
Mininet & OpenFlow

24/11/2016

Firt steps: configure VM

PREREQUISITE: download and install the mininet VM from
http://mininet.org/download/

THEN:

• Change network settings by enabling «bridge»

• Start the mininet VM

• From Host terminal(Ubuntu) launch:
• ssh –Y mininet@<address_of_VM>

• Password is mininet

First sample commands

• sudo mn -h

• sudo mn --topo single,8 --test pingall

• sudo mn --topo single,8 --test iperf

• sudo mn --topo linear,8 --test pingall

• sudo mn -c

Setup 1: Mininet-based Single Switch

5

Controller
port6633c0

OpenFlow Switch
s1 ovs-ofctl

(user space
process)

h3
10.0.0.3

h2
10.0.0.2

h1
10.0.0.1

loopback
(127.0.0.1:6633)

loopback
(127.0.0.1:6634)

s1-eth0 s1-eth1 s1-eth2

h1-eth0 h2-eth0 h3-eth0

sudo mn --topo single,3 --switch ovsk --controller remote

virtual hosts

virtual
switch

First sample commands

• sudo mn --topo tree,depth=2,fanout=3 --test pingall

• sudo mn --topo tree,depth=2,fanout=3 --link tc,bw=5,delay=40ms

S1

S4S3S2

H1 H3H2 H4 H6H5 H7 H9H8

Custom Topologies
from mininet.topo import Topo

class MyTopo(Topo):

def __init__(self):

Initialize topology
Topo.__init__(self)

Add hosts and switches
leftHost = self.addHost('h1')
rightHost = self.addHost('h2')
leftSwitch = self.addSwitch('s3')
rightSwitch = self.addSwitch('s4')

Add links
self.addLink(leftHost, leftSwitch)
self.addLink(leftSwitch, rightSwitch)
self.addLink(rightSwitch, rightHost)

topos = { 'mytopo': (lambda: MyTopo()) }

Custom Topologies

sudo mn --custom ~/mininet/custom/topo-2sw-2host.py

--topo mytopo –-link tc --test pingall

Each host gets 50%/n of system CPU
host = self.addHost('h%s' % (h + 1), cpu=.5/n)

10 Mbps, 5ms delay, 10% loss, 1000 packet queue
self.addLink(host, switch, bw=10, delay='5ms',

loss=10, max_queue_size=1000, use_htb=True)

switch = self.addSwitch('s1')

Python's range(N) generates 0..N-1
for h in range(n):

host = self.addHost('h%s' % (h + 1))
self.addLink(host, switch)

Exercise 1

• Build the following topology, execute a ping
between all the hosts and measure the bandwidth
between host 1 and host 4

S1

S4S3S2

H2H1 H3 H4 H5

This link has a bandwidth of
4 Mbit and a delay of 50ms

and a loss of 15%

Pox Controller

• POX is an open platform for the rapid development and prototyping of network
control software

• Pox architecture is ‘‘component based’’

• Ex: ./pox.py samples.pretty_log forwarding.l2_learning

• Some stock components:
• openflow.of_01 (usually started automatically)
• forwarding.hub
• forwarding.l2_learning
• forwarding.l2_pairs
• forwarding.l2_multi
• openflow.spanning_tree
• openflow.discovery
• misc.of_tutorial the component we will customize in this lab
• …

Packets in POX

• POX generally works with ethernet packets
• Which often contain ipv4 packets…

• (which often contain tcp packets...)

• Some of the packet types supported by POX:
• ethernet, arp, ipv4, icmp, tcp, udp, dhcp, dns…

• Most packets have some sort of header and
some sort of a payload

• A payload is another type of packet

Ethernet packets in POX

• Class ethernet
• defined in ~/pox/pox/lib/packet/ethernet.py

• Attributes:
• dst (EthAddr)

• src (EthAddr)

• type (int)

• effective_ethertype (int)

• payload (for example an ipv4 packet…)

• Constants:
• IP_TYPE, ARP_TYPE, VLAN_TYPE, …

• Example: packet.src, packet.IP_TYPE

The Event System

• Event Handling in POX fits into the
publish/subscribe paradigm

• Certain objects publish events and others subscribe to
specific events on these objects

• In other words: we'd like a particular piece of code
to be called

• Ex: chef.addListenerByName("SpamFinished", spam_ready)

The object
that raises
the event

The name of
the event

The function
handling the

event

The Event System

• Ex: object chef raises two events, SpamStarted and
SpamFinished

class HungryPerson (object):
""" Models a person that loves to eat spam """

def __init__ (self):
chef.addListeners(self)

def _handle_SpamStarted (self, event):
print "I can't wait to eat!"

def _handle_SpamFinished (self, event):
print "Spam is ready! Smells delicious!"

Example: empty controller

• Let’s go to the code and see the events ConnectionUp
and PacketIn!

• ConnectionUp: fired in response to the establishment
of a new control channel with a switch

• PacketIn: Fired when the controller receives an
OpenFlow Packet-In message from a switch

• Attributes:
• port (int): number of port the packet came in on
• data (bytes): raw packet data
• parsed (packet subclasses): packet’s parsed version
• ofp (ofp_packet_in): OpenFlow message which caused this

event

Packet-In message in POX

• The POX object type is ofp_packet_in

• Attributes:
• in_port (int): number of port the packet came in

on

• data (bytes): raw packet data

• buffer_id (int): ID of the buffer in which the
packet is stored at the switch

• …

Packet-Out message in POX

• The POX object type is ofp_packet_out

attribute type default notes

in_port int OFPP_NONE Switch port that the packet arrived on, if
resending a packet

data bytes / ethernet /
ofp_packet_in

'' The data to be sent. If you specify
an ofp_packet_in for
this, in_port, buffer_id, and data will all
be set correctly – this is the easiest way to
resend a packet.

buffer_id int/None None ID of the buffer in which the packet is stored at
the switch. If you're not resending a buffer by
ID, use None

actions list of
ofp_action_XXXX

[] An action or a list of actions

OpenFlow actions in POX

• ofp_action_output: Forward packets out of a
port

• Ex: of.ofp_action_output(port = 4)

Reference to
the object that
manages the

OpenFlow
protocol

Output port
for the
packet

Possible values for ‘‘port’’:
• OFPP_IN_PORT: Send back out the port the packet was

received on
• OFPP_TABLE: Perform actions specified in flowtable. Note: Only

applies to ofp_packet_out messages
• OFPP_NORMAL: Process via normal L2/L3 legacy switch

configuration (if available – switch dependent)
• OFPP_FLOOD: output all openflow ports except the input port

and those with flooding disabled
• OFPP_ALL: output all openflow ports except the in port
• OFPP_NONE: Output to no where
• …

OpenFlow messages in POX

""" Instructs the switch to resend a packet that

it had sent to us. "packet_in" is the ofp_packet_in object

the switch had sent to the controller due to a table-miss. """

msg = of.ofp_packet_out()

msg.data = packet_in

Add an action to send to the specified port

action = of.ofp_action_output(port = out_port)

msg.actions.append(action)

Send message to switch

self.connection.send(msg)

Example: of_tutorial.py

• Let’s go to the code and see the OpenFlow tutorial!

• You can find the code here:

~/pox/pox/misc/of_tutorial.py

• To start the controller, type in the ~/pox folder:

./pox.py misc.of_tutorial samples.pretty_log

Exercise 2

• Modify the of_tutorial.py to implement the
behavior of a learning switch using the OpenFlow
message Packet-Out

IP packets in POX

• Class ipv4
• defined in ~/pox/pox/lib/packet/ipv4.py

• Attributes:
• dstip (IPAddr)

• srcip (IPAddr)

• protocol (int)

• payload (for example a TCP packet…)

• Constants:
• TCP_PROTOCOL, UDP_PROTOCOL, …

• Example: packet.srcip, packet.TCP_PROTCOL

TCP packets in POX

• Class tcp
• defined in ~/pox/pox/lib/packet/tcp.py

• Attributes:
• dstport (EthAddr)

• srcport (EthAddr)

• SYN (bool)

• FIN (bool)

• ACK (for example an ipv4 packet…)

• …

• Example: packet.srcport

• Develop a firewall that allows only
• ARP packets
• TCP packets over IP packets, but only if:

• directed to host 10.0.0.1 (port 80)

• host 10.0.0.1 is the source

Exercise 3

Flow-Mod message in POX

• The POX object type is ofp_flow_mod

• It is used to add/delete/modify flow
table entries

• Attributes:
• command (int): default is add a rule

• idle_timeout (int): rule expire time, default is
unlimited

• match (ofp_match): the match structure for the rule
to match on

• actions  see Packet-Out

• data  see Packet-Out

ofp_match structure

• Defines a set of headers for packets to match against

• You can either build a match from scratch or create one
based on an existing packet

• Attributes:
• priority:matching precedence of the flow entry
• in_port: port number the packet arrived on
• dl_src: ethernet source address
• dl_dst: Ethernet destination address
• tp_src: TCP/UDP source port
• tp_dst: TCP/UDP destination port
• …

• Or you can use ofp_match.from_packet(<packet>)

Traffic to 192.168.101.101:80 should be sent out switch port 4

One thing at a time...
msg = of.ofp_flow_mod()

msg.match.dl_type = 0x800
msg.match.nw_dst = IPAddr("192.168.101.101")
msg.match.nw_proto = 6 #TCP protocol
msg.match.tp_dst = 80

msg.actions.append(of.ofp_action_output(port = 4))

self.connection.send(msg)

Example

Create a match from an existing packet

One thing at a time...
msg = of.ofp_flow_mod()

msg.match = of.ofp_match.from_packet(packet)
msg.actions.append(of.ofp_action_output(port = 4))
msg.data = packet_in

self.connection.send(msg)

Exercise 4

• Modify the of_tutorial.py to implement the
behavior of a learning switch using the OpenFlow
message Flow-Mod

