Welcome to the <Fisica3 web

Available Information

Complementi di Fisica/Topics in Physics: _an Introduction to the Physics of Quantum Computing_

Classroom Code: yzovdws

Laurea Magistrale in Informatica, A.A. 2023-2024

Docente: Piero Rapagnani

Schedule of Class is: Wednesday 8:00-11:00 Aula S1; Friday 16:00-18:00 Aula T1

Slides of the Lectures will be provided during the course.



Links to Topics in Physics Lectures Recordings and Slides for AA 2020-21

TiP Lecture 3 2021_03_01 Classical EM 1

TiP Lecture 4 2021_03_02 EM Waves 1

TiP Lecture 5 2021_03_08 EM Waves 2

----------------------------------------------------------------------------------------------

Links to Topics in Physics Lectures Recordings and Slides for AA 2019-20

TiP Lecture 4 2020_03_09 The Time Independent Schroedinger Equation (recording 797 MB)

TiP Lecture 5 2020_03_12 Solutions of Schroedinger Equation (recording 96 MB)

TiP Lecture 5 2020_03_12 (slides 27 MB)

TiP Lecture 6 2020_03_16 Statistical Physics (recording 70 MB)

TiP Lecture 6 2020_03_16 (slides 16 MB)

TiP Lecture 7 2020_03_19 Principles of Quantum Mechanics (recording 111 MB)

TiP Lecture 7 2020_03_19 (slides 8 MB)

TiP Lecture 8 2020_03_23 Spin States and Operators (slides 2 MB)

TiP Lecture 8 2020_03_23 (recording 1.18 GB)

TiP Lecture 9 2020_03_26 Eigenvalues and Eigenvectors, Time Evolution (slides 5 MB)

TiP Lecture 9 2020_03_26 (recording 112 MB)

TiP Lecture 10 2020_03_30 The General Uncertainty Principle (slides 5 MB)

TiP Lecture 10 2020_03_30 (recording 87 MB)

TiP Lecture 11 2020_04_02 Tensor Products and Entangled States (slides 5 MB)

TiP Lecture 11 2020_04_02 (recording 90 MB)

TiP Lecture 12 2020_04_02 Outer Products and Density Matrices (slides 8.5 MB)

TiP Lecture 12 2020_04_02 (recording 75 MB)

TiP Lecture 13 2020_04_16 Density Matrices and Entangled States (slides 1.6 MB)

TiP Lecture 13 2020_04_16 (recording 107 MB)

TiP Lecture 14 2020_04_20 Dense Coding and Teleportation (slides 3.7 MB)

TiP Lecture 14 2020_04_20 (recording 79 MB)

TiP Lecture 15 2020_04_23 Particle in a Box as a Quantum Computer (slides 3.7 MB)

TiP Lecture 15 2020_04_23 (recording - 740 MB)

TiP Lecture 16 2020_04_27 Quantum Harmonic Oscillator QC (slides 14.2 MB)

TiP Lecture 16 2020_04_27 (recording - 71 MB)

TiP Lecture 17 2020_04_30 Optical Photons Quantum Computer (slides 10.7 MB)

TiP Lecture 17 2020_04_30 (recording - 94 MB)

TiP Lecture 18 2020_05_04 Optical Cavities and Ion Traps QC (slides 3.3 MB)

TiP Lecture 18 2020_05_04 (recording - 103 MB)

TiP Lecture 19 2020_05_07 Josephson Junction QC (slides 6.4 MB)

TiP Lecture 19 2020_05_07 (recording - 156 MB)

TiP Lecture 20 2020_05_11 The Transmon and Google QC (slides 34 MB)

TiP Lecture 20 2020_05_11 (recording - 108 MB)

TiP Lecture 21 2020_05_14 The Quantum Fourier Transform (slides 37 MB)

TiP Lecture 21 2020_05_14 (recording - 134 MB)

TiP Lecture 22 2020_05_18 Shor's Algorithm (slides 12 MB)

TiP Lecture 22 2020_05_18 (recording - 83 MB)

TiP Lecture 23 2020_05_21 Grover's Algorithm (slides 15 MB)

TiP Lecture 23 2020_05_21 (recording - 135 MB)

TiP Lecture 24 2020_05_25 QC Architectures (slides 3.5 MB)

TiP Lecture 24 2020_05_25 (recording - 136 MB)

TiP Lecture 25 2020_05_28 Quantum Error Correction Codes (slides 11 MB)

TiP Lecture 25 2020_05_28 Quantum Error Correction Codes & Cryptography (rec. - 226 MB)

Avvisi - Communications

-----

Informazioni sul docente - Teacher's data

<center>

Piero Rapagnani Dipartimento di Fisica Edificio Marconi - Lab G23 - Stanza 39 06 49914210 piero.rapagnani AT roma1.infn.it
</center>

Orario delle lezioni

Obiettivi formativi

Il corso ha i seguenti argomenti principali:

- Un'introduzione alla meccanica quantistica.

- Un'introduzione al calcolo quantistico e alle prospettive di realizzazione.

- Descrizione di alcuni Qbit in corso di sviluppo.

- Esempi di algoritmi quantistici.

Educational goals

This course deals with the following main topics:

- Introduction to Quantum Mechanics

- Introduction to Quantum Computing

- Physics of some kinds of Qbit under development

- Instances of algorithms in Quantum Computing


Propedeuticità

E’ preferita una conoscenza di base delle proprietà del campo elettromagnetico. Verrà comunque fornita una breve introduzione all’elettromagnetismo classico all’inizio del corso.

Required Knowledge

A basic knowledge of the classic theory of electromagnetic fields is advisable. However, at the beginning of the course a brief overiview of classical electromagnetism will be given.

Modalità d'esame

Le modalità d'esame per gli studenti del corso sono le seguenti:

- DUE tesine: una tesina che tratti di fisica quantistica, ed una che tratti argomenti del calcolo quantistico, scelte dallo studente tra gli argomenti del corso riportati di seguito, insieme con i capitoli relativi nei libri di testo proposti. Lo studente può utilizzare altri libri di testo, citando la fonte. Non si richiede la presentazione di relazioni scritte, ma le tesine vanno illustrate da presentazioni in ppt, per una durata complessiva di circa 40 minuti. Lo studente può presentare argomenti non presenti nella lista, previa mia approvazione via email.

Si prega di inviare le presentazioni via mail almeno 4 giorni prima di dare l'esame, in modo che possa verificare se sono adeguate o richiedono un ulteriore approfondimento.

Durante la presentazione, naturalmente, potrò interrompere facendo delle domande sul programma.

Tesine di fisica quantistica:

- Il dualismo onda-particella (cap. 4 del Krane)

- L'equazione di Schroedinger (cap.5 del Krane)

- Cenni di fisica statistica (cap. 10 del Krane)

Tesine sul calcolo quantistico:

- Porte logiche per il calcolo quantistico (chap. 1-4 An Introduction to Quantum Computing for Non-Physicists)

- Gli Stati Entangled e la Crittografia Quantistica (chap. 1-3 An Introduction to Quantum Computing for Non-Physicists)

- Dense Coding e Teletrasporto (chap. 1-4 An Introduction to Quantum Computing for Non-Physicists)

- L'algoritmo di Shor (chap. 6 An Introduction to Quantum Computing for Non-Physicists)

- L’algoritmo di Grover (chap. 7 An Introduction to Quantum Computing for Non-Physicists)

- La correzione degli errori nel calcolo quantistico. (chap. 8 An Introduction to Quantum Computing for Non-Physicists)

Se si sostiene questo esame come Attività Complementare:

Se si sostiene l'esame come attività complementare e NON si è sostenuto l'esame di Topics in Physics, si devono presentare due tesine su un argomento di Meccanica Quantistica e uno di Informatica Quantistica, come per l'esame regolare.

Se si è già sostenuto l'esame di Topics in Physics, l'Attività Complementare dovrà riguardare argomenti diversi da quelli portati all'esame precedente. Gli argomenti andranno concordati con il docente di volta in volta.

Ad esempio, per completare gli argomenti del Corso di Complementi di Fisica sarebbe opportuno svolgere come attività complementare una tesina scritta e orale in Teoria dei Segnali.

Rules for the Final Exam

It is required that students give TWO short presentations, 20 minutes each, with slides, on two topics: one presentation must deal with quantum mechanics, and the other with a one of the quantum computation algorithms presented in the course. A list of possible topics for the two presentations is in the following, with a reference to the relevant chapters in the proposed textbooks. The student must study the topics using AT LEAST the proposed textbooks. Other texbooks can be used, citing the reference during the presentations.

Different topics can be presented, but must be approved by me via e-mail in advance. Of course, during the presentations, I reserve the right to make questions regarding the material of the course.

Please send to me the slides at least 4 days before to give the exam. I shall reply saying if the presentations are adequate for the exam, or some additional work is needed.

Rules for taking the Exam as Extracurricular Activity

If the exam is taken as an Extracurricular Activity, and the student HAS NOT taken the exam of Topics in Physics, the same rules as for the regular exam apply: TWO presentations are required, 20 minutes each, with slides, on one topic of Quantum Mechanics and one topic of Quantum Computing, chosen from the list reported in this site.

If the student HAS ALREADY TAKEN the exam of Topics in Physics, the teacher will propose a new topic on Quantum Computing or Signal Theory to be presented at the exam.

Topics for presentations on Quantum Mechanics:

- The wave-particle dualism (chap. 4, Krane)

- The Schroedinger Equation (chap.5 Krane)

- Statistical Physics (chap. 10, Krane)

Topics for presentations on Quantum Computing:

- Logical gates in quantum computing (chap. 1-4 An Introduction to Quantum Computing for Non-Physicists)

- Entangled States and Quantum Cryptography (chap. 1-3 An Introduction to Quantum Computing for Non-Physicists)

- Dense Coding and Teleportation (chap. 1-4 An Introduction to Quantum Computing for Non-Physicists)

- Shor’s Algorithm (chap. 6 An Introduction to Quantum Computing for Non-Physicists)

- Grover’s Search Algorithm (chap. 7 An Introduction to Quantum Computing for Non-Physicists)

- Error Correction in Quantum Computing (chap. 8 An Introduction to Quantum Computing for Non-Physicists)

Date d'esame

- Next Sessions:

June 25th 2018

July 16th 2018

Libri di testo - Proposed Textbooks

Kenneth Krane - Modern Physics - John Wiley and Sons 1996__

Eleanor Rieffel - An Introduction to Quantum Computing for Non-Physicists (http://arxiv.org/abs/quant-ph/9809016v2)

Rieffel E.G., Polak W.H. Quantum Computing... A Gentle Introduction

M. Nakahara, T. Ohmi - Quantum Computing

Michael E. Nielsen & Isaac L. Chuang – Quantum Computation and Quantum Information.

L. Susskind & A. Friedman - Quantum Mechanics: The Theoretical Minimum

R.A. Bertlmann - Quantum Mechanics

Materiale didattico - Other Studying Material

Dualismo onda-particella/Wave-Particle Dualism:

http://www.quantum-physics.polytechnique.fr/en/pages/p0100.html

http://www.upscale.utoronto.ca/GeneralInterest/Key/quantpho.htm

http://hyperphysics.phy-astr.gsu.edu/hbase/mod1.html#c3

http://www.upscale.utoronto.ca/GeneralInterest/QM.html

http://physics.about.com/od/lightoptics/a/waveparticle.htm

Calcolo Quantistico/Quantum Computing

http://www.brics.dk/NS/96/1/BRICS-NS-96-1/BRICS-NS-96-1.html

http://alumni.imsa.edu/~matth/quant/299/paper/

http://arxiv.org/abs/quant-ph/9809016

http://www-users.cs.york.ac.uk/schmuel/comp/comp.html

http://www.ibm.com/developerworks/linux/library/l-quant.html

Programma del corso

Introduzione alla Meccanica Quantistica

(dove indicato, i capitoli si riferiscono al Kenneth Krane – Modern Physics)

Il Dualismo onda-particella

Richiami sulle onde elettromagnetiche. Fenomeni di interferenza e diffrazione.

Le proprietà particellari della radiazione elettromagnetica (Krane, cap.3).

Effetto fotoelettrico. Effetto Compton. Radiazione di corpo nero. Altri processi con fotoni. Cosa è un fotone?

Le proprietà ondulatorie delle particelle (Krane, cap.4).

Ipotesi di De Broglie. Relazione di indeterminazione per onde classiche. Principio di indeterminazione di Heisenberg. Onde piane e pacchetti d’onda. Probabilità e casualità. Ampiezze di probabilità.

L’equazione d’onda di Schrödinger (Krane, cap.5)

Giustificazione dell’equazione di Schrödinger. Probabilità e normalizzazione. Particella libera, particella su un segmento. Particella in potenziale di oscillatore armonico. L’equazione di Schrödinger dipendente dal tempo. Gradino di potenziale, coefficienti di riflessione e trasmissione. Barriera di potenziale, effetto tunnel, applicazioni.

Cenni di Fisica Statistica (Krane, cap.10)

Analisi statistica. Confronto fra statistica classica e statistiche quantistiche. Particelle identiche. Distribuzione di Maxwell delle velocità; la distribuzione di Maxwell-Boltzmann. Statistiche quantistiche: la statistica di Bose-Einstein e la statistica di Fermi-Dirac.

Introduzione al Calcolo Quantistico.

- Quantum Bit.

- Stati Entangled e disuguaglianze di Bell.

- Quantum Key Distribution.

- Sistemi a molti Q-bit.

- Porte logiche quantistiche.

- Dense Coding

- Teletrasporto di Stati Quantistici.

- Computer Quantistici. – Sistemi di porte logiche quantistiche – parallelismo quantistico

- Realizzazione di computer quantistici:

- Computer quantistico con una particella in una scatola.

- Computer quantistico con un oscillatore armonico.

- Computer quantistico con fotoni ottici

- Computer quantistico con cavità ottiche.

- Computer quantistico con Transmon

- L’algoritmo di Shor – La Trasformata di Fourier Quantistica

- Problemi di ricerca. – L’algoritmo di Grover

- L’Annealing Quantistico

- Quantum Error Correction. – Caratterizzazione degli errori – Recuper di uno stato quantistico.

Course Program

Introduction to Quantum Mechanics

(where present, chapter numbers are referred to Krane – Modern Physics)

The Wave-Particle Dualism

Review of Electromagnetic Waves. Intereference and diffraction of waves.

The Particle Properties of Electromagnetic Radiation (Krane, chap.3)

The Photelectric effect. The Compton effect.The Blackbody Radiation. Other Photon Processes. What is a Photon?

The Wavelike Properties of Particles (Krane, chap.4)

De Broglie’s Hypothesis. Uncertainty Relationships for Classical Waves. Heisenberg Uncertainty Relationship. Wave Packets.Probability and Randomness. The Probability Amplitude.

The Schrödinger Equation (Krane, chap.5)

Justification of the Schrödinger Equation. Probabilities and Normalization. The Free Particle. Particle in a Box. The Simple Harmonic Oscillator. Time Dendance of Schrödinger Equation. Steps and Barriers. The Tunnel Effect.

Statistical Physics (Krane, chap.10)

Statistical Analysis. Classical versus Quantum Statistics. Identical Particles in Quantum Mechanics. The Maxwell Distribution of Molecula Speeds. The Maxwell-Boltzmann Distribution. The Bose-Einstein Statistics. The Fermi-Dirac Statistics.

Introduction to Quantum Computing

- Quantum Bits.

- Entangled States and Bell’s Inequalities

- Quantum Key Distribution.

- Multiple Q-bits

- Quantum Gates.

- Dense Coding

- Teleportation

- Quantum Computers. - Quantum Gate Arrays - Quantum Parallelism

- Physical realizations of quantum computers:

- The particle in a box quantum computer.

- The Harmonic Oscillator quantum computer.

- Optical Photon Quantum Computer

- Optical Cavity Quantum Computer

- Transmon Quantum Computer

- Shor's Algorithm. - The Quantum Fourier Transform

- Search Problems. - Grover’s Search Algorithm

- Quantum Annealing

- Quantum Error Correction. - Characterization of Errors - Recovery of Quantum State

-- <a> PieroRapagnani </a> - 06 Feb 2008

<form action='/twiki/search/Fisica3/'>

  • <input type="text" name="search" size="22" /> <input type="submit" class="twikiSubmit" value="Search" /> - advanced search
  • WebTopicList - all topics in alphabetical order
  • WebChanges - recent topic changes in this web
  • WebNotify - subscribe to an e-mail alert sent when topics change
  • WebRss, WebAtom - RSS and ATOM news feeds of topic changes
  • WebStatistics - listing popular topics and top contributors
  • WebPreferences - preferences of this web
</form>

  • Vallone_lezione.zip: Lecture by Professor Giuseppe Vallone (Padua University) on Quantum Cryptography in Space Communications

Topic attachments
I Attachment History ActionSorted ascending Size Date Who Comment
PDFpdf Informazione_Quantisitica_e_Ottica_Quantistica.pdf r1 manage 2105.7 K 2009-02-17 - 11:52 PieroRapagnani Seminario sull'Informazione Quantistica del Dr. Fabio Sciarrino
PDFpdf P.Rapagnani_-_Physical_Realizations_of_QC.pdf r1 manage 320.6 K 2019-05-11 - 08:06 PieroRapagnani Lecture Notes on the Physical Realizations of Quantum Computers
PDFpdf PiaAstone_Problems_in_DA.pdf r1 manage 8640.8 K 2015-05-25 - 09:55 PieroRapagnani Seminario sugli algoritmi di ricerca di onde gravitazionali continue della Professoressa Pia Astone
Compressed Zip archivezip Vallone_lezione.zip r1 manage 9312.6 K 2017-04-27 - 14:51 PieroRapagnani Lecture by Professor Giuseppe Vallone (Padua University) on Quantum Cryptography in Space Communications
Edit | Attach | Watch | Print version | History: r94 < r93 < r92 < r91 < r90 | Backlinks | Raw View | Raw edit | More topic actions
Topic revision: r94 - 2024-02-27 - PieroRapagnani






 
Questo sito usa cookies, usandolo ne accettate la presenza. (CookiePolicy)
Torna al Dipartimento di Informatica
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2024 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback