pipelines —deeper pipelines or
floating-point pipelines  reads are early and writes are late

 occurs either when there are some instructions that write
results early in the instruction pipeline and other instructions
that read a source late in the pipeline, or when instructions are
reordered 2016/2017Advanced and Parallel Architectures26

Control Dependences

 A control dependence determines the ordering of an
instruction i with respect to a branch instruction so that
instruction i is executed in correct program order and only
when it should be

 Every instruction, except for those in the first basic block
of the program, is control dependent on some set of
branches, and, in general, these control dependences
must be preserved to preserve program order

 One of the simplest examples of a control dependence is
the dependence of the statements in the then part of an if
statement on the branch

2016/2017Advanced and Parallel Architectures27

Data Dependences and Hazards

Control dependences

 In general, two constraints are imposed by control
dependences:

 An instruction that is control dependent on a branch cannot be
moved before the branch so that its execution is no longer
controlled by the branch. For example, we cannot take an
instruction from the then portion of an if statement and move
it before the if statement

 An instruction that is not control dependent on a branch
cannot be moved after the branch so that its execution is
controlled by the branch. For example, we cannot take a
statement before the if statement and move it into the then
portion

2016/2017Advanced and Parallel Architectures28

Loop-Level Parallelism

Hennessy, Patterson

Computer architecture A quantitive approach

Section 4.5

2016/2017Advanced and Parallel Architectures29

Detecting and Enhancing Loop-Level Parallelism

 Loops in programs are the fountainhead of many of the
types of parallelism

 Compiler technology allows discovering the amount of
parallelism that we can exploit in a program as well as
hardware support for these compiler techniques

 We can define:

 when a loop is parallel (or vectorizable)

 how dependence can prevent a loop from being parallel

 techniques for eliminating some types of dependences

 Finding and manipulating loop-level parallelism is critical
to exploiting both DLP and TLP, as well as the more
aggressive static ILP approaches

2016/2017Advanced and Parallel Architectures30

Detecting and Enhancing Loop-Level Parallelism

 Loop-level parallelism is normally analyzed at the source
level or close to it, while most analysis of ILP is done once
instructions have been generated by the compiler

 Loop-level analysis involves determining what
dependences exist among the operands in a loop across
the iterations of that loop

 We now consider only data dependences, which arise
when an operand is written at some point and read at a
later point

 Name dependences also exist and may be removed by the
renaming techniques

2016/2017Advanced and Parallel Architectures31

Detecting and Enhancing Loop-Level Parallelism

 The analysis of loop-level parallelism focuses on
determining whether data accesses in later iterations are
dependent on data values produced in earlier iterations

 Such dependence is called a loop-carried dependence

 Examples that have no loop-carried dependences are
loop-level parallel

2016/2017Advanced and Parallel Architectures32

Detecting and Enhancing Loop-Level Parallelism

 To see that a loop is parallel, let us first look at the source
representation:
for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

 In this loop, the two uses of x[i] are dependent, but this
dependence is within a single iteration and is not loop
carried

 There is a loop-carried dependence between successive
uses of i in different iterations

 This dependence involves an induction variable that can
be easily recognized and eliminated

2016/2017Advanced and Parallel Architectures33

Detecting and Enhancing Loop-Level Parallelism

 Dependences involving induction variables can be
eliminated by loop unrolling

 Finding loop-level parallelism involves recognizing
structures such as:

 Loops

 Array references

 Induction variable computations

 The compiler can do this analysis more easily at or near
the source level, as opposed to the machine-code level

2016/2017Advanced and Parallel Architectures34

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

 Assume that A, B, and C are distinct, nonoverlapping
arrays

 What are the data dependences among the statements S1
and S2 in the loop?

2016/2017Advanced and Parallel Architectures35

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

 There are two different dependences:

 S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1], which is read in iteration i+1. The
same is true of S2 for B[i] and B[i+1]

2016/2017Advanced and Parallel Architectures36

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

 There are two different dependences:

 S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1], which is read in iteration i+1. The
same is true of S2 for B[i] and B[i+1]

 S2 uses the value A[i+1] computed by S1 in the same iteration

 These two dependences are different and have different
effects

2016/2017Advanced and Parallel Architectures37

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

 To see how they differ, let’s assume that only one of these
dependences exists at a time

 Because the dependence of statement S1 is on an earlier
iteration of S1, this dependence is loop carried

 This dependence forces successive iterations of this loop
to execute in series

2016/2017Advanced and Parallel Architectures38

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

 The second dependence (S2 depending on S1) is within an
iteration and is not loop carried

 Thus, if this were the only dependence, multiple iterations
of the loop could execute in parallel, as long as each pair
of statements in an iteration were kept in order

2016/2017Advanced and Parallel Architectures39

Detecting and Enhancing Loop-Level Parallelism

 Example 2 - It is also possible to have a loop-carried
dependence that does not prevent parallelism
for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

 What are the dependences between S1 and S2?

 Is this loop parallel?

 If not, show how to make it parallel

2016/2017Advanced and Parallel Architectures40

Detecting and Enhancing Loop-Level Parallelism

 Example 2
for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

 Statement S1 uses the value assigned in the previous
iteration by statement S2, so there is a loop-carried
dependence between S2 and S1

 But this loop can be made parallel

 Unlike the earlier loop, this dependence is not circular;
neither statement depends on itself, and although S1
depends on S2, S2 does not depend on S1

2016/2017Advanced and Parallel Architectures41

Detecting and Enhancing Loop-Level Parallelism

 Example 2
for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

 A loop is parallel if it can be written without a cycle in the
dependences, since the absence of a cycle means that the
dependences give a partial ordering on the statements

 Although there are no circular dependences in the above
loop, it must be transformed to conform to the partial
ordering and expose the parallelism

2016/2017Advanced and Parallel Architectures42

Detecting and Enhancing Loop-Level Parallelism

 Example 2
for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

 These two observations allow us to replace the loop
above with the following code sequence:
A[0] = A[0] + B[0];

for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[100] = C[99] + D[99];

2016/2017Advanced and Parallel Architectures43

Detecting and Enhancing Loop-Level Parallelism

 We can observe that the analysis needs to begin by
finding all loop-carried dependences

 This dependence information can be inexact, in the sense
that it tells us that such dependence may exist

 Consider the following example:
for (i=0;i<100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

2016/2017Advanced and Parallel Architectures44

Detecting and Enhancing Loop-Level Parallelism

 Example:
for (i=0;i<100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

 The second reference to A in this example need not be
translated to a load instruction, since we know that the
value is computed and stored by the previous statement

 Hence, the second reference to A can simply be a
reference to the register into which A was computed

2016/2017Advanced and Parallel Architectures45

Detecting and Enhancing Loop-Level Parallelism

 Example:
for (i=0;i<100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

 Performing this optimization requires knowing that the
two references are always to the same memory address
and that there is no intervening access to the same
location

 Normally, data dependence analysis only tells that one
reference may depend on another

 A more complex analysis is required to determine that two
references must be to the exact same address

2016/2017Advanced and Parallel Architectures46

Detecting and Enhancing Loop-Level Parallelism

 Example:
for (i=0;i<100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

 In this example, a simple version of this analysis suffices,
since the two references are in the same basic block

2016/2017Advanced and Parallel Architectures47

Detecting and Enhancing Loop-Level Parallelism

Finding Dependences

 Finding the dependences in a program is important both:

 To determine which loops might contain parallelism

 To eliminate name dependences

 How does the compiler detect dependences in general?

 Nearly all dependence analysis algorithms work on the
assumption that array indices are affine:

 a one-dimensional array index is affine if it can be written in
the form a × i + b, where a and b are constants and i is the
loop index variable

2016/2017Advanced and Parallel Architectures48

Detecting and Enhancing Loop-Level Parallelism

Finding Dependences

 Determining whether there is a dependence between two
references to the same array in a loop is equivalent to
determining whether two affine functions can have the
same value for different indices between the bounds of
the loop

 For example, suppose we have stored to an array element
with index value a × i + b and loaded from the same array
with index value c × i + d, where i is the for-loop index
variable that runs from m to n

2016/2017Advanced and Parallel Architectures49

Detecting and Enhancing Loop-Level Parallelism

Finding Dependences

 A dependence exists if two conditions hold:

 There are two iteration indices, j and k, that are both within
the limits of the for loop, that is m<=j<=n, m<=k<=n

 The loop stores into an array element indexed by a × j + b and
later fetches from that same array element when it is indexed
by c × k + d, that is a × j + b = c × k + d

 In general, we cannot determine whether dependence
exists at compile time

 If a program contain primarily simple indices where a, b,
c, and d are all constants, it is possible to devise
reasonable compile time tests for dependence

2016/2017Advanced and Parallel Architectures50

Detecting and Enhancing Loop-Level Parallelism

Finding Dependences

 As an example, a simple and sufficient test for the
absence of a dependence is the greatest common divisor
(GCD) test

 It is based on the observation that if a loop-carried
dependence exists, then GCD (c,a) must divide (d − b).
(Recall that an integer, x, divides another integer, y, if we
get an integer quotient when we do the division y/x and
there is no remainder)

2016/2017Advanced and Parallel Architectures51

Detecting and Enhancing Loop-Level Parallelism

Finding Dependences

 Example Use the GCD test to determine whether
dependences exist in the following loop:
for (i=0; i<100; i=i+1) {

X[2*i+3] = X[2*i] * 5.0;

}

 Answer Given the values a = 2, b = 3, c = 2, and d = 0,
then GCD(a,c) = 2, and d − b = −3

 Since 2 does not divide −3, no dependence is possible

 The GCD test is sufficient to guarantee that no
dependence exists; however, there are cases where the
GCD test succeeds but no dependence exists

2016/2017Advanced and Parallel Architectures52

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

Y[i] = X[i] / c; /* S1 */

X[i] = X[i] + c; /* S2 */

Z[i] = Y[i] + c; /* S3 */

Y[i] = c - Y[i]; /* S4 */

}

 This loop has multiple types of dependences

 Find all the true dependences, output dependences, and
antidependences, and eliminate the output dependences
and antidependences by renaming

2016/2017Advanced and Parallel Architectures53

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

Y[i] = X[i] / c; /* S1 */

X[i] = X[i] + c; /* S2 */

Z[i] = Y[i] + c; /* S3 */

Y[i] = c - Y[i]; /* S4 */

}

 The following dependences exist among the four
statements:

 1) There are true dependences from S1 to S3 and from S1 to S4
because of Y[i]. These are not loop carried, so they do not
prevent the loop from being considered parallel. These
dependences will force S3 and S4 to wait for S1 to complete

2016/2017Advanced and Parallel Architectures54

Detecting and Enhancing Loop-Level Parallelism

 Example
for (i=0; i<100; i=i+1) {

Y[i] = X[i] / c; /* S1 */

X[i] = X[i] + c; /* S2 */

Z[i] = Y[i] + c; /* S3 */

Y[i] = c - Y[i]; /* S4 */

}

 The following dependences exist among the four
statements:

 2) There is an antidependence from S1 to S2, based on X[i]

 3) There is an antidependence from S3 to S4 for Y[i]

 4) There is an output dependence from S1 to S4, based on Y[i]

2016/2017Advanced and Parallel Architectures55

Detecting and Enhancing Loop-Level Parallelism

 The following version of the loop eliminates these false (or
pseudo) dependences
for (i=0; i<100; i=i+1 {

T[i] = X[i] / c; /* Y renamed to T to remove

output dependence */

X1[i] = X[i] + c; /* X renamed to X1 to remove

antidependence */

Z[i] = T[i] + c; /* Y renamed to T to remove

antidependence */

Y[i] = c - T[i];

}

 After the loop, the variable X has been renamed X1

 In code that follows the loop, the compiler can simply replace
the name X by X1

2016/2017Advanced and Parallel Architectures56

Detecting and Enhancing Loop-Level Parallelism

Eliminating Dependent Computations

 As mentioned above, one of the most important forms of
dependent computations is a recurrence

 A dot product is a perfect example of a recurrence:
for (i=9999; i>=0; i=i-1)

sum = sum + x[i] * y[i];

 This loop is not parallel because it has a loop-carried
dependence on the variable sum

 We can transform it to a set of loops, one completely
parallel and the other partly parallel

2016/2017Advanced and Parallel Architectures57

Detecting and Enhancing Loop-Level Parallelism

Eliminating Dependent Computations

 The first loop will execute the completely parallel portion of
this loop:
for (i=9999; i>=0; i=i-1)

sum[i] = x[i] * y[i];

 The sum has been expanded from a scalar into a vector
quantity (a transformation called scalar expansion)

 Then we do the reduce step, which sums up the elements of
the vector:
for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];

2016/2017Advanced and Parallel Architectures58

