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Power consumption in WSNs

@ Usually the network is expected to last several months or even years

@ But.. nodes are traditionally powered by batteries

o Many drawbacks:

limited lifetime (a few days on 2xAA batteries if always on)
high maintenance costs — periodical

replace/recharge batteries impossible in hostile or remote areas
environmental concerns: safe disposal of exhausted battery
miniaturization: size is usually dominated by the battery

| Energy is a primary constraint in WSN: it limits everything from
data sensing rates to node size and weight
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"Green Wireless Sensor Networks

Energy Harvesting The process by which energy readily
available from the environment is captured and converted into
usable electrical energy

v/ Supplement or completely X Energy availability is
replace batteries uncertain in time and value
¢/ Virtually unlimited lifetime X Perpetual systems requires

(hardware longevity) dedicated solutions
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Application scenarios

.

Health care

Surveillance
Structural healt monitoring
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Harvesting opportunities

Solar 1-100 mW/em?
Vibration Capacitive 100 pW/cm?3
Vibration Inductive 10-15 pW/ecm?
Vibration Piezoelectric 300 - 500 pW/ecm?
Thermoelectric 6—15 uW/ecm?
High frequency vibration 100 pW/cm?
Ambient radio frequency <1 uW/cm?
Ambient airflow 1 mW/em?
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Energy harvesting node architecture

Battery
\ 4

Sensor
Node

A A
Energy ——— Ouper
im- Harvester % capacitor

Many other architectures proposed in the literature: multi-source energy

harvesting, no primary battery, two-stage harvesting storage, etc.
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i EH*-WSN operation

* A paradigm shift with respect to traditional WSNs
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— All activities on low power communication protocols
and algorithms for WSNs are based on the following
assumptions

* Monotonically decreasing limited battery energy
* Sensing cost is negligible
e Comm. Cost high
— We have to limit as much as possible when the transceiver is ON

— Low energy consumption protocols and operations

— Some solutions (security primitives, energy consuming operations,
energy demanding sensing) are simply not feasible

* Energy Harvesting
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. EH-WSN operation

 These assumptions are not true in a EH- enabled
system
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— Energy is non monothonic

— There are some periods of time when an excess of
energy maybe available which is wasted if not used

— When to perform (energy intensive) tasks become an
Issue
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Introduction
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Introduction

@ Static set of wireless sensor nodes deployed for
monitoring applications

o Missions arrive in the network dynamically
over time at different locations

Task allocation in EH-WSNs ©
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Task allocation in EH-WSNs ©

Introduction

o Static set of wireless sensor nodes deployed for
monitoring applications

@ Missions arrive in the network dynamically
over time at different locations

o Multiple missions active at the same time =
competing for the sensing resources
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Task allocation in EH-WSNs '@ =

Introduction
O
= *Localization
@ Static set of wireless sensor nodes deployed for N N
monitoring applications O o
o Missions arrive in the network dynamically =
over time at different locations O m|
o Multiple missions active at the same time = Localization
competing for the sensing resources ¥
O
: : O
How to assign the sensing resources of the
?
network - s
Event detection
O O
O O




Task allocation in EH-WSNs @

Introduction

o Static set of wireless sensor nodes deployed for
monitoring applications

o Missions arrive in the network dynamically
over time at different locations

o Multiple missions active at the same time =
competing for the sensing resources

How to assign the sensing resources of the
network?

Which nodes to assign to which mission?
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QoS aware operation

Assignments are not all equal..

@ Nodes contribute to different missions with
different utility (e.g., distance)

@ Missions vary in amount of resources they require (demand) and
importance (profit)

@ Goal: Maximize the total profit achieved by the network for mission
execution

@ Profit achieved for mission execution depends on allocated demand
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EN-MASSE

@ Nodes make independent decisions about missions execution

@ Decisions based on:

partial
profit

tune

eagerness

classify
missions

o

© 006 O O

profit of the mission

potential contribution to the mission

target lifetime

current energy level of the node
energetic cost of the mission

future energy availability (solar energy prediction model)
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ENMASSE-Mission classification

A new mission arrives = check energy requirements and availability

more

willing
to

accept

Battery-required not enough energy in the supercapacitor to
execute the mission; supplied by the battery

Capacitor-sustainable mission cost sustained by
supercapacitor

Recoverable mission cost sustained by supercapacitor;
energy recovered in a small period of time

Free mission energy cost expected to be fully
sustained by harvested energy
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Mission classification

A new mission arrives = check energy requirements and availability

more

willing
to

accept

Expected time between
two mission arrival the node

can bid for

\

Battery-required not enough energy in the supercapacitor to
execute the mission; supplied by the battery
|:> Requires energy prediction model
Capacitor-sustainable mission cost sustained by
supercapacitor
|:> Requires energy prediction model
Recoverabie mission cost sustained by supercapacitor;
:> energy recovered in a small period of time
/’Requires energy prediction model
ree mission energy cost expected to be fully
sustained by harvested energy

|:> Requires energy prediction model



| EN-MASSE (details)
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Real harvesting systems
Modeling real harvesting systems
Real-life solar energy traces: i}
o Telos B motes interfaced with ul \

solar cells

o Deployed for 100 days:
variable weather conditions,
different locations

Non-ideal supercapacitor:
O finite size;
@ charging/discharging
efficiency < 1;
O leakage
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Real harvesting systems

Modeling real harvesting systems

Real-life solar energy traces:

18

o Telos B motes interfaced with Al u \ !
solar cef’ o
o Deploye ay - Bi(t) + b1, Bg, < Bi(t) < Brg,
variable  leak;(t) = : :
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. EN-MASSE performance

EN-MASSE vs other assignment schemes
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Parameters: 500 nodes, 400 x 400 m field, 22 missions/hour, target lifetime 120 days,
25F supercapacitor, average mission duration: 1 hour.



Energy prediction models

* EWMA: Exponentially Weighted Moving Average

— the value of energy likely to be harvested at a particular time
is computed as a weighted average of the energy received at
the same time over a set of previous days

— problem mix of days (cloudy/sunny)

e WCMA algorithm uses an E matrix of size D xN that

stores N energy values for each D past days.
— E(i, j) is the energy stored in the matrix for the jth sample on
the ith day, and the predicted value is related to the previous

sample in th same day and the mean value of the past
samples (at the same hour of the day):

E(dn+l)=a-E(dn)+GAP.-(1—a)-Mp(d,n+1)

— where MD(d, n+1) is the mean of D past days at n+1
sample of the day:

Y&l E(i,n)
D
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Pro-Energy

E;.{..l =Q‘Ct . (1 —a) ‘E;i_{,_l (2)
where
E,H is the predicted energy at timeslot £ + 1 on the
current day;

Ef+1 is the energy harvested during timeslot £+ 1 on the
stored day d;

C: is the energy harvested during timeslot ¢ on the
current day C'

2" 1s a weighting factor, 0 < a < 1.



18

16
14
12

Power [mW)]
=

o N A @ o

Pro-Energy

E¢+1=G'Ct + (1‘0)‘Eg+1

Energy predictions

Most
similar
profile

2 1
g%
2 |

ml.w

1

Harvested power (30 min

Pro-Energy algorthm: power predicted ======

@

\
1 ./Mf'

& 0ct 23

O Oct24

O & oct25

&50ct 26




10

Solar energy prediction

g | prediction horizon = 30 min
siot length = 30 min

Solar Energy Predictions

Harvested power (30 min aVerage) s

EWMA: predicted harvesied power ——-—--
WCMA: predicted harvesied power ~-----

Pro-Energy: prodicfed harvecind power
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¢, energy harvested during timeslot 1

¢, energy predicted for timeslots
T number of samples
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Prediction horizon (slot length = 30 min)



Wind energy prediction

s Wind Energy Predictions e e e e
7 | prediction horizon = 30 min o e P s o —

¢ | sfot length = 30 min |




