
Wireless Systems Lab - 2014

Project Description
• Form Activity: main activity which is presented to the user when

launching the application for the first time. It displays a form and allows

the user to fill and submit the form. When submitted, it retrieves the

values filled by the user and stores as Bundle in Intent and starts another

activity – DisplayActivity. Uses form.xml as layout file to display the

form.

• Display Activity: it retrieves the Bundle from Intent which has values

filled by the user and display it by setting the value of view elements.

Uses display.xml as layout file to display the result.

Wireless Systems Lab - 2014

Code...

Display code in Android Studio

Wireless Systems Lab - 2014

Android Introduction
Third Part: Sensors

Wireless Systems Lab - 2014

• Android Sensors:

• MIC
• Camera
• Temperature
• Location (GPS or Network)
• Orientation
• Accelerometer
• Proximity
• Pressure
• Light

Android Sensors Overview

Wireless Systems Lab - 2014

Sensors on Android
A sensor (also called detector) is a device that measures a physical quantity

and converts it into a signal which can be read by an observer or by an
instrument.

REAL (HARDWARE)

1. ACCELEROMETER
2. GYROSCOPE
3. MAGNETIC_FIELD
4. LIGHT
5. PRESSURE
6. AMBIENT_TEMP
7. RELATIVE_HUMIDITY

Useful reference: http://developer.android.
com/guide/topics/sensors/sensors_motion.html

VIRTUAL (SOFTWARE)

1. PROXIMITY
2. LINEAR_ACCELERATION
3. GRAVITY
4. ROTATION_VECTOR

Wireless Systems Lab - 2014

Sensor Coordinate System
• Standard 3-axis coordinate system to

express data values.

• Used by
• Acceleration sensor
• Gravity sensor
• Gyroscope
• Linear acceleration sensor
• Geomagnetic field sensor

• Defined relative to the device's
natural screen (portrait or landscape)

Wireless Systems Lab - 2014

Global Coordinate System

Map the device coordinate system on to
the global coordinate system

In the global coordinate system:

● Y_E points toward magnetic north,
which is approximately true north.

● X_E points approximately east
parallel to Earth’s surface but 90
degrees from Y_E

● Z_E points away from the center of
the earth

Wireless Systems Lab - 2014

Accelerometer
Conceptually, an acceleration sensor
determines the acceleration that is
applied to a device (A

d
) by measuring

the forces that are applied to the
sensor itself (F

s
) using the following

relationship:

A
d
 = -g - ∑F / mass

where g = 9.81 m/s2

Wireless Systems Lab - 2014

Sensors Hardware
• Accelerometer

• Microelectromechanical sensors (MEMS)

Wireless Systems Lab - 2014

Sensors Hardware

• Gyroscope

Wireless Systems Lab - 2014

Gyroscope

• MEMS gyroscopes are tiny masses on tiny springs,
designed to measure the Coriolis force due to rotation.

• The Coriolis force is the tendency for a free object to
veer off course when viewed from a rotating reference
frame.

• Gyroscopes measure only angular velocity, or, the
speed at which the device is rotating. When the device
is stationary, regardless of which direction the device is
pointing, all three axes of the gyroscope will measure
zero.

• Android reports values in radians per second around the
standard x, y, and z axes

Wireless Systems Lab - 2014

Sensors Hardware

• Compass (Magnometer)

Wireless Systems Lab - 2014

Magnetic field sensors

• Hall effect:
• It works by simply passing a current through a wire.

• A magnetic field component perpendicular to that wire
causes the electrons to have higher density on one side of
the wire compared to the other, which results in a voltage
across the width of the wire that is proportional to the
magnetic field.

• Magnetic field sensors will report the magnetic field in x, y,
and z in microTesla.

Wireless Systems Lab - 2014

Sensors Hardware

Wireless Systems Lab - 2014

Light Sensor
• It is simply a photodiode, which operates on the same

physical principle as an LED (light-emitting diode) but in
reverse. Instead of generating light when a voltage is
applied, it generates a voltage when light is incident on it.

• The light sensor reports its values in lux:
• LIGHT_NO_MOON : 0.001
• LIGHT_FULLMOON : 0.25
• LIGHT_CLOUDY : 100
• LIGHT_SUNRISE : 400
• LIGHT_OVERCAST : 10000
• LIGHT_SHADE : 20000
• LIGHT_SUNLIGHT : 110000
• LIGHT_SUNLIGHT_MAX : 120000

(Constants in SensorManager class)

Wireless Systems Lab - 2014

Proximity Sensor

• It consists of a weak infrared LED (light-emitting diode) next
to a photodetector. When something (such as the ear of a
person making a phone call) comes close enough to the
sensor, the photodetector detects the reflected infrared
light.

• Some proximity sensors report the distance to an object in
centimeters. Others are not designed to measure the
distance to an object, but only the presence or absence of
an object at a distance closer than some threshold (around
5 cm)

Wireless Systems Lab - 2014

Sensor.TYPE_ROTATION_VECTOR

• It’s a synthetic sensor that calculates rotation angle of
the global coordinate system with respect to the device
coordinate system using the accelerometer, the
magnetometer, and possibly the gyroscope if available.

• getRotationMatrix() : map coordinates between local
reference frame and global coordinate system

• SensorManager.getOrientation(rotationMatrix) get the
orientation (azimuth, pitch and roll) with respect to earth
• Azimuth (or heading or yaw) = Rotation about z-axis
• Pitch = Rotation about x-axis
• Roll = Rotation about y-axis

• Sensor.TYPE_ORIENTATION is deprecated

Wireless Systems Lab - 2014

•Android’s sensors are controlled
by external services and only
send events when they choose to

•An app must register a callback
to be notified of a sensor event

•Each sensor has a related
XXXListener interface that your
callback must implement

• E.g. LocationListener

SensorManagerYour App

Sensor Event

Sensor Event

Sensor Event

Register Callback

Async Callbacks

Wireless Systems Lab - 2014

Sensors Framework Overview

Wireless Systems Lab - 2014

Android Sensors API
• The entry point to the API is the SensorManager class, which allows an

app to request sensor information and register to receive sensor data.
When registered, sensor data values are sent to a SensorEventListener in
the form of a SensorEvent that contains information produced from a given
Sensor

• The Sensor class is the Android representation of a hardware sensor on a
device. This class exposes information about the sensor, such as:

• Maximum range
• Minimum delay
• Name
• Power
• Resolution
• Type
• Vendor
• Version

Wireless Systems Lab - 2014

•The non-media (e.g. not camera) sensors are managed by a variety of
XXXXManager classes:

• LocationManager (GPS)

• SensorManager (accelerometer, gyro, proximity, light, temp)

•The first step in registering is to obtain a reference to the relevant manager

•Every Activity has a getSystemService() method that can be used to obtain a
reference to the needed manager

public class MyActivity … {

 private SensorManager sensorManager_;

 public void onCreate(){
 …

 sensorManager_ = (SensorManager) getSystemService(SENSOR_SERVICE);
 }

}

Getting the Relevant System Service

Wireless Systems Lab - 2014

● The SensorManager handles registrations for
○ Accelerometer, Temp, Light, Gyro

● In order for an object to receive updates from GPS, it must implement the
SensorEventListener interface

● Once the SensorManager is obtained, you must obtain a reference to the
specific sensor you are interested in updates from

● The arguments passed into the registerListener method determine the sensor
that you are connected to and the rate at which it will send you updates

public class MyActivity … implements SensorListener{
 private Sensor accelerometer_;
 private SensorManager sensorManager_;

 public void connectToAccelerometer() {
sensorManager_ = (SensorManager)getSystemService(SENSOR_MANAGER);
accelerometer_ = sensorManager_

.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
sensorManager_.registerListener(this, accelerometer_,

SensorManager.SENSOR_DELAY_NORMAL);

}

Registering for Sensor Updates

Wireless Systems Lab - 2014

Best practices for accessing and using
sensors

1. Unregister sensor listeners.
2. Don’t test your code on the emulator.
3. Don’t block the onSensorChanged() method.
4. Avoid using deprecated methods or sensor types.
5. Verify sensors before you use them.
6. Choose sensor delays carefully.
7. Filter the values received in onSensorChanged(). Allow

only those that are needed.

Wireless Systems Lab - 2014

● It is very important that you unregister your App when you no longer need
updates

● For example, you should always unregister your listener when your Activity is
paused!

● If you unregister when you pause, you must also re-register when you resume
○ This is true for all sensors!

public class MyActivity … {

 private LocationManager locationManager_;

public void onCreate(Bundle savedInstanceState) {
…
locationManager_ = (LocationManager)getSystemService(LOCATION_SERVICE);

}
protected void onPause() {

super.onPause();
locationManager_.removeUpdates(this);

}
protected void onResume() {

super.onResume();
locationManager_.requestLocationUpdates(LocationManager.GPS_PROVIDER, 10,

 Criteria.ACCURACY_FINE, this);
}

…
}

Being a Good Citizen...

Wireless Systems Lab - 2014

Sensor Event Listener

• After we register the Sensors, the sensor readings get
notified in SensorEventListener‘s onSensorChanged()
method.

• To avoid that small changes (noise) jump within a large
range of values we can specify the SensorManager‘s delay
properties from one of these:

1. SENSOR_DELAY_FASTEST (0 ms)
2. SENSOR_DELAY_GAME (20 ms)
3. SENSOR_DELAY_UI (67 ms)
4. SENSOR_DELAY_NORMAL (200 ms)

Remember:

Allow only those values which are useful and discard
the unnecessary noise.

Wireless Systems Lab - 2014

● Because there is one interface for multiple types of sensors, listening to
multiple sensors requires switching on the type of event (or creating separate
listener objects)

Sensor Manager

private void initAccel(){
mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
mSens = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
mSensorManager.registerListener(this, mSens,

 SensorManager.SENSOR_DELAY_GAME);
}

@Override
public void onSensorChanged(SensorEvent event) {
 if (event.sensor.getType() == SensorManager.SENSOR_ACCELEROMETER) {

 float x = event.values[SensorManager.DATA_X];
 float y = event.values[SensorManager.DATA_Y];
 float z = event.values[SensorManager.DATA_Z];
}

}

Wireless Systems Lab - 2014

public class MyActivity … {

 private class AccelListener implements SensorListener {

public void onSensorChanged(SensorEvent sensorEvent) {
…

}
public void onAccuracyChanged(Sensor arg0, int arg1) {}

}

private class LightListener implements SensorListener {
public void onSensorChanged(SensorEvent sensorEvent) {

…
}
public void onAccuracyChanged(Sensor arg0, int arg1) {}

}

private SensorListener accelListener_ = new AccelListener();
private SensorListener lightListener_ = new LightListener();

…
public void onResume(){
 …
 sensorManager_.registerListener(accelListener, accelerometer,

 SensorManager.SENSOR_DELAY_GAME);
 sensorManager_.registerListener(lightListener, lightsensor,

 SensorManager.SENSOR_DELAY_NORMAL);

}
public void onPause(){
 sensorManager_.unregisterListener(accelListener_);
 sensorManager_.unregisterListener(lightListener_);
}

• Another approach for multiple sensors:

Wireless Systems Lab - 2014

Android GraphView Library
Reference: http://android-graphview.org/#

Wireless Systems Lab - 2014

A simple graph
// init example series data

GraphViewSeries exampleSeries = new GraphViewSeries(new GraphViewData[] {

 new GraphViewData(1, 2.0d)

 , new GraphViewData(2, 1.5d)

 , new GraphViewData(3, 2.5d)

 , new GraphViewData(4, 1.0d)

});

GraphView graphView = new LineGraphView(

 this // context

 , "GraphViewDemo" // heading

);

graphView.addSeries(exampleSeries); // data

LinearLayout layout = (LinearLayout) findViewById(R.id.layout);

layout.addView(graphView);

Wireless Systems Lab - 2014

Viewport
...

GraphView graphView = new LineGraphView(

 this

 , "GraphViewDemo"

);

// add data

graphView.addSeries(new GraphViewSeries(data));

// set view port, start=2, size=40

graphView.setViewPort(2, 40);

graphView.setScrollable(true);

// optional - activate scaling / zooming

graphView.setScalable(true);

LinearLayout layout = (LinearLayout) findViewById(R.id.layout);

layout.addView(graphView);

Wireless Systems Lab - 2014

More styles...
graphView.getGraphViewStyle().setGridColor(Color.GREEN);

graphView.getGraphViewStyle().setHorizontalLabelsColor(Color.YELLOW);

graphView.getGraphViewStyle().setVerticalLabelsColor(Color.RED);

graphView.getGraphViewStyle().setTextSize(getResources().getDimension(R.
dimen.big));

graphView.getGraphViewStyle().setNumHorizontalLabels(5);

graphView.getGraphViewStyle().setNumVerticalLabels(4);

graphView.getGraphViewStyle().setVerticalLabelsWidth(300);

Wireless Systems Lab - 2014

Errors and sensors signal processing

● Sensors do not measure values perfectly. Instead, they can
often produce data that is incorrect due to noise or because
of degradation that occurs over time. Both of these
problems may introduce errors in the resulting data.

● To reduce errors, an app can filter output from individual
sensor readings or fuse results from multiple sensors.
○ Noise: random fluctuation of a measured value

○ Drift: slow, long-term wandering of data away from the
real-world value

○ Zero Offset (“Bias”): if the output signal is not zero

when the measured property is zero, the sensor has an
offset or bias.

Wireless Systems Lab - 2014

Techniques to Address Error

● Re-zeroing: if there is an offset present that is affecting your
application, it may be useful to re-zero the sensor
measurements. This is as simple as storing a calibrated
value and subtracting it from each measured value.

● Filters: Low-pass filters filter out any high-frequency signal or
noise and have a “smoothing” effect on data. High-pass
filters filter out slow drift and offset and just give the higher
frequency changes.

● Sensor fusion: it refers to using more than one sensor to
take advantage of the strengths of each sensor and mitigate
the effects of the weaknesses.

Wireless Systems Lab - 2014

Low-pass filter

• A low-pass filter passes low-frequency signals/values and
attenuates (reduces the amplitude of) signals/values with
frequencies higher than the cutoff frequency.

• Take an example of simple signal with values ranging from 0
to 1.

• Due to an external source (environmental factors such as
jerks or vibrations), a considerable amount of noise is added
to these signals. These high frequency signals (noise) cause
the readings to hop between considerable high and low
values.

Wireless Systems Lab - 2014

Apply Low-pass filter
New mean= Last value * (1– α) + x[i] * α

Here is the algorithm implementation:

for i from 1 to n
y[i] := y[i-1] + α * (x[i] - y[i-1])

Here, α is the cut-off/threshold.

Lets implement it in Android:

lowPass(float[] input, float[] output)

The above method filters the input values and applies LPF and outputs the
filtered signals.

static final float ALPHA = 0.25f; // if ALPHA = 1 OR 0, no filter applies.

protected float[] lowPass(float[] input, float[] output) {
 if (output == null) return input;
 for (int i=0; i<input.length; i++) {
 output[i] = output[i-1] + ALPHA * (input[i] - output[i-1]);
 }
 return output;
}

Wireless Systems Lab - 2014

High Pass Filter

• Emphasizes the higher frequency or
transient components

• Inverse of Low Pass Filter

final float a = 0.8;

/* Note: this is a low pass filter with input the new event.value[0] */

change_slow = a * change_slow + (1 - a) * event.values[0];

/* Linear acceleration is filtered by removing “static” values */

higher_frequency_value=event.values[0] - change_slow

Wireless Systems Lab - 2014

Lets try them all ...

• Build an App that :
• List all available sensor from the phone
• Choose a sensor to read data
• Display sensor data
• Plot the related data over time
• Implement the two filters above

•

• Follow the hint code :)

Wireless Systems Lab - 2014

Activities

Two main Activity:
• MainActivity

• List all type of sensors (string:name, int:type)
available on cellphone

• Create a button for each of them
• Pass all the data through an Intent to Sensor Activity

• SensorActivity
• Get the type of sensor clicked from the first activity
• Register to get the values
• Display and plot the values

Wireless Systems Lab - 2014

Activity Main Layout

Used ScrollView with linear layout e.g.,

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/scroll"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

<LinearLayout
 android:orientation="vertical"

android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/linearlayout1">
 </LinearLayout>

</ScrollView>

Wireless Systems Lab - 2014

Sensor Activity Layout
<?xml version="1.0" encoding="utf-8"?>

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/scroll"
 android:layout_width="match_parent"
 android:layout_height="wrap_content
/*Linear layout to print sensor data*/
<LinearLayout

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical" >

<TextView
 android:id="@+id/name"
 android:textAppearance="?android:attr/textAppearanceSmall" />
/*Linear Layout to print the graph*/
 <LinearLayout
 android:id="@+id/graph" >
 </LinearLayout>

</LinearLayout>
</ScrollView>

Wireless Systems Lab - 2014

Activity Main: Sensor List

• Get all the information from the type of
sensors
public LinkedList<SensorData> getInfo(){

/* Sensor Manager */

sMgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);

List<Sensor> list = sMgr.getSensorList(Sensor.TYPE_ALL);

/* Define a class Sensor Data */

LinkedList<SensorData> list = new LinkedList<SensorData>();

/* For each sensor get the data about the sensor and add to a data structure */
for (Sensor sensor : list) { }

}

Wireless Systems Lab - 2014

List all the Buttons
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

LinkedList<SensorData> listSensorData ; Type and properties of sensors

MAX_BUTTONS ; //Max number of the buttons

/*Create an array of buttons*/

btnWord = new Button[MAX_BUTTONS];

/* Get the linear layout to assign the button array*/

linear = (LinearLayout) findViewById(R.id.linearlayout1);

for (int i = 0; i < btnWord.length; i++) {

name =.. // name of sensor

type = .. // type of sensor

btnWord[i] = new Button(this);

btnWord[i].setText(name);

btnWord[i].setId(i + 1); // ID start from 1

btnWord[i].setOnClickListener(new MyOnClickListener(type));

linear.addView(btnWord[i]); // add the button to the linear layout

Wireless Systems Lab - 2014

Define a custom clickListener
class MyOnClickListener implements View.OnClickListener {

private final int sensorType;

/* Define myOnClickListener with a custom ID*/

 public MyOnClickListener(int id) {

 sensorType = id;

 }

 public void onClick(View v) {

 /*Create an intent to start the SensorActivity with the choosen sensor type */

 Intent myIntent = new Intent(v.getContext(), SensorActivity.class);

 myIntent.putExtra("sensor_type",sensorType);

 v.getContext().startActivity(myIntent);

 }

}

Wireless Systems Lab - 2014

SensorActivity
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.sensor_activity);

/* Get the intent with the selected type of sensor */

Intent intent = getIntent();

int type = intent.getIntExtra("sensor_type", -1);

SensorManager senSensorManager = (SensorManager) getSystemService(Context.
SENSOR_SERVICE);

 /* Register for the type of the sensor */

 Sensor senGeneral = senSensorManager.getDefaultSensor(type);

 senSensorManager.registerListener(this, senGeneral , SensorManager.SENSOR_DELAY_NORMAL);

 /*senGeneral is the type of sensor choosen, displaySensor prints information about the type of the sensor e.g.,
name power consumpiton etc*/

 displaySensor(senGeneral);

/*Create the graph */

 createGraph(); }

Wireless Systems Lab - 2014

Switch between sensor events
public void onSensorChanged(SensorEvent event) {

 /*E.g., get the TextView defined in layout file for the Sensor Activity and print the time*/

TextView timestamp = (TextView) findViewById(R.id.timestamp);

timestamp.setText(String.valueOf("Timestamp: "+event.timestamp+" ns"));

switch (event.sensor.getType()) {

case Sensor.TYPE_ACCELEROMETER:

/* Elabore and show the data received from the sensor */

showEventData("Acceleration - gravity on axis", “m/s*s”,

event.values[0], event.values[1], event.values[2]);

break;

case Sensor.TYPE_MAGNETIC_FIELD:

showEventData("Abient Magnetic Field", "uT", event.values[0],

event.values[1], event.values[2]);

break;

case Sensor.TYPE_GYROSCOPE:

showEventData("Angular speed around axis", "radians/sec",

event.values[0], event.values[1], event.values[2]);

break;

…………….

Wireless Systems Lab - 2014

createGraph() function
public void createGraph(){

 graphView = new LineGraphView(this , "SensorGraph"); }

 /*The value for the graph*/

 exampleSeries1 = new GraphViewSeries("X",null,new GraphViewData[] { new GraphViewData(0, 0.0d) });

 graphView.addSeries(exampleSeries1);

 graphView.setViewPort(1, 100);

 graphView.setScalable(true);

 graphView.setScrollable(true);

 graphView.setManualYAxisBounds((int)max,(int)min);

 graphView.getGraphViewStyle().setGridColor(Color.BLACK);

 graphView.getGraphViewStyle().setHorizontalLabelsColor(Color.BLACK);

 graphView.getGraphViewStyle().setVerticalLabelsColor(Color.BLACK);

 graphView.setShowLegend(true);

 graphView.setLegendAlign(LegendAlign.TOP);

 //graphView.setLegendWidth(200);

 graphView.getGraphViewStyle().setNumHorizontalLabels(5);

 graphView.getGraphViewStyle().setNumVerticalLabels(5);

 LinearLayout layout = (LinearLayout) findViewById(R.id.graph);

 layout.addView(graphView); }

Wireless Systems Lab - 2014

Output

