MULTI_RADIO and its Impact on Network Connectivity and More

> Stefano Basagni Northeastern University

Roma, Italy. October 14 2009

Ad Hoc Networks

- Networks with NO fixed infrastructure
 - Every node is a router
- Every node can be mobile
 - According to different mobility models
 - Random waypoint, Brownian, Manhattan, etc.
 - Different speed or pause times
- Very different from cellular telephony

Ad Hoc vs. Cellular

- Centralized vs. decentralized
- Asymmetric vs. symmetric
- With vs. without infrastructure
- Master/slave" vs. peer-to-peer
- Overall, a different architecture
 - Different handling of mobility
 - Different applications

Ad Hoc Challenges

- At all levels of the protocol stack
 - MAC: hidden terminal, exposed terminal
 - Routing: How to update table, how to find routes
 - Transport: Flow and congestion control non-trivial
 - Applications: Need for new services

Ad Hoc Applications (Some)

- Disaster recovery and law enforcement
 - Public safety networks
- Vehicular networks (VANETs)
- Mesh networking
 - Multi-hop serving the mobile users
- Wireless sensor networks (WSNs)
- ALL: One radio

Multi-radio: Why?

- Multiple radio interfaces in a single node ---technically feasible today (802.11, Bluetooth...)
- Can be viewed as a network with *multiple physical layers*
- Even a single interface can logically act as multi-radio (several channels)
- Future systems may combine physical layers in even more varieties (radio + infrared + laser...)
- Generates many new research issues
- Question: Does the added complexity pay off in network performance?
 - Can we somehow quantify the gain?

Possible Use for Multiple Radios

Devices with multiple interfaces could use them for common tasks to achieve:

- Reliability: One interface stops working and another substitutes the first one
- Efficiency: Closer nodes are contacted via the "best" interface (e.g., the one that minimized power consumption)
- Bandwidth increase: Splitting a single communication on multiple channel

Specifying the Question

Gain in general network performance
too ambitious as a first step

We focus on the gain in *network* connectivity

The degree of connectivity is important for performance: related to fault tolerance, routing, load balancing etc.

Model

- Network topology with multiple physical layers →
 multigraph
- Parallel edges between nodes represent various physical layers
- Basic merging operation: multigraph sum

 $G = G_1 \uplus G_2$

For more graphs:

 $\uplus_{i=1}^N G_i = G_1 \uplus G_2 + \dots + \uplus G_N$

A Curious Property: The "Multigraph Advantage"

- We explain it through the property of edgeconnectivity
- Edge connectivity $\lambda(G)$: min number of edges that need to be deleted to disconnect the graph – important parameter
- First insight: we always have

$$\lambda(
\uplus_{i=1}^{N}G_i) \ge \sum_{i=1}^{N}\lambda(G_i)$$

 Why? Simply because any cut in the multigraph is the disjoint union of the corresponding cuts in the components

The Surplus

- First we might guess that equality holds, that is, $\lambda(G)$ is *additive*
- But check out this example:

• What we find is that $\lambda(G)$ is *superadditive!*

Analysis

- Is this gain *typical* or it shows up only in a few specially chosen examples?
- Will it occur in a *large, random* network topology?
- We analyze the multigraph advantage asymptotically in a *random graph* model

The random graph model

- There are many random graph models → which one to choose?
- As a first step, we choose the Erdos-Renyi model, in which edges are picked independently at random
- In some situations it better captures the radio network than the distance based geometric random graph model:
 - When random obstacles are the main reasons for missing links, not distance
 - Realistic propagation models tend to decrease link correlations → becomes similar to Erdos-Renyi model
 - When power control counterbalances the effect of distance

Some background on random graphs

- $G_{n,p}$: a random graph on *n* nodes with edge probability p=p(n)
- Asymptotically almost surely connected if and only if

$$p(n) = \frac{\log n + \omega(n)}{n}$$

where $\omega(n)$ tends to infinity

Moderately dense regime:

$$p(n) = \frac{c \log n}{n}$$

with *c>*1.

 \rightarrow Only constant time more dense than the min needed for connectivity

Main result

Theorem 1 Let G_{n,p_1} and G_{n,p_2} be independently drawn random graphs in the moderately dense regime, on the same set of nodes. Let their edge probabilities be

$$p_1(n) = \frac{a \log n}{n}$$
 and $p_2(n) = \frac{b \log n}{n}$

with constants a, b > 1. Then there exists a constant c = c(a, b) > 0, such that the asymptotic multigraph advantage regarding connectivity is at least $c \log n$. That is,

$$\lim_{n \to \infty} \Pr\left(\frac{\lambda(G_{n,p_1} \uplus G_{n,p_2})}{\lambda(G_{n,p_1}) + \lambda(G_{n,p_2}) + c \log n} \ge 1\right) = 1$$

Interpretation

- The gain is comparable to the original connectivities, as they are known to be O(log n) in this regime
- There is a non-vanishing relative gain: a constant percentage gain in connectivity
- The value of c=c(a,b) in the c log n gain can be computed via solving a nonlinear equation

Experimental validation

 \rightarrow Our asymptotic formula well approximates the actual multigraph gain, already for relatively small networks

Further experiments

 Dependence of gain on graph densities. Two random graphs: the first with fixed p=0.05, the second with varying p=0.03... 0.25

Experiments with geometric random graph models

Similar phenomena observed in geometric models

Geometric random graph

k-nearest neighbor graph

 \rightarrow There is an optimal density difference that maximizes the multigraph gain

Network diameter

The longest among the shortest paths

Network diameter sensitivity Number of links whose removal makes the network diameter increase

Shortest paths

Average of the minimum distance between all pairs of nodes

Conclusion

- Analyzed the effect of multiple radio interfaces (multiple physical layers) on connectivity, captured by a multigraph model
- Quantified the multigraph advantage for connectivity
- Experimentally showed that it extends to more complex random graph models, too
- Further work
 - Extend the formal analysis to other random graph models
 - Quantify the gain for other parameters, such as average distance, diameter etc.