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Abstract—Solar panels are frequently used in wireless sensor
nodes because they can theoretically provide quite a bit of
harvested energy. However, they are not a reliable, consistent
source of energy because of the Sun’s cycles and the ever-
changing weather conditions. Thus, in this paper we present a
fast, efficient and reliable solar prediction algorithm, namely,
Weather-Conditioned Moving Average (WCMA) that is capable of
exploiting the solar energy more efficiently than state-of-the-art
energy prediction algorithms (e.g. Exponential Weighted Moving
Average EWMA). In particular, WCMA is able to effectively take
into account both the current and past-days weather conditions,
obtaining a relative mean error of only 10%. When coupled
with energy management algorithm, it can achieve gains of more
than 90% in energy utilization with respect to EWMA under the
real working conditions of the Shimmer node, an active sensing
platform for structural health monitoring.

I. INTRODUCTION

Latest battery-powered embedded sensor nodes

([1],[2],[3],[4]), are designed to gather, process and wirelessly

transmit data in regular time intervals. These nodes are able

to provide significant in-situ processing capabilities of the

collected data (e.g., temperature figures, humidity). As a

consequence, a whole new set of applications with complex

features, such as actuation and data processing, have been

developed for these nodes. However, battery lifetime is still

a significant limitation. One way to improve this is by using

energy harvesting coupled with rechargeable energy storage

(e.g. batteries and super capacitors).

Many different types of energy harvesting technologies exist

- solar, vibration, wind, piezoelectric, thermoelectric, etc. Solar

energy harvesting is by far the most effective [5] for wireless

sensor nodes. A great application example is Shimmer [6], a

sensor node targeted at structural health monitoring applica-

tions (SHM). It uses supercapacitors as energy storage units

and a solar panel for energy harvesting. Shimmer evaluates

the health of a large structure such as a bridge by sending a

wave through it via one PZT device, and sensing a response

via another. Fairly significant processing has to be done on the

data (over 100 MIPS) to detect if there is damage. Finally it

transmits the result. The amount of energy needed to execute

these tasks is substantial, thus being able to understand how

much energy is currently available, and how much can be

harvested in the next time interval is very important.

Online strategies that understand these tradeoffs and can

plan in near term how to best spend the energy received

via energy harvesting need to be developed. The sensor node

should exploit the extra energy available from energy harvest-

ing sources once the batteries or super capacitors are charged

up. This energy can be used to achieve higher accuracy by

executing additional tasks on the node (such as actuating,

sensing, processing, etc). When energy harvesting is either not

available or minimal, the sensor node still needs to be able

to respond to a minimum amount of outside queries for data

(i.e., event-based triggering). Therefore, adaptation is needed

as the energy availability and the outside demands change

dynamically in time.

In this paper, we propose Weather-Conditioned Moving

Average (WCMA), a novel accurate yet very low overhead,

solar energy prediction algorithm based on the Exponentially

Weighted Moving-Average (EWMA) [7] estimation method.

Our new WCMA algorithm can be used to accurately estimate

the amount of energy that will be harvested by solar panels in

the near future, so that it is possible to deploy power-efficient

task management methods on solar energy-harvested wireless

sensor nodes.

The rest of the paper is organized as follows. In Section 2 we

summarize the related work on energy prediction algorithms.

Section 3 outlines our new solar energy harvesting prediction

algorithm. Finally, in Section 4 we assess the efficiency of the

energy prediction algorithm using an active sensing platform

for Structural Health Monitoring, i.e., the Shimmer node.

II. RELATED WORK

A frequently used and low cost (in terms of computation

need) energy prediction algorithm is Exponentially Weighted

Moving-Average (EWMA) [7],[8],[9],[10]. The method is

designed to exploit the diurnal cycle in solar energy and to

adapt to the seasonal variations. EWMA calculates the value

of energy likely to be harvested at a particular time as a



weighted average of the energy received at the same time

over a set of previous days [10]. Although EWMA-based

algorithm is accurate for consistent weather conditions, when

cloudy and sunny days are mixed, recent days energy values

introduce significant prediction errors. Therefore, to prevent

this problem, we introduce in this work a new prediction

algorithm that not only takes into account the solar conditions

at a certain time of the day, but also adjusts the energy intake

estimation for the changing weather conditions throughout a

day.

Other solar prediction algorithms have been recently pro-

posed, based on mean expected values. In [11], it is shown that

the average-daily solar system performance may be calculated

from the product of clear-sky solar performance and the

average time fraction of clear sky. This approximation greatly

simplifies the solar system performance prediction, but does

not offer specific energy guarantees at certain daily intervals,

not been suitable for short term predictions. Also, [12] in-

troduces a new method for modeling daily sun radiations,

based on Takagi-Sugeno fuzzy systems. This method uses

a non-linear technique, defined by a set of If-Then rules

with linear consequent parts, which establish a local linear

input-output relationship between the variables of the model.

Then, the parameters of the model are identified using the

fuzzy clustering combined to the least square algorithm. This

model produces accurate results, but requires a very high

computation, making this algorithm not applicable on small

wireless sensor nodes as we target in this work.

III. WCMA ENERGY PREDICTION

WCMA has its foundations on EWMA for estimating the

solar energy entering the system. In contrast to EWMA, it also

characterizes the seasonal changes by adapting both the change

in the hour of sunrise and sunset, as well as the difference in

solar power between seasons. Furthermore, this new algorithm

takes into the account weather changes with minimal overhead.

In EWMA, the day is divided on slots and a vector of

estimated values for each slot i is stored, i.e., X(i). This

equation is used to update the slots, as follows:

X(i) = α · X(i − 1) + (1 − α) · x(i) (1)

where x(i) denotes the value of real energy observed at the

end of the slot i and α is a weighting factor.

Figure 1 shows the actual energy input from the solar panel

and the predicted value in five consecutive days, with a mix of

sunny and cloudy conditions. In this case, when the sunny and

cloudy days alternate, the EWMA produces a significant error

in its prediction, due to the high impact of the solar conditions

of previous day in the predicted value. To avoid this effect, our

new prediction algorithm takes into account not only the solar

conditions at a specific time of the day, but also the weather

conditions in the current day. This is especially important

in frequently changing weather conditions, for example, we

observed that the energy harvested during cloudy days was

less than half of that gathered during sunny days.
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Fig. 1. EWMA energy prediction algorithm

WCMA algorithm uses an E matrix of size DxN that stores

N energy values for each D past days. Hence, E(i, j) is the

energy stored in the matrix for the jth sample on the ith day,

and the predicted value is related to the previous sample in

the same day and the mean value of the past samples (at the

same hour of the day):

E(d, n+1) = α·E(d, n)+GAPk ·(1−α)·MD(d, n+1) (2)

where α is a weighting factor similar to the EWMA algorithm,

and MD(d, n+1) is the mean of D past days at n+1 sample

of the day:

MD(d, n) =

∑

d−D

i=d−1
E(i, n)

D
(3)

The main innovation in our algorithm is the inclusion of

the factor GAPk. This factor measures the solar conditions in

the present day relative to the previous days. To compute the

GAPk factor, we first define a vector V = [v1, v2, · · · , vK ]
with K elements. V contains the quotient of the past K

samples and the average solar energy available during the

previous D days for those samples. Therefore, a value greater

that one means that today’s value is larger than the mean,

which represents a sunny day, and values smaller that one

represents cloudy days:

vk =
E(d, n − K + k − 1)

MD(d, n − K + k − 1)
(4)

Then, in order to give more importance to the closest values

on time, we weight these values with the distance to the actual

point in time using vector P = [p1, p2, · · · , pK ] as follows:

pk =
k

K
(5)

Finally, the weighting factor, GAPk , is computed:

GAPk =
V ·P
∑

P
(6)



TABLE I
SOLAR ENERGY PREDICTION EXAMPLE

Solar Panel energy evolution in mW

n-2 n-1 n n+1

d-4 277 272 221 263

d-3 350 353 347 347

d-2 345 346 349 353

d-1 249 255 314 289

d 342 256 230 ???

Mean 305 306 307 313

V 1.12 0.84 0.75

P 0.33 0.67 1.00

Example: Table I shows an example of how WCMA com-

putes the GAPk factor for the next predicted value E(d, n+1)
with D=4, K=3. The Mean vector contains the mean value of

the previous four days, V has the quotient of the elements in

row d divided by the Mean (element by element), and P is the

weighting factor for V . Finally, the GAPk value is defined as

follows:

GAPk =
(1.12, 0.83, 0.75)× (0.33, 0.67, 1.00)

∑

(0.33, 0.67, 1)
(7)

And the predicted value with α = 0.7 is:

E(d, n + 1) = 0.7 · 230 + 0.84(1 − 0.7) · 313 (8)

A. WCMA’s parameters optimization

To optimize all the needed parameters in WCMA, i.e., the

size of the E matrix, (DxN), α factor and number K of

past samples to weight, we must define the error function

to evaluate and relevant constraints. To optimize these values

we have recorded the energy available from the solar panel

[13] every minute during 45 consecutive days. As we want to

predict the sun evolution, the night values will be discarded

in the computation of the error. We consider night values all

the samples with less than 10% of the maximum. The error

function for a record of N points is given at the percentage:

Err =
1

N

N
∑

i=1

abs

(

1 −

EReal

EPred

)

(9)

where EReal denotes the real energy value and EPred is the

estimated value.

To optimize the predictor performance, not only focus on

minimizing the error, but we also try to ensure all possible

tradeoffs between accuracy and duty cycle are met. When more

samples are collected per day, the estimate of the next value

is more precise at the cost of frequent sensor node wakeups

which can lead to a negative impact on the overall energy

consumption. On the other hand, a too low sampling rate

does not give the sufficient data to WCMA to estimate the

energy harvesting rate, which would make the sensor node

calibration difficult. Based on our experiments performed on
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Fig. 2. Estimated error for N=48 and K=6
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Fig. 3. Estimated error for N=48 and α=7

real sensor nodes ([6]), a sample period of 30 minutes (i.e.,48

samples/day) gives a reasonably accurate prediction with a low

duty cycle and a small memory footprint. Figure 2 shows the

estimated error of the prediction as a function of the weighting

factor, and the number of days D, for a fixed number of past

values K=6 and samples per day N=48. Selecting a weighting

factor (α) of 0.7 gives a minimal error, independent of the

number of past days stored in the matrix. Hence, we will use

the value of 0.7 in our optimization process of WCMA.

Figure 3 shows the prediction error versus D and K ,

with α and N fixed. Our experiments indicate that if the

number of past samples K is above 5, then the error quickly

increases because it takes into account too many samples of

the weather pattern of each day. Since the number of past

days does not influence the error as much as the number of

past samples K for a particular day, then we can use fewer

days for the estimate, which lowers the computational cost of

WCMA without a significant accuracy loss. As a result of our

analysis, WCMA model used in this paper has the following

parameters to minimize its prediction error: D=4 days, N=48

samples/day, K=3 past samples, and α=0.7.
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Fig. 4. Prediction accuracy of WCMA vs. EWMA

B. Comparison of WCMA vs. EWMA

We compare the energy prediction accuracy of WCMA to

EWMA. Figure 4 shows four consecutive days of different

weather conditions, and predicted values using both algo-

rithms. The first and third days correspond to sunny conditions

and the second and the fourth are cloudy. Since EWMA only

uses values from previous days at the exact same time period,

if the weather conditions change from one day to another, this

method has a large error in prediction (i.e., close to 30%).

On the other hand, WCMA produces a much better results

because it uses the values from the same hour over a number

of previous days and the past values from the same day, which

help calibrate against the actual weather conditions. Overall,

EWMA gives an average error of 28.6% compared to 9.8%

obtained by our new algorithm WCMA, over all 45 days of

the collected solar panel data.

IV. EXPERIMENTAL SETUP AND RESULTS

We assess the performance of WCMA in a real-life energy

harvested wireless sensor node, i.e., the Shimmer platform

[6], which is an active sensing platform for structural health

monitoring. Shimmer uses a super capacitor as energy storage

unit and solar panel as energy harvesting unit. It is able to

perform active sensing using a matrix of 16 piezoelectric

actuators/sensors (PZTs) to find structural damage. It launches

a wave signal via one PZT through the material and samples

the resulting wave via another PZT. Then Shimmer uses the

acquired signal to perform complex processing on its DSP

to determine if the structure is damaged or not. Shimmer is

also equipped with a ZigBee-compatible radio link. Thus, it

can send the sampled data or the results through its on-board

processing to a remote server. The types of tasks that can be

executed on the Shimmer platform are:

• Actuate/Sample: Shimmer has 16 PZTs which result

in 240 different paths that can be tested. This task is

characterized by a mean power consumption of 1027mW

and an execution time of 1.1ms, producing 20Kbytes of

data.

TABLE II
SOLAR ENERGY PREDICTIION RESULTS

Day ErealJ Algorithm EJ Err%

7 571.72
WCMA 550.44 3.72

EWMA 535.50 6.34

8 284.63
WCMA 255.60 10.20

EWMA 543.60 -90.99

9 400.61
WCMA 360.00 10.14

EWMA 423.00 -5.59

10 609.50
WCMA 597.60 1.95

EWMA 406.80 33.26

• Process: Different algorithms can be employed to process

the sampled data; they can vary from simple time do-

main pattern matching to complex filtering and frequency

domain analysis. Thus, this task has a mean power

consumption of 680mW and an execution time of 55ms

(light process) or 3470ms (complex process).

• Send: When no damage is detected, little data needs to

be sent over the radio, but in other situations the whole

data record gathered is necessary to perform an analysis

of the damage evolution over long periods. This task

has a power consumption of 165mW and requires 6ms

to send a packet of up to 255B. Shimmer is usually

placed in hard-to-reach locations, with limited wireless

connectivity. It needs to execute the damage detection

process daily. Thus, an energy estimator is mandatory to

carefully choose when the damage assessment should be

performed, and what kind of processing can be done with

the currently available energy and likely to be harvested

in near future. Table II shows the values of predicted

and actual energy available at noon during a period of

30min for the time record depicted in Figure 4. We

focus on these specific times to illustrate the difference

between EWMA and WCMA when it comes to intraday

prediction.

As Table I shows, WCMA has a maximum energy pre-

diction error of only 10%, while EWMA can have errors of

up to 90%. This large EWMA energy estimation error can

cause incorrect energy management decisions by Shimmer.

Shimmer needs to Actuate/Sample, perform full Processing

and Send the data obtained from all 240 PZT paths in order to

identify and localize damage in the structure. When there isn’t

enough energy to perform this whole analysis, the complexity

of processing task has to be reduced to ensure that at least

some feedback is obtained on the current structural health.

Thus, in the following experiments we evaluate how well

WCMA and EWMA perform as energy availability estimators

in situations where energy resources are at a premium and not

all tasks can be executed.

Checking the whole structure means that all 240 differ-

ent paths are actuated/sensed, with the total energy cost of

240Â·1.2mJ=0.27J. Sending all this processed data requires

240Â·77.6mJ=18.6J. The rest of the available energy can be



used to perform processing by the DSP. While the goal is to

run full processing at 3.47s per path each day, when there

is not enough energy available, then a fraction of paths run

only light processing, resulting in the overall lower average

processing time per path. We next report this DSP time per

path assuming the perfect prediction of energy harvesting

capabilities (oracle), or when using either WCMA or EWMA

to predict the amount of energy harvested over the next 30min

period. To illustrate our ideas we focus on the 30 min period

around noon each of the days outlined in Table II.

• Day 7: Both WCMA and EWMA do a great job predict-

ing for consistently sunny days resulting in the average

DSP time per path of 3.26s and 3.17s respectively,

compared to 3.39s by oracle predictor.

• Day 8: When a sudden change in weather occurs,

WCMA is able to adapt quickly resulting in much better

processing allocation relative to EWMA. Average DSP

per path time for WCMA=1.45s, while oracle is only

slightly higher at 1.63s. In contrast, EWMA signifi-

cantly overestimates the energy entering the system thus

scheduling too many full processing tasks with average

DSP time of 3.22s. As a result, Shimmer runs out of

energy before finishing the whole structure scan, resulting

in a significantly worse result.

• Day 9: Both predictors offer a good approximation of the

DSP time per path. Oracle comes in at 2.34s per path,

WCMA: 2.09s, EWMA: 2.48s.

• Day 10: EWMA underestimates the DSP time since

weather got better in day; oracle got 3.62s, WCMA:

3.55s, EWMA: 2.38s. As a result, much less processing

is done if EWMA is used for prediction, leading to

suboptimal results relative to WCMA.

Overall, WCMA correctly predicts all the variations of

harvested energy so that Shimmer can fully utilize it to

estimate the structural damage, while EWMA has significant

difficulties during variable weather conditions.

V. CONCLUSION

In this paper we presented Weather-Conditioned Moving

Average (WCMA), a new solar energy prediction algorithm

with very low computational overhead. WCMA is able to

effectively take into account both the current and past-days

weather conditions. Thus, it reduces the error of the predicted

value down to only 10% from 90% by EWMA during highly

variable weather patterns. Finally, we showed on the example

of Shimmer platform that correct prediction can have a sig-

nificant impact on the quality of structural health monitoring

results at run time.
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