
Unicast Routing

Ad Hoc networks
(under standardization in the IETF
MANET WG)

What is an ad hoc network
A wireless multi-hop infrastructure-less
network whose devices act as source/
destination of messages & as relay for
packets generated by a node s and addressed
to a node z (iff they are on a s-z route)
Pros: No need for infrastructure Æ low cost,
enables communication where it is usually
not needed or is not viable
Must be: Self-organizing, self-configuring,
self-maintaining

Application scenarios
Collaboration between users in office
environments
Disaster recovery applications
Military networks
Personal Area Networks
Home Networking
Wireless Sensor Networks (WSNs)
Inter-vehicular communication

Features of ad hoc networks
Highly dynamic networks Æ device mobility, energy
saving sleep/awake modes
Need for low energy/resource-consuming, simple
protocols
Bandwidth and resource constrained environment
Traffic:
� All-pairs in general ad hoc networks, from sensors to sink(s) in

sensor networks
� In many case not high

Scale: Application dependent
� 10-100 nodes in traditional ad hoc networks
� 1000-10000 in sensor networks

Features of highly resource constrained ad hoc
networks (WSNs)

Highly dynamic networks Æ due to device mobility (only in
some specific applications), to the fact the active node set
changes in time for sake of energy saving (always to be
considered)
Need to design low energy/resource-consuming, simple
protocols Æ very critical, energy consumption a real
bottleneck
Traffic from sensors to sink(s)
Scalability is a major issue
Code must be simple (small storage capability, very
simple, inexpensive, resource constrained devices)
First solutions we will see for traditional ad hoc networks
do not scale to high numbers and are not energy-saving

Routing-Traditional approach
(from Reti 1)

Intra-AS routing in the Internet
� Link State Approaches
(info on the topology graph gathered at

nodes which run shortest path algorithms-
Dijkstra- to decide the routes to the
different destinations –e.g. OSPF routing
protocol)

� Distance Vector approaches (e.g. RIP)

Bellman-Ford
Given a graph G=(N,A) and a node s find the shortest path

from s to every node in N.
A shortest walk from s to i subject to the constraint that the walk

contains at most h arcs and goes through node s only once, is denoted
shortest(<=h) walk and its length is Dh

i.

Bellman-Ford rule:
Initiatilization Dh

s=0, for all h; wi,k = infinity if (i,k) NOT in A; wk,k =0;
D0

i=infinity for all i!=s.
Iteration:

Dh+1
i=mink [wi,k + Dh

k]
Assumption: non negative cycles (this is the case in a network!!)
The Bellman-Ford algorithm first finds the one-arc

shortest walk lengths, then the two-arc shortest walk
length, then the three-arc…etc. Ædistributed version
used for routing

Bellman-Ford

Dh+1
i=mink [wi,k + Dh

k]

Can be computed locally.
What do I need?

For each neighbor k, I need to know
-the cost of the link to it (known info)
-The cost of the best route from the neighbor k to the destination
(Åthis is an info that each of my neighbor has to send to me via
messages)

In the real world: I need to know the best routes among each
pair of nodes Æ we apply distributed Bellman Ford to get the best
route for each of the possible destinations

Distance Vector Routing Algorithm
-Distributed Bellman Ford

iterative:
continues until no
nodes exchange info.
self-terminating: no
“signal” to stop

asynchronous:
nodes need not
exchange info/iterate
in lock step!

Distributed, based on
local info:
each node
communicates only
with directly-attached
neighbors

Distance Table data
structure

each node has its own
row for each possible
destination
column for each directly-
attached neighbor to node
example: in node X, for dest.
Y via neighbor Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min {D (Y,w)}Z
w

=

=

Cost associated to the (X,Z) link

Info maintained at Z. Min must
be communicated

Distance Vector: link cost changes
Link cost changes:

good news travels fast
bad news travels slow -
“count to infinity” problem!

X Z
14

50

Y
60

algorithm
continues

on!

Y detects link cost
Increase but think can
Reach X through Z at a
total cost of 6 (wrong!!)

The path is Y-Z-Y-X

Count-to-infinity –an everyday life
example
Which is the problem here?
the info exchanged by the protocol!! ‘the best route to X I
have has the following cost…’ (no additional info on the
route)
A Roman example…
-assumption: there is only one route going from Colosseo to
Altare della Patria: Via dei Fori Imperiali. Let us now consider
a network, whose nodes are Colosseo., Altare della Patria,
Piazza del Popolo

Colosseo Altare Patria Piazza del
Popolo

1 Km 1 Km

Colosseo Al.Patria P.Popolo
1Km 1Km

The Colosseo. and Alt. Patria nodes exchange the following info
• Colosseo says ‘the shortest route from me to P. Popolo is 2 Km’
• Alt. Patria says ‘the shortest path from me to P. Popolo is 1Km’
Based on this exchange from Colosseo you go to Al. Patria, and from there to
Piazza del Popolo OK Now due to the big dig they close Via del Corso
(Al. Patria—P.Popolo)
• Al. Patria thinks ‘I have to find another route from me to P.Popolo.
Look there is aa route from Colosseo to P.Popolo that
takes 2Km, I can be at Colosseo in 1Km Æ I have found
a 3Km route from me to P.Popolo!!’ Communicates the new cost to
Colosseo that updates ‘OK I can go to P.Popolo via Al. Patria in 4Km’
VERY WRONG!! Why is it so? I didn’t know that the route from
Colosseo to P.Popolo was going through Via del Corso from Al.Patria
to P.Popolo (which is closed)!!

Count-to-infinity –everyday life example (2/2)

Routing in ad hoc networks-
Goals

Minimal control overhead
Minimal processing overhead
Multi-hop path routing capability
Dynamic topology maintenance
No loops
Self-starting

2 Primary Approaches

Proactive
� Based on traditional distance-vector and link-state

protocols
� Each node maintains route to each other network node
� Periodic and/or event triggered routing update exchange
� Higher overhead in most scenarios
� Longer route convergence time
� Examples: DSDV, TBRPF, OLSR

Highly Dynamic Destination-Sequenced
Distance-Vector (DSDV) Routing
Proactive, distance vector approach (uses distributed
asynchronous Bellman Ford). Updates on routes costs
transmitted periodically or when significant new information
is available.
Difference wrt Bellman Ford: tries to avoid loops
(approaches such as Poison reverse non effective in
broadcast channels, we seek solutions which are simple and
fully distributed)
Metrics: fresh routes better than stale routes, number of
hops used to select among the fresh routes
How to identify fresh routes? By means of sequence
numbers identifying the freshness of the communicated
information. When changes occur, the sequence number
increase.

Highly Dynamic Destination-Sequenced
Distance-Vector (DSDV) Routing
Periodically destination nodes transmit updates with a new
sequence number (and such updates are propagated by the
other nodes). Updates contain information on the costs to
achieve the different destinations and the freshness of the
delivered information
Data broadcast include multiple entries each with:
� Destination address
� Number of hops required to reach the destination
� Sequence number of the information received regarding that

destination as originally stamped by the destination
In the header the data broadcast also include:
� Address (HW address/Net address) of the sender of the message
� Sequence number created by the transmitter

Two types of updates (full dump or incremental-only
changes- to decrease bandwidth consumption.

Highly Dynamic Destination-Sequenced
Distance-Vector (DSDV) Routing
How can the costs be modified? Cost=number of hops, target:
using fresh routes as short as possible Æ a link cost changes
from 1 to inf and from inf to 1
How do we detect that a link is ‘broken’? At layer 2 (no hello
messages received for some time, or attempts to retransmit a
frame exceeds the MAC protocol threshold) or at layer 3 (do
not receive periodic updates by a neighbor)
Link cost increase (1Æ inf):
� The nodes incident to that link (A,B) discover it (see above)
� Routes going through that link get assigned an inf cost in nodes A and B

routing tables
� A new sequence number is generated by the mobile node. Mobile nodes

different from the destination use odd SN, the destination even SN.
� Updates with routes with infinite cost are immediately transmitted by

nodes
Link cost decrease (infÆ1):
� Immediately transmits updates

Highly Dynamic Destination-Sequenced
Distance-Vector (DSDV) Routing
When a node receives updates it sees if costs to reach the
different destinations can be improved:
� routes with more recent sequence numbers to a given destination are

used
� if more routes available with the same SN the shortest is used

Newly recorded routes are scheduled for immediate
advertisement (infÆ finite value)
Routes with improved metric are scheduled for advertisement
at a time which depends on the estimated average settling
time for routes to that particular destination (based on
previous history)
As soon as a route cost changes the node may delay
informing its neighbors but immediately starts using the new
information for its forwarding

Highly Dynamic Destination-Sequenced
Distance-Vector (DSDV) Routing-Correctness
Assuming routing tables are stable and a change occurs
� let G(x) denotes the routes graph from the sources to x BEFORE the

change (assume no loop)
� change occurs at i when 1) the link from i to its parent p(i) in G(x)

breaks Æ i sets to inf that route (no loop can occur) 2) node i receives
from one of its neighbors k a route to x with sequence number SNx

k
and metric m which is selected to replace the current metric i has to
reach x (this occurs only if SNx

k greater than the previous SN I had
stored Snx

i or if the two SN are equal but the new route has a lower
hop cost Æ in the first case if selecting k leads to a loop then SNx

k <=
Snx

i which is a contradiction, in the second case comes from the
observation reduction in the costs do not bring to loops).

Why traditional approaches
have limits?
Proactive protocols are costly in terms of overhead
(the bandwidth and energy are critical resources)
The cost of maintaining routes updated may not
make sense in an environment in which
� Medium-high mobility
� Medium-high dynamicity (awake/asleep states)
Often make the opt. Route change (requiring updates)

while
� Traffic is generally low (so the cost of maintaining always

updated routes is not balanced by their use)
If this is the scenario what can we do?

2 Primary Approaches (cont.)

Reactive (on-demand)
� Source build routes on-demand by “flooding”
� Maintain only active routes
� Route discovery cycle
� Typically, less control overhead, better scaling

properties
� Drawback: route acquisition latency
� Example: AODV, DSR

Ad hoc On-Demand Distance
Vector (AODV) Routing

Reactive (nodes that do not lie on active paths neither
maintain any routing information nor participate in any
periodic routing table exchange; a node does not have to
discover/maintain a route to a destination till it is on a path
to it or has to send messages to it)
Route discovery cycle used for route finding
Maintenance of active routes
Sequence numbers used for loop prevention and as route
freshness criteria
Descendant of DSDV (standard distance vector approach
mapped to ad hoc networks), in AODV no periodic updates
but pure on-demand operation.
Provides unicast and multicast communication

AODV: Route Discovery

1. Node S needs a route to D AND does not
have routing info for it in its table

A

B

C D
S

AODV: Route Discovery

1. Node S needs a route to D
2. Creates a Route Request (RREQ)

Enters D ‘s IP addr, seq#,
S ‘s IP addr, seq#
hopcount (=0), broadcast ID

A

B

C D
S

AODV: Route Discovery

1. Node S needs a route to D
2. Creates a Route Request (RREQ)

Enters D ‘s IP addr, seq#,
S ‘s IP addr, seq#
hopcount (=0), broadcast ID

3. Node S broadcasts RREQ to neighbors

A

B

C D
S

RREQ

AODV: Route Discovery

4. Node A receives RREQ
� Makes reverse route entry for S

dest=S, nexthop=S, hopcnt=1,expiration time for reverse path
Source node SN,D,broadcastID also maintained
� It has no route to D, so it rebroadcasts RREQ (hopcount

increased)
� If it has already received that request (same source and

broadcast ID) it discards the RREQ
� if it knows a valid path to D it will send back a reply to the

source

A

B

C D
S

RREQ

AODV: Route Discovery

4. Node A receives RREQ
� Makes reverse route entry for S

dest=S, nexthop=S, hopcnt=1
� It has no route to D, so it rebroadcasts RREQ

A

B

C D
S

RREQ

AODV: Route Discovery

5. Node C receives RREQ
� Makes reverse route entry for S

dest=S, nexthop=A, hopcnt=2
� It has a route to D, and the seq# for route to D

is >= D’s seq# in RREQ

A

B

C D
S

RREQ

AODV: Route Discovery

5. Node C receives RREQ (cont.)
� C creates a Route Reply (RREP)

Enters D’s IP addr, seq#
S’s IP addr, hopcount to D (= 1), lifetime of the

forward route
� Unicasts RREP to A

A

B

C D
S

RREQ

AODV: Route Discovery

5. Node C receives RREQ (cont.)
� C creates a Route Reply (RREP)

Enters D’s IP addr, seq#
S’s IP addr, hopcount to D (= 1)….

� Unicasts RREP to A

A

B

C D
S RREP

AODV: Route Discovery

6. Node A receives RREP
� Makes forward route entry to D

dest = D, nexthop = C, hopcount = 2
� Unicasts RREP to S

A

B

C D
S

RREP
RREP

AODV: Route Discovery

7. Node S receives RREP
� Makes forward route entry to D

dest = D, nexthop = A, hopcount = 3

Also the latest SN of the destination is updated when receiving
the RREP

Nodes not along the path determined by the RREP will timeout
after ACTIVE_ROUTE_TIMEOUT (3000ms) and will delete
the reverse pointer

A

B

C D
S

RREP

AODV: Route Discovery

7. Node S receives RREP
� Makes forward route entry to D

dest = D, nexthop = A, hopcount = 3

Also the latest SN of the destination is updated when receiving
the RREP

Nodes not along the path determined by the RREP will timeout
after ACTIVE_ROUTE_TIMEOUT (3000ms) and will delete
the reverse pointer

A

B

C D
S

RREP
Se è la destinazione
A rispondere con un
RREP genera un nuovo
SN

AODV: Route Discovery

7. Node S receives RREP
� Makes forward route entry to D

dest = D, nexthop = A, hopcount = 3
� Sends data packets on route to D

A

B

C D
S

What if….

A node receives further RREPs for the same
request? (e.g. more neighbors of a node had
paths to the destination in cache)?
� upon reception of another RREP the node

updates its routing information and propagates
the RREP only if the RREP contains either a
greater destination SN, or the same destination SN
with a smaller hopcount

Other info maintained

Each node maintains the list of active
neighbors, neighbors sending to a given
destination through it
� useful for route maintenance

Routing table entries: dest,next hop,
hopcount, dest SN, active neighbors for this
route, expiration time for route table entry
(updates each time the route is used for
transmitting data Æ routes entries are
maintained if the route is active)

AODV: Route Maintenance

1. Link between C and D breaks
2. Node C invalidates route to D in route table
3. Node C creates Route Error (RERR) message

� Lists all destinations which are now unreachable
� Sends to upstream neighbors
� new sequence number

A

B

C D
S RERR

AODV: Route Maintenance

4. Node A receives RERR
� Checks whether C is its next hop on route to D
� Deletes route to D
� Forwards RERR to S

A

B

C D
S

RERR
RERR

AODV: Route Maintenance

5. Node S receives RERR
� Checks whether A is its next hop on route to D
� Deletes route to D
� Rediscovers route if still needed

A

B

C D
S

RERR

with a new sequence number

AODV: Optimizations

Expanding Ring Search
� Prevents flooding of network during route

discovery
� Control Time To Live (TTL) of RREQ to search

incrementally larger areas of network
� Advantage: Less overhead when successful
� Disadvantage: Longer delay if route not found

immediately

AODV: Optimizations (cont.)

Local Repair
� Repair breaks in active routes locally instead of

notifying source
� Use small TTL because destination probably hasn’t

moved far
� If first repair attempt is unsuccessful, send RERR to

source
� Advantage: repair links with less overhead, delay and

packet loss
� Disadvantage: longer delay and greater packet loss

when unsuccessful

AODV: Summary

Reactive/on-demand
Sequence numbers used for route
freshness and loop prevention
Route discovery cycle
Maintain only active routes
Optimizations can be used to reduce
overhead and increase scalability

Dynamic Source Routing (DSR)

Reactive
Route discovery cycle used for route
finding
Maintenance of active routes
Utilizes source routing

DSR: Route Discovery

1. Node S needs a route to D
2. Broadcasts RREQ packet

1. RREQ identifies the target of the route discovery,
contains a route record in which the traversed route is
accumulated, contains a pair <initiator, request id>
uniquely identifying the request

A

B

C D
S

RREQ: S

DSR: Route Discovery

1. Node S needs a route to D
2. Broadcasts RREQ packet
3. Node A receives packet, has no route to D

AND is NOT D
� Rebroadcasts packet after adding its address to

source route

A

B

C D
S

RREQ: S

DSR: Route Discovery

1. Node S needs a route to D
2. Broadcasts RREQ packet
3. Node A receives packet, has no route to D

� Rebroadcasts packet after adding its address to
source route

A

B

C D
S

RREQ: S, A

DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to

source route

A

B

C D
S

RREQ: S, A

DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to

source route

A

B

C D
S RREQ: S, A, C

DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to

source route
5. Node D receives RREQ, unicasts RREP to C

� Puts source route accumulated in RREQ into
RREP

A

B

C D
S RREQ: S, A, C

DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to

source route
5. Node D receives RREQ, unicasts RREP to C

� Puts source route accumulated in RREQ into
RREP

A

B

C D
S RREP: S, A, C, D

DSR: Route Discovery

6. Node C receives RREP
� Unicasts to A

A

B

C D
S RREP: S, A, C, D

DSR: Route Discovery

6. Node A receives RREP
� Unicasts to S

A

B

C D
S
RREP: S, A, C, D

DSR: Route Discovery

8. Node S receives RREP
� Uses route for data packet transmissions

A

B

C D
S
RREP: S, A, C, D

General node operation upon
receiving RREQ

If the pair <initiator address, request
ID> has recently been seen, DISCARD
If the node ID is already listed in the
source route DISCARDÆ avoids loops
If I’m the destination, send a RREP
Otrherwise, append my ID in the source
route and rebroadcast (orange cases
already seen in the previous slides)

Route maintenance

The two endpoints of a failed link are
transmitted to the source in a route error
packet
Upon a receiving a RERR packet a node
invalidates all the routes going through that
link
If the route is invalidated and it is needed, a
new route must be discovered

Optimizations (1)
Extensive use of caching (caching source routes
means that I already know all the routes to
intermediate destinations, the discovery of a
better route to an intermediate destination also
brings me to improving the route to the final
destination). Transmitting packets or sending
back replies make me learn routes.
A node that knows a route to a given destination
(has a source route in cache) can immediately
answer a RREQ
� Broadcast storm? Each nodes waits for a time which is

C*(h-1+r), r random in (0,1), h length of the route I’m
advertising. Only if I haven’t received other routes –
listen to other routes tx in the meanwhile-I transmit
mine.

Optimization (2)
Operation in promiscuous mode (I keep

discovering new routes by transmission of routes
by my neighbours)
RREQ overhead minimization: first set a TTL=1, if
I do not get answer I set it to infinity
Path shortening: if Y receives a packet by node X

but in the source route we have X, B,…,C,Y, Y
signals the path can be shortened (unsolicited
RREP)
What if the network is disconnected? Exponential
back-off to decrease the quantity of RREQ sent

AODV and DSR Differences

DSR uses source routing;
AODV uses next hop entry
DSR uses route cache;
AODV uses route table

Geographically-Enabled Routing

Outline
� Problems with proactive approaches
� Problems with reactive approaches
� A new way of naming\locating the

destination node
� Two seminal protocols
�DREAM & LAR, proactive and reactive

� Geo-enable routing and the link state idea

Proactive Solutions:
Drawbacks

Updates overhead, especially in
presence of high mobility
Overhead for enforcing loop freedom
Large routing tables
Low scalability
¾Is it really necessary to maintain a

consistent view of the network
topology?

Reactive Protocols: Drawbacks

The discovery phase introduces long delays
Route discovery and maintenance is very
sensitive to node mobility
Route caching is memory greedy
Operating in promiscuous mode is very
energy cnsuming
The size of the header of a data packet can
become cumbersome (no scalability)
¾Is the dependency on the network topology

avoidable?

Location-Enabled Ad Hoc
Routing

Nodes are equipped with positioning
system devices (e.g., Global Positioning
System receivers) that make them
aware of their position
This enables “directional” routing
Possible solutions differ on how the
location information of the destination
nodes is achieved

Strengths

No need to update big routing tables,
no need to piggyback routes to the
packet

No need to know the nodes on the way
to the destination: they can be moving
while the packet travels

Drawbacks

Needs extra hardware

Depends on the extra hardware

limitation (and resource requirements)

Scalability is an issue

� need to update nodes’ location info

DREAM

Distance routing effect algorithm for
mobility [Basagni+, 1998]

A proactive, effective way to spread
location information

Directional routing

Disseminating Location
Information: Problems

Need to periodically update the
location of a moving node.
� Efficient broadcast of location information
� Determining how far each location packet

should travel
� Determining how often a location packet

should be sent

Disseminating Location
Information: Solutions

Mobility-adaptive, deterministic
broadcast

Distance effect

Rate of updates is bound to the mobility
of the node

Mobility-Adaptive Broadcast

Deterministic solution that takes into account
MAC layer characteristics
Flooding of location packets proceeds “wave
expanding” from the source to the intended
destinations
Deterministic, interference-independent
delivery is obtained by using Time-Spread
Multiple-Access (TSMA) protocols

The Distance Effect

The Distance Effect

“Closer nodes look like they are moving
faster”
Need to receive more location updates
from closer node
Each packet is associated with an age
that determines how far that packet
must travel

DREAM: Rate of updates

Triggered by the mobility of the nodes

The faster the node the more updates it
sends

A plus: slow moving nodes impose little
overhead

DREAM: Directional Routing

Source S determines the location of
destination D at time t0 based on its location
table
Based on the current time t1 and t0 S
determines the area in which D can be found
(hence, D’s direction)
S transmits the data packet to all its
neighbors in D’s direction
Each neighbor does the same till D is reached

DREAM: Routing a Data
Packet

DREAM, Strengths

First of its kind: after that, the deluge!

Robustness: multiple routes to the
destination

DREAM, Weaknesses

It is flooding, although only directional

It is not that scalable, geographic info

updates have to be periodically

transmitted (even if mechanisms to

limit such overhead are enforced)

Location-Aided Routing (LAR)
Exploits location information to limit scope of
RREQ flood
Expected Zone: region that is expected to hold
the current location of the destination
� Expected region determined based on potentially old

location information, and knowledge of the
destination’s speed

RREQs limited to a Request Zone that contains
the Expected Zone and location of the sender
node

LAR: Expected Zone

D

D'

r

D = last known location of node
D, at time t0

D' = location of node D at current
time t1, unknown to node S

r = (t1 – t0) * estimate of D’s speed

Expected Zone

LAR
The request zone is the smallest rectangle that
includes the current location of the source and
the expected zone
Only nodes within the request zone forward
route requests
� Node A does not forward RREQ, but node B does

Request zone explicitly specified in the RREQ
Each node must know its physical location to
determine whether it is within the request zone

LAR: Request Zone

D

D'

r

S

Request Zone

Network Space

BA

(XS, YS) (XD+ r, YS)

(XS, YD + r) (XD+ r, YD+ r)

LAR, Possible Failures
If route discovery using the smaller
request zone fails to find a route, the
sender initiates another route discovery
(after a timeout) using a larger request
zone
� The larger request zone may be the entire

network
Rest of route discovery protocol similar to
DSR

LAR, the Routing
The basic proposal assumes that, initially, location
information for node X becomes known to Y only during
a route discovery
This location information is used for a future route
discovery

Variations
Location information can also be piggybacked on any
message from Y to X
Y may also proactively distribute its location information

LAR, Pros and Cons

Advantages
� Reduces the scope of RREQ flood
� Reduces overhead of route discovery

Disadvantages
� Nodes need to know their physical locations

In a sensor network we seek..

For solutions which scale
Which are energy saving
Which are well integrated with awake/asleep schedules
Which do not require to maintain routing tables
Which are simple
Solutions such as AODV and DSR has been proven to work well iff

they exploit intensively caching and promiscous mode operation
(energy inefficientÅ work by L. Feeney et al, 2001) and have been
shown not to scale to the volumes of nodes expected in sensor networks

(work by E. Belding Royer and S.J. Lee)
What can we use?
� communication sensors – sink
� Info such as localization and some level of synchronization often needed

by the application (if I sense an event I have to say WHERE and WHEN it
occurred, otherwise the information is not very interesting)

An example: GeRaF

Integrates
� geographic routing
� awake/asleep schedule
� MAC

How do nodes alternate between
awake ans asleep states? According to
a duty cycle (time ON/time ON+ OFF)

ON ON

OFF OFF

GeRaF basic idea

Geographic routing:
each node needs to
know its location, the
destination (sink)
location, and the
location of whom is
transmitting
(communicated in the
packet)
Greedy approach:
tries to select relays
so to advance as
much as possible
toward the destination
at each hop

GeRaF: operations
Main problem to be solved: how to make a
contention-based scheme/routing work in the
presence of sleep modes
� Flat solution
� Integrated MAC/routing/awake-asleep but awake-

asleep schedule and routing decoupled Æ each node
does not know its neighbor and their schedules Æ
low overhead

Tightly integrated with the routing layer (no
clear separation really)
� Without requiring routing tables/routing table updates
� Based on the knowledge of the nodes location and on

the knowledge of the sink location

Example of GeRaF operation
RTS invites all awake neighbors to become
a relay
Nodes in best position should win
� Nodes within tx range are divided in areas

depending on how close they are to the final
destination (the closest the better as relay)

•Need of location awareness

GeraF operation
Node i sends RTS with the identity of the area it
is polling now (starting from the closer to the sink,
among the slices in which its tx range has been
divided)
Each node, upon receiving the RTS, decides
whether it belongs to the polled area or not
(based on location info)
Only nodes in the polled area answer with a CTS
� No node answers Æ node i polls next area (no node

available for forwarding in the area-there are no nodes
or they are sleeping)

� One answer, CTS correctly received, send DATA
� Multiple answersÆ COLLISION, sender sends a collision

packet, MAC needed to solve collision (next slide)

GeraF operation (how to
handle collision)

1)A node receiving a collision packet tosses a
coin and with probability p transmits a CTS iff
it was participating to the previous phase (it
had previously sent a CTS resulting in
collision)
� if only one node answers node i sends data
� If no node answers, node i asks these nodes to

toss a coin again..
� if more nodes answer COLLISION. Collision

packet is sent. GO TO 1) (only the nodes which
have lead to collision survive to the next phase)

What If

All areas are polled unsuccessfully?
� Try again after some time (exponential

backoff)

Can I always reach the destination in
this way?

What if (answer)

No. Here is
An example

Solutions? (mechanisms have to be added to
recognize the problem, do backtracking and
try another route)

•sink

•Tx radius

How to solve dead-ends
A problem at low--medium density
We will see a solution (ALBA-R) in the

part on sensor networks

•sink

•Tx radius

GeRaf performance

square area 320m x 320m
Transmission range=40m
100-1000 randomly deployed nodes (avg
degree 5-50)
Duty cycle =0.01,0.1,0.5
Comparable costs for tx/rx/idle
Poisson packet arrival
Channel data rate 38Kbps

Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005

GeRaf performance, d=0.1
Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005

GeRaf performance, d=0.1
Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005

GeRaf performance, d=0.1
Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005

Con i meccanismi per evitare dead end si sale a % di successfully
Delivered packets nel caso di 200 nodi pari a 93-97%

Localization in sensor
networks

Thanks to Prof. Mani Srivastava
These slides have been derived
From his tutorial on sensor networks
Given at Rome Un. On July 2003

Localization
Useful info
� Helps with some protocols (e.g. GeraF)
� Needed for being able to identify where events occur

Why not just GPS (Global Positioning System) at
every node?
� Large size
� High power consumption
� Works only when LOS to satellites (not in indoor, heavy

foliage…)
� Over kill – often only relative position is needed (e.g.

enough to know that relative to a coordinate system
centered in the sink the event occurred in a position
(x,y). Starting from relative info if some nodes have
global coordinates global coordinates of events can be
inferred.

� Works only on earth ☺

Localization
Basic step is to evaluate distance between

two nodes (ranging). Different techniques
depending on the available HW:
� AoA (e.g. directional antennas)
� RSS
� ToA
Range free approaches (number of hops

between nodes used to estimate the
distance between them without using any
extra HW)

Techniques for Location
Sensing (AoA)
Measure direction of landmarks
� Simple geometric relationships can be used to

determine the location by finding the intersections
of the lines-of-position

� e.g. Radiolocation based on angle of arrival (AoA)
measurements of beacon nodes (e.g. base
stations)
� can be done using directive antennas + a compass
� need at least two measurements

BS

BS

BS

MS

φ1

φ2

φ3

Measure distance to landmarks, or Ranging
� e.g. Radiolocation using signal-strength or time-of-flight

� also done with optical and acoustic signals

� Distance via received signal strength
� use a mathematical model that describes the path loss attenuation with

distance
� each measurement gives a circle on which the MS must lie

� use pre-measured signal strength contours around fixed basestation
(beacon) nodes

� can combat shadowing
� location obtained by overlaying contours for each BS

� Distance via Time-of-arrival (ToA)
� distance measured by the propagation time

� distance = time * c
� each measurement gives a circle on which the MS must lie
� active vs. passive

� active: receiver sends a signal that is bounced back so that the receiver knows
the round-trip time

� passive: receiver and transmitter are separate
� time of signal transmission needs to be known

� N+1 BSs give N+1 distance measurements to locate in N dimensions

Techniques for Location Sensing (RSS or ToA)

Radiolocation via ToA and RSSI

x1

x2

x3

d1

d3

d2

MS

BS

BS

BS

•But what if the circles
do not intersect due to
measurement errors (e.g.
due to fading etc.)?
Æwill have to identify the best ‘guess’ given errors

Location in 3D

Location in 3D

Location in 3D

A possible solution: Absolute
Localization

Beacon

Unkown Location

Randomly Deployed Sensor Network

Beacon nodes

• A small fraction of the nodes
is aware of their locations

• Rest need to collaborate to
estimate their locations

Atomic Multilateration

22
,,)ˆ()ˆ(uiuiiuiu yyxxrf −+−−=

∑= 2min),(fyxF

)ˆ,ˆ(uu yx - initial position estimate for node u

,iuuu

u
1

2

3

1,ur

3,ur

2,ur

Beacon node
with known
location

Our objective function is:

Metrica di interesse
Errore quadratico medio

Nodi che hanno
almeno 3 vicini
(in 2D, se si usa
Ad esempio RSS)
beacon
possono stimare
la loro posizione
(triangolarization)

In presenza di errori

Iterative Multilateration
Nodes that estimate their locations can become
beacons and help other nodes discover their
locations.

Some observations:
� Can work for small networks, if ranging is accurate
� Energy efficient
� Still requires quite a lot of initial beacons
� Suffers from error accumulation
� Bad geometry yields bad results => unpredictable

performance
� Still a useful primitive for Distributed Collaborative Multilateration

Primo approccio semplice, vasta letteratura

Ref: based on slides by Andreas Savvides

Range free localization
Non usa ranging, ma solo informazioni

che si possono ottenere tramite algo di
routing tradizionali
Idee su come possa funzionare?

Qualche idea sull’approccio …
Servono degli anchor, nodi che
conoscono la propria posizione in un
sistema di coordinate comune

X1,Y1

X2,Y2

X3,Y3

X1,Y1

X2,Y2

X3,Y3

• Tutti I nodi calcolano il numero min. di hop tra
loro e gli anchor

• Anche gli anchor lo fanno tra loro

Qualche idea sull’approccio …

Anchor A: conosco la posizione esatta mia e
degli altri anchor, il num. di hop, posso stimare la
‘lunghezza media di un hop’
Questa informazione e’ usata per stimare le
distanze da tutti I nodi agli anchor. Sulla base di
tali distanze, le corrette coordinate degli anchor,
per triangolarizzazione ciascun nodo stima le
proprie coordinate

Pro: Non serve extra HW
Cons: si perde in precisione

Qualche idea sull’approccio …

Scalability Problems and
Clustering

What happens to protocols when the number
of network nodes grows?
� Especially crucial in WSNs

A traditional networking solution: Hierarchical
organization of the nodes
Network nodes are grouped into clusters
Some nodes, locally the “best,” are selected
to coordinate the clustering process:
Clusterheads

How to Select the Best Nodes

Independence of the clusterheads

Dominance of the clusterheads

Possibility to express “preferences”

Distributed operations

Fast and simple implementation

Previous Approaches

Heuristics based on Independent Sets
� Minimum ID approach (Gerla & al.)
� Maximum degree (Ephremides & al.)

Heuristics based on Dominating Sets
� The concept of “spine”
� Minimum connected dominating set

Previous Approaches:
Drawbacks

No preferences
Clustering “set up” differs from
clustering maintenance
One and two hops neighbors have to be
known at each node
Problems with nodes mobility
No analytical results

Maximum Independent Set
(MIS)

A subset V’ of the vertices V of a graph
G=(V,E) is independent when for each
u,v ∊ V’ the edge {u,v} ∉ E
MIS is an Optimization Problem
Input: A Graph G=(V,E) with n vertices
Output: A subset V’ of V that is
independent and has maximum size

MIS: Hardness

No known algorithm computer a MIS in
polynomial time
Need for approximate solutions
And approximation algorithm is an algorithm
that produces a solution that is not optimal,
but that approximates it
We sacrifice optimality in favor of a “good”
solution that can be computed efficiently

MIS is HARD to Approximate

Bad news
� Not only MIS is computationally hard

� It is also hard to approximate:
� Approximate solutions are not so good

� They are “unboundedly” far from the optimum

We consider the simple greedy heuristic
for the MIS

Greedy Heuristic for MIS, 1

Select the vertex with minimum degree
and put it in the MIS
� The degree of a vertex is the number of its

neighbors
� Cardinality of its adjacency list

� Keep going till all the vertices are either in
the MIS or COVERED by a vertices in the
MIS

Greedy Heuristic for MIS, 2

MIS(V,E,d) // d is the vector of degrees
mis = Ø
while V ≠ Ø do

v = vertex with min degree
mis = mis U {v}
V = V – {{v} U N(v)}

return mis

Greedy MIS: Maximal Solution

The greedy solution provides a maximal
independent set
� An independent set is maximal when, if you add a

vertex, the set is no longer independent
� You cannot make an maximal independent set bigger

This solution is also a minimal dominating set
� A dominating set D subset of V is a set such that a

vertex v ∊ V is either in D or it has a neighbor in D

Using Greedy MIS on UDG to
Computer a DS

Bad news: Still computationally hard
Better news: Minimum DS It is
approximable “up to a constant”
� It means that the ratio between the size of

a DS computed by MIS greedy on UDGs
and the size of a MDS is < c, c a constant

This constant is 5

Greedy MIS for MDS on UDG
is 5-approximable, 1

Key fact: In a UDG disk (radius 1) there
are at most 5 independent nodes
Consider an Optimal solution and a
Greedy solution
Since Opt is dominant, it dominates
Greedy
Assign every vertex of Greedy to one
dominator in Opt (choose one if more)

Greedy MIS for MDS on UDG
is 5-approximable, 2

For each u in Opt consider its assigned
vertices v1(u), v2(u), …, vk(u) of Greedy
How big is k?
Well, all vi(u) must be distant 1 from u
and they also have to be independent
Greedy: at most 5 times bigger than
Opt

MIS and Dominating Sets and
Wireless Networks

UDGs model ad hoc networks

IS and DS are useful for clustering ad hoc
networks
� Gives the network a hierarchical organization

� Decreases the amount of information at each node

� Enhances scalability

� Helps in “resource assignment”

MWIS-Based Clustering

MWIS = Maximal Weight Independent
Set
Clustering selection based on generic
weights (real numbers > 0)

� Mobility/node related parameters

� Generalizes previous “Independent
Set” solutions

Two Protocols

Distributed Clustering Algorithm (DCA)
� Quasi-mobile networks, periodical

reclustering. Allow complexity analysis, fast
and simple

Distributed and Mobility-Adaptive
Clustering (DMAC) Algorithm
� Same rules/procedures for clustering set

up and maintenance, adaptive to nodes
mobility and node/link failures

DCA: Distributed Clustering
Algorithm, 1

Assumptions

� Knowledge of IDs and weights of one-hop
neighbors

� Broadcast transmission of a packet in finite
time (a “step”)

� Nodes do not move during clustering

DCA, 2

(Only) Two messages:
� CH(v): Sent by a clusterhead v
� JOIN(u,t): Sent by ordinary node u when it

joins the cluster of clusterhead t

Three (simple) procedures:
� Init (start up)
� OnReceivingCH(v), OnReceivingJOIN(u,v)

(message triggered)

DCA
Ogni nodo conosce i suoi vicini ed il loro peso
Un nodo è init se ha il peso più grande dei
pesi dei suoi nodi vicini
Gli init node diventano clusterhead e invitano
i loro vicini a far parte del loro cluster
Un nodo x aspetta di ricevere messaggi dai
vicini di peso maggiore prima di prendere una
decisione
� Se un vicino di peso maggiore lo invita a far parte

del suo cluster allora x entra a far parte del cluster
del vicino di peso maggiore che lo contatta
(inviando un messaggio di Join) Æ nodo ordinario

� Altrimenti diventa clusterhead lui stesso e invia
un messaggio di CH

DCA

Due tipi di messaggi
� CH(v) è usato da un nodo v per rendere

consapevoli i suoi vicini del fatto che ha
assunto il ruolo di clusterhead

� JOIN(v,u) è usato dal nodo v per
comunicare ai suoi vicini che sarà parte di
un cluster il cui clusterhead è il nodo u

DCA

Variabili
� Cluster(v) indica l’insieme dei nodi che vanno

parte del cluster di cui è clusterhead v
� Clusterhead è una variabile che identifica il

clusterhead del mio cluster
� Ch(u) è vero quando o ha mandato un messaggio

CH (u==v) oppure quando ha ricevuto un
messaggio di CH dal nodo u

� La variabile booleana Join (u,t) è vera se il nodo v
ha ricevuto un JOIN(u,v) dal nodo u

DCA-Procedure (eseguite dal
nodo v)

Init
Se tutti i nodi vicini hanno un peso

minore di v
invia CH(v);
Cluster(v)=Cluster(v)U{v};
Ch(v)=true;
Clusterhead=v;

DCA-Procedure (eseguite dal
nodo v)

On receiving CH(u)
Ch(u)=true;
Se i vicini di peso maggiore di v con
peso maggiore di u hanno tutti
mandato un Join, allora

Clusterhead=u;
invia JOIN(v,Clusterhead);

DCA-Procedure (eseguite dal
nodo v)

On receiving JOIN(u,t)
Join(u,t)=true;
Se v è un clusterhead allora se t==v

Cluster(v)=Cluster(v)U{u};
Se ho ricevuto Join da tutti i vicini più piccoli EXIT

Altrimenti si verifica se tutti i vicini di peso maggiore hanno preso
una decisione sul ruolo.

Se questo è il caso e tutti i vicini di peso maggiore hanno
mandato JOIN

mandiamo un CH(v);
Cluster(v)=Cluster(v)U{v};
Clusterhead =v;
Se si è ricevuto JOIN da tutti i vicini minori EXIT.

Altrimenti se uno o più vicini di peso maggiore hanno mandato un
CH

Clusterhead=il vicino di peso maggiroe con peso più
grande tra quelli che sono diventati clusterhead e mi hanno
invitato.

manda JOIN(v,Clusterhead);
EXIT;

Example

4(9)

5(8)

7(5)

6(1)

2(3)

1(6)

8(1)

3(2)

Cluster 1
Cluster 2

Cluster 3

clusterhead clusterhead

clusterhead

I Step II Step III Step IV Step V Step

DCA: Provable Properties

Consider
τ: V Æ {1,2,3, … , 2k}

V = set of network nodes, k = number of
clusters
Proposition: Each node v in V sends exactly
one message by τ(v) steps
Corollary 1: DCA message complexity is n
=|V|
Corollary 2: DCA terminates correctly in at
most 2k steps (<= 2n)

A Note on the Average Time
Complexity

We notice that
k <= α(G)

G = topology graph, α(G) = G’s stability
number
We see the network as a random graph, for
which

(2k <=) 2 α(G) = circa O(log n)
Log’s base is a function of n and the number
of the network links

Adapting to Mobility and
Node/Link Failures: DMAC

DMAC is for clustering set up AND
maintenance
Nodes can move during the clustering
Each node reacts to
� Reception of a message
� Presence of a new link
� Link failure

Same assumptions of DCA, plus knowledge of
neighbors’ roles (no role = ordinary role)

DMAC: The Procedures

INIT
Link-dependent procedures:
� Link_Failure
� New_Link

Message-triggered procedures:
� OnReceivingCH(v)
� OnReceivingJOIN(u,t)

Joining Clusterheads: Dynamic
Backbone

A theorem from Chlamtac and Farago:
If a network is connected, and DCA is used,
then if and only if each clusterhead is linked
to all the clusterheads at most three hops
away, the resulting backbone network is
connected
Inherently mobility adaptive and stateless
Good if the random graph model could be
used

4 Backbone Formation Protocols

3 representatives of major approaches
� Selection of independent set of nodes and

backbone construction (DCA)
� Rich dominating set formation and pruning

(WuLi)
� Two-phase algorithm with theoretical

guarantees (WAF)
1 proposal after the performance
comparison (DCA-S)

Distributed Clustering Algorithm
(DCA)

Distributed and localized implementation
of the greedy for independent set
Takes node status into account for node
selection
Independent nodes are joined into a
connected backbone (connectivity is
guaranteed) via gateways
Low degree of parallelism (“dependency
chains”)

A DCA Backbone

WuLi: Wu and Li protocol

Distributed and localized protocols for
forming a connected dominating set
Build a rich connected dominating set
Applies localized rules for pruning
unnecessary nodes/links
High degree of parallelism (“all
localized”)

A WuLi Backbone

WAF: Wan, Alzoubi and
Frieder

Two phases
� Leader election: One node is chosen

among all network nodes to be the root of
a tree

� Nodes at different levels of the trees can
be chosen to form a connected dominating
set

The “leader election tree” is quite
expensive
Very low degree of parallelism

A WAF Backbone

DCA-S: DCA Sparsified

Build a connected dominating set (say, with
DCA) and consider its spanned sub-graph H
(include gateways)
Erdös: If a graph does not have small cycles
then it is sparse
Find and break small cycles (small=log n)
� In practice we search and break cycles with 3 and

4 links
Breaking cycles does not compromise
connectivity

Simulation Results

Metrics (all averages)
1. Protocol duration
2. Operation overhead (in bytes)
3. Energy consumption (per node)
4. Backbone size
5. Route length
6. Backbone robustness (node deaths for

disconnections)

Simulation Results, 2

Parameters of ns2-based simulations
� Nodes: ≤ 300, IST EYES prototype
� Tx range: 30m
� Initial (residual) energy: 1J
� Tx, Rx, idle power: 24, 14.4, 0.015 (mW)

� Area: 200 x 200m
� Six scenarios with increasing densities

(avg. degrees: 3.5 to 20)

Protocol Duration
WuLi is fastest
� Simple operation; parallelism
DCA: Reasonably fast
� Possible dependencies and gateway selection
DCA-S: As DCA
� The sparsification phase is executed by fewer

nodes and requires little info exchange
WAF: Slower
� Non-trivial leader election

Protocol Duration, 2

Protocol Overhead

Protocol Overhead, 2

Average number of protocol bytes per
node
WuLi: Best performing
� Simple list exchange
DCA(-S): Almost twice as much
� Bit more info needed (weight, IDs, …)
WAF
� Leader election complexity

Energy Consumption

Important metric per backbone set up
and maintenance
Similar to overhead results
WuLi and DCA perform quite well
DCA-S performs similarly: No difference
in breaking cycles with 3 or 4 links
WAF: High consumption due to first
phase

Energy Consumption, 2

Backbone Size

Important metric: Aggregation and
awake/asleep cycles
� Small backbone + role rotation: key for

WSNs

Decrease with n increasing (bigger
clusters)
WAF: “Slimmer” backbone (tree like)
DCA-S, 4 > DCA-S, 3 > DCA > WuLi

Backbone Size, 2

Route Length

Flat topology (“visibility graph”) as a
base
Expected increase: Hierarchy routes are
longer
DCA & WuLi: 7 to 34.7% longer routes
DCA-S: Up to 9% more than DCA
WAF: Up to 33.4% longer than DCA

Route Length, 2

Backbone Robustness

Number of nodes needed to disconnect the
backbone
Useful for planning backbone re-orgs
Increases with network density
WuLi and DCA: More robust
� Resilient to up to 25 “death” when n = 300

WAF: Quite a disaster (tree-like topologies)
DCA-S: In the middle

Backbone Robustness, 2

“To Go”
Hierarchical organization is effective for
prolonging network lifetime
Four protocols for backbone formation:
� DCA, WuLi, WAF and DCA-S

Nice theoretical features Æ hard to implement
Simple solutions (WuLi, DCA): Good starting
point for efficient implementations
DCA-S: “Slimmer” backbone at a reasonable cost

	Unicast Routing
	What is an ad hoc network
	Application scenarios
	Features of ad hoc networks
	Features of highly resource constrained ad hoc networks (WSNs)
	Routing-Traditional approach�(from Reti 1)
	Bellman-Ford
	Distance Vector Routing Algorithm�-Distributed Bellman Ford
	Distance Vector: link cost changes
	Count-to-infinity –an everyday life example
	Routing in ad hoc networks- Goals
	2 Primary Approaches
	Highly Dynamic Destination-Sequenced Distance-Vector (DSDV) Routing
	Highly Dynamic Destination-Sequenced Distance-Vector (DSDV) Routing
	Highly Dynamic Destination-Sequenced Distance-Vector (DSDV) Routing
	Highly Dynamic Destination-Sequenced Distance-Vector (DSDV) Routing
	Highly Dynamic Destination-Sequenced Distance-Vector (DSDV) Routing-Correctness
	Why traditional approaches have limits?
	2 Primary Approaches (cont.)
	Ad hoc On-Demand Distance Vector (AODV) Routing
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	AODV: Route Discovery
	What if….
	Other info maintained
	AODV: Route Maintenance
	AODV: Route Maintenance
	AODV: Route Maintenance
	AODV: Optimizations
	AODV: Optimizations (cont.)
	AODV: Summary
	Dynamic Source Routing (DSR)
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	DSR: Route Discovery
	General node operation upon receiving RREQ
	Route maintenance
	Optimizations (1)
	Optimization (2)
	AODV and DSR Differences
	Geographically-Enabled Routing
	Proactive Solutions: Drawbacks
	Reactive Protocols: Drawbacks
	Location-Enabled Ad Hoc Routing
	Strengths
	Drawbacks
	DREAM
	Disseminating Location Information: Problems
	Disseminating Location Information: Solutions
	Mobility-Adaptive Broadcast
	The Distance Effect
	The Distance Effect
	DREAM: Rate of updates
	DREAM: Directional Routing
	DREAM: Routing a Data Packet
	DREAM, Strengths
	DREAM, Weaknesses	
	Location-Aided Routing (LAR)
	LAR: Expected Zone
	LAR
	LAR: Request Zone
	LAR, Possible Failures
	LAR, the Routing
	LAR, Pros and Cons
	In a sensor network we seek..
	An example: GeRaF
	GeRaF basic idea
	GeRaF: operations
	Example of GeRaF operation
	GeraF operation
	GeraF operation (how to handle collision)
	What If
	What if (answer)
	How to solve dead-ends
	GeRaf performance
	GeRaf performance, d=0.1
	GeRaf performance, d=0.1
	GeRaf performance, d=0.1
	Localization in sensor networks
	Localization
	Localization
	Techniques for Location Sensing (AoA)
	Techniques for Location Sensing (RSS or ToA)
	Radiolocation via ToA and RSSI
	Location in 3D
	Location in 3D
	Location in 3D
	A possible solution: Absolute Localization
	Atomic Multilateration
	Iterative Multilateration
	Range free localization
	Qualche idea sull’approccio …
	Scalability Problems and Clustering
	How to Select the Best Nodes
	Previous Approaches
	Previous Approaches: Drawbacks
	Maximum Independent Set (MIS)
	MIS: Hardness
	MIS is HARD to Approximate
	Greedy Heuristic for MIS, 1
	Greedy Heuristic for MIS, 2
	Greedy MIS: Maximal Solution
	Using Greedy MIS on UDG to Computer a DS
	Greedy MIS for MDS on UDG is 5-approximable, 1
	Greedy MIS for MDS on UDG is 5-approximable, 2
	MIS and Dominating Sets and Wireless Networks
	MWIS-Based Clustering
	Two Protocols
	DCA: Distributed Clustering Algorithm, 1
	DCA, 2
	DCA
	DCA
	DCA
	DCA-Procedure (eseguite dal nodo v)
	DCA-Procedure (eseguite dal nodo v)
	DCA-Procedure (eseguite dal nodo v)
	Example
	DCA: Provable Properties
	A Note on the Average Time Complexity
	Adapting to Mobility and Node/Link Failures: DMAC
	DMAC: The Procedures
	Joining Clusterheads: Dynamic Backbone
	4 Backbone Formation Protocols
	Distributed Clustering Algorithm (DCA)
	A DCA Backbone
	WuLi: Wu and Li protocol
	A WuLi Backbone
	WAF: Wan, Alzoubi and Frieder
	A WAF Backbone
	DCA-S: DCA Sparsified
	Simulation Results
	Simulation Results, 2
	Protocol Duration
	Protocol Duration, 2
	Protocol Overhead
	Protocol Overhead, 2
	Energy Consumption
	Energy Consumption, 2
	Backbone Size
	Backbone Size, 2
	Route Length
	Route Length, 2
	Backbone Robustness
	Backbone Robustness, 2
	“To Go”

