
Unicast Routing

Ad Hoc networks
(under standardization in the IETF 
MANET WG)



What is an ad hoc network
A wireless multi-hop infrastructure-less 
network whose devices act as source/ 
destination of messages & as relay for 
packets generated by a node s and addressed 
to a node z (iff they are on a s-z route)
Pros: No need for infrastructure Æ low cost, 
enables communication where it  is usually 
not needed or is not viable
Must be: Self-organizing, self-configuring, 
self-maintaining



Application scenarios
Collaboration between users in office 
environments
Disaster recovery applications
Military networks
Personal Area Networks
Home Networking
Wireless Sensor Networks (WSNs)
Inter-vehicular communication



Features of ad hoc networks
Highly dynamic networks Æ device mobility, energy 
saving sleep/awake modes
Need for low energy/resource-consuming, simple 
protocols
Bandwidth and resource constrained environment
Traffic:
� All-pairs in general ad hoc networks, from sensors to sink(s) in 

sensor networks
� In many case not high

Scale: Application dependent
� 10-100 nodes in traditional ad hoc networks
� 1000-10000 in sensor networks



Features of highly resource constrained ad hoc 
networks (WSNs)

Highly dynamic networks Æ due to device mobility (only in 
some specific applications), to the fact the active node set 
changes in time for sake of energy saving (always to be 
considered)
Need to design low energy/resource-consuming, simple 
protocols Æ very critical, energy consumption a real 
bottleneck
Traffic from sensors to sink(s) 
Scalability is a major issue
Code must be simple (small storage capability, very 
simple, inexpensive, resource constrained devices)
First solutions we will see for traditional ad hoc networks 
do not scale to high numbers and are not energy-saving



Routing-Traditional approach
(from Reti 1)

Intra-AS routing in the Internet
� Link State Approaches
(info on the topology graph gathered at 

nodes which run shortest path algorithms-
Dijkstra- to decide the routes to the 
different destinations –e.g. OSPF routing 
protocol)

� Distance Vector approaches (e.g. RIP)



Bellman-Ford
Given a graph G=(N,A) and a node s find the shortest path 

from s to every node in N.
A shortest walk from s to i subject to the constraint that the walk 

contains at most h arcs and goes through node s only once, is denoted
shortest(<=h) walk and its length is Dh

i. 

Bellman-Ford rule:
Initiatilization Dh

s=0, for all h; wi,k = infinity if (i,k) NOT in A; wk,k =0;
D0

i=infinity for all i!=s.
Iteration:

Dh+1
i=mink [wi,k + Dh

k]
Assumption: non negative cycles (this is the case in a network!!)
The Bellman-Ford algorithm first finds the one-arc 

shortest walk lengths, then the two-arc shortest walk 
length, then the three-arc…etc. Ædistributed version 
used for routing



Bellman-Ford

Dh+1
i=mink [wi,k + Dh

k]

Can be computed locally.
What do I need?

For each neighbor k, I need to know 
-the cost of the link to it (known info)
-The cost of the best route from the neighbor k to the destination
(Åthis is an info that each of my neighbor has to send to me via
messages)

In the real world: I need to know the best routes among each
pair of nodes Æ we apply distributed Bellman Ford to get the best
route for each of the possible destinations



Distance Vector Routing Algorithm
-Distributed Bellman Ford

iterative:
continues until no 
nodes exchange info.
self-terminating: no 
“signal” to stop

asynchronous:
nodes need not
exchange info/iterate 
in lock step!

Distributed, based on 
local info:
each node 
communicates only
with directly-attached 
neighbors

Distance Table data 
structure

each node has its own
row for each possible 
destination
column for each directly-
attached neighbor to node
example: in node X, for dest. 
Y via neighbor Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min  {D  (Y,w)}Z
w

=

=

Cost associated to the (X,Z) link

Info maintained at Z. Min must
be communicated



Distance Vector: link cost changes
Link cost changes:

good news travels fast 
bad news travels slow -
“count to infinity” problem!

X Z
14

50

Y
60

algorithm
continues

on!

Y detects link cost
Increase but think can
Reach X through Z at a 
total cost of 6 (wrong!!) 

The path is Y-Z-Y-X



Count-to-infinity –an everyday life 
example
Which is the problem here?
the info exchanged by the protocol!! ‘the best route to X I 
have  has the following cost…’ (no additional info on the 
route)
A Roman example…
-assumption: there is only one route going from Colosseo to 
Altare della Patria: Via dei Fori Imperiali.  Let us now consider 
a network, whose nodes are Colosseo., Altare della Patria, 
Piazza del Popolo

Colosseo Altare Patria Piazza del 
Popolo

1 Km 1 Km



Colosseo Al.Patria P.Popolo
1Km 1Km

The Colosseo. and Alt. Patria nodes exchange the following info
• Colosseo says ‘the shortest route from me to P. Popolo is 2 Km’
• Alt. Patria says ‘the shortest path from me to P. Popolo is 1Km’
Based on this exchange from Colosseo you go to Al. Patria, and from there to 
Piazza del Popolo OK Now due to the big dig they close Via del Corso 
(Al. Patria—P.Popolo)
• Al. Patria thinks ‘I have to find another route from me to P.Popolo.
Look  there is aa route from Colosseo to P.Popolo that 
takes 2Km, I can be at Colosseo in 1Km Æ I have found
a 3Km route from me to P.Popolo!!’ Communicates the new cost to
Colosseo that updates ‘OK I can go to P.Popolo via Al. Patria in 4Km’
VERY WRONG!! Why is it so? I didn’t know that the route from 
Colosseo to P.Popolo was going through Via del Corso from Al.Patria 
to P.Popolo (which is closed)!! 

Count-to-infinity –everyday life example (2/2)



Routing in ad hoc networks-
Goals

Minimal control overhead
Minimal processing overhead
Multi-hop path routing capability
Dynamic topology maintenance
No loops
Self-starting



2 Primary Approaches

Proactive
� Based on traditional distance-vector and link-state 

protocols
� Each node maintains route to each other network node
� Periodic and/or event triggered routing update exchange 
� Higher overhead in most scenarios
� Longer route convergence time
� Examples: DSDV, TBRPF, OLSR



Highly Dynamic Destination-Sequenced 
Distance-Vector (DSDV) Routing
Proactive, distance vector approach (uses distributed 
asynchronous Bellman Ford). Updates on routes costs 
transmitted periodically or when significant new information 
is available.
Difference wrt Bellman Ford: tries to avoid loops 
(approaches such as Poison reverse non effective in 
broadcast channels, we seek solutions which are simple and 
fully distributed)
Metrics: fresh routes better than stale routes, number of 
hops used to select among the fresh routes
How to identify fresh routes? By means of sequence 
numbers identifying the freshness of the communicated 
information. When changes occur, the sequence number 
increase.



Highly Dynamic Destination-Sequenced 
Distance-Vector (DSDV) Routing
Periodically destination nodes transmit updates with a new 
sequence number (and such updates are propagated by the 
other nodes). Updates contain information on the costs to 
achieve the different destinations and the freshness of the 
delivered information
Data broadcast include multiple entries each with:
� Destination address
� Number of hops required to reach the destination
� Sequence number of the information received regarding that 

destination as originally stamped by the destination 
In the header the data broadcast also include:
� Address (HW address/Net address) of the sender of the message
� Sequence number created by the transmitter

Two types of updates (full dump or incremental-only 
changes- to decrease bandwidth consumption.



Highly Dynamic Destination-Sequenced 
Distance-Vector (DSDV) Routing
How can the costs be modified? Cost=number of hops, target: 
using fresh routes as short as possible Æ a link cost changes 
from 1 to inf and from inf to 1
How do we detect that a link is ‘broken’? At layer 2 (no hello 
messages received for some time, or attempts to retransmit a 
frame exceeds the MAC protocol threshold) or at layer 3 (do 
not receive periodic updates by a neighbor)
Link cost increase (1Æ inf):
� The nodes incident to that link (A,B) discover it (see above) 
� Routes going through that link get assigned an inf cost in nodes A and B 

routing tables
� A new sequence number is generated by the mobile node. Mobile nodes 

different from the destination use odd SN, the destination even SN.
� Updates with routes with infinite cost are immediately transmitted by 

nodes
Link cost decrease (infÆ1):
� Immediately transmits updates



Highly Dynamic Destination-Sequenced 
Distance-Vector (DSDV) Routing
When a node  receives updates it sees if costs to reach the 
different destinations can be improved:
� routes with more recent sequence numbers to a given destination are 

used
� if more routes available with the same SN the shortest is used

Newly recorded routes are scheduled for immediate 
advertisement (infÆ finite value)
Routes with improved metric are scheduled for advertisement 
at a time which depends on the estimated average settling 
time for routes to that particular destination (based on 
previous history)
As soon as a route cost changes the node may delay 
informing its neighbors but immediately starts using the new 
information for its forwarding



Highly Dynamic Destination-Sequenced 
Distance-Vector (DSDV) Routing-Correctness
Assuming routing tables are stable and a change occurs
� let G(x) denotes the routes graph from the sources to x BEFORE the 

change (assume no loop)
� change occurs at i when 1) the link from i to its parent p(i ) in G(x) 

breaks Æ i sets to inf that route (no loop can occur) 2) node i receives 
from one of its neighbors k a route to x with sequence number SNx

k
and metric m which is selected to replace the current metric i has to 
reach x (this occurs only if SNx

k greater than the previous SN I had 
stored Snx

i or if the two SN are equal but the new route has a lower 
hop cost Æ in the first case if selecting k leads to a loop then SNx

k <= 
Snx

i which is a contradiction, in the second case comes from the 
observation reduction in the costs do not bring to loops).



Why traditional approaches 
have limits?
Proactive protocols are costly in terms of overhead 
(the bandwidth and energy are critical resources)
The cost of maintaining routes updated may not 
make sense in an environment in which
� Medium-high mobility
� Medium-high dynamicity (awake/asleep states)
Often make the opt. Route change (requiring updates) 

while
� Traffic is generally low (so the cost of maintaining always 

updated routes is not balanced by their use)
If this is the scenario what can we do? 





2 Primary Approaches (cont.)

Reactive (on-demand)
� Source build routes on-demand by “flooding”
� Maintain only active routes
� Route discovery cycle
� Typically, less control overhead, better scaling 

properties
� Drawback: route acquisition latency
� Example: AODV, DSR



Ad hoc On-Demand Distance 
Vector (AODV) Routing

Reactive (nodes that do not lie on active paths neither 
maintain any routing information nor participate in any 
periodic routing table exchange; a node does not have to 
discover/maintain a route to a destination till it is on a path 
to it or has to send messages to it)
Route discovery cycle used for route finding
Maintenance of active routes
Sequence numbers used for loop prevention and as route 
freshness criteria
Descendant of DSDV (standard distance vector approach 
mapped to ad hoc networks), in AODV no periodic updates 
but pure on-demand operation.
Provides unicast and multicast communication



AODV: Route Discovery

1. Node S needs a route to D AND does not 
have routing info for it in its table

A

B

C D
S



AODV: Route Discovery

1. Node S needs a route to D
2. Creates a Route Request (RREQ)

Enters D ‘s IP addr, seq#, 
S ‘s IP addr, seq#
hopcount (=0), broadcast ID

A

B

C D
S



AODV: Route Discovery

1. Node S needs a route to D
2. Creates a Route Request (RREQ)

Enters D ‘s IP addr, seq#, 
S ‘s IP addr, seq#
hopcount (=0), broadcast ID

3. Node S broadcasts RREQ to neighbors

A

B

C D
S

RREQ



AODV: Route Discovery

4. Node A receives RREQ
� Makes reverse route entry for S

dest=S, nexthop=S, hopcnt=1,expiration time for reverse path
Source node SN,D,broadcastID also maintained
� It has no route to D, so it rebroadcasts RREQ (hopcount

increased)
� If it has already received that request (same source and 

broadcast ID) it discards the RREQ
� if it knows a valid path to D it will send back a reply to the 

source 

A

B

C D
S

RREQ



AODV: Route Discovery

4. Node A receives RREQ
� Makes reverse route entry for S

dest=S, nexthop=S, hopcnt=1
� It has no route to D, so it rebroadcasts RREQ

A

B

C D
S

RREQ



AODV: Route Discovery

5. Node C receives RREQ
� Makes reverse route entry for S

dest=S, nexthop=A, hopcnt=2
� It has a route to D, and the seq# for route to D

is >= D’s seq# in RREQ

A

B

C D
S

RREQ



AODV: Route Discovery

5. Node C receives RREQ (cont.)
� C creates a Route Reply (RREP)

Enters D’s IP addr, seq#
S’s IP addr, hopcount to D (= 1), lifetime of the 

forward route
� Unicasts RREP to A

A

B

C D
S

RREQ



AODV: Route Discovery

5. Node C receives RREQ (cont.)
� C creates a Route Reply (RREP)

Enters D’s IP addr, seq#
S’s IP addr, hopcount to D (= 1)….

� Unicasts RREP to A

A

B

C D
S RREP



AODV: Route Discovery

6. Node A receives RREP
� Makes forward route entry to D

dest = D, nexthop = C, hopcount = 2
� Unicasts RREP to S

A

B

C D
S

RREP
RREP



AODV: Route Discovery

7. Node S receives RREP
� Makes forward route entry to D

dest = D, nexthop = A, hopcount = 3

Also the latest SN of the destination is updated when receiving 
the RREP

Nodes not along the path determined by the RREP will timeout 
after ACTIVE_ROUTE_TIMEOUT (3000ms) and will delete 
the reverse pointer

A

B

C D
S

RREP



AODV: Route Discovery

7. Node S receives RREP
� Makes forward route entry to D

dest = D, nexthop = A, hopcount = 3

Also the latest SN of the destination is updated when receiving 
the RREP

Nodes not along the path determined by the RREP will timeout 
after ACTIVE_ROUTE_TIMEOUT (3000ms) and will delete 
the reverse pointer

A

B

C D
S

RREP
Se è la destinazione
A rispondere con un
RREP genera un nuovo
SN



AODV: Route Discovery

7. Node S receives RREP
� Makes forward route entry to D

dest = D, nexthop = A, hopcount = 3
� Sends data packets on route to D

A

B

C D
S



What if….

A node receives further RREPs for the same 
request? (e.g. more neighbors of a node had 
paths to the destination in cache)?
� upon reception of another RREP the node 

updates its routing information and propagates 
the RREP only if the RREP contains either a 
greater destination SN, or the same destination SN 
with a smaller hopcount



Other info maintained

Each node maintains the list of active 
neighbors, neighbors sending to a given 
destination through it 
� useful for route maintenance

Routing table entries: dest,next hop, 
hopcount, dest SN, active neighbors for this 
route, expiration time for route table entry 
(updates each time the route is used for 
transmitting data Æ routes entries are 
maintained if the route is active)



AODV: Route Maintenance

1. Link between C and D breaks
2. Node C invalidates route to D in route table
3. Node C creates Route Error (RERR) message

� Lists all destinations which are now unreachable
� Sends to upstream neighbors
� new sequence number

A

B

C D
S RERR



AODV: Route Maintenance

4. Node A receives RERR
� Checks whether C is its next hop on route to D
� Deletes route to D
� Forwards RERR to S

A

B

C D
S

RERR
RERR



AODV: Route Maintenance

5. Node S receives RERR
� Checks whether A is its next hop on route to D
� Deletes route to D
� Rediscovers route if still needed

A

B

C D
S

RERR

with a new sequence number



AODV: Optimizations

Expanding Ring Search
� Prevents flooding of network during route 

discovery
� Control Time To Live (TTL) of RREQ to search 

incrementally larger areas of network
� Advantage: Less overhead when successful
� Disadvantage: Longer delay if route not found 

immediately



AODV: Optimizations (cont.)

Local Repair
� Repair breaks in active routes locally instead of 

notifying source
� Use small TTL because destination probably hasn’t 

moved far
� If first repair attempt is unsuccessful, send RERR to 

source
� Advantage: repair links with less overhead, delay and 

packet loss
� Disadvantage: longer delay and greater packet loss 

when unsuccessful



AODV: Summary

Reactive/on-demand
Sequence numbers used for route 
freshness and loop prevention
Route discovery cycle 
Maintain only active routes
Optimizations can be used to reduce 
overhead and increase scalability



Dynamic Source Routing (DSR)

Reactive
Route discovery cycle used for route 
finding
Maintenance of active routes
Utilizes source routing



DSR: Route Discovery

1. Node S needs a route to D
2. Broadcasts RREQ packet

1. RREQ identifies the target of the route discovery, 
contains a route record in which the traversed route is 
accumulated, contains a pair <initiator, request id> 
uniquely identifying the request

A

B

C D
S

RREQ: S



DSR: Route Discovery

1. Node S needs a route to D
2. Broadcasts RREQ packet
3. Node A receives packet, has no route to D 

AND is NOT D
� Rebroadcasts packet after adding its address to 

source route

A

B

C D
S

RREQ: S



DSR: Route Discovery

1. Node S needs a route to D
2. Broadcasts RREQ packet
3. Node A receives packet, has no route to D

� Rebroadcasts packet after adding its address to 
source route

A

B

C D
S

RREQ: S, A



DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to 

source route

A

B

C D
S

RREQ: S, A



DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to 

source route

A

B

C D
S RREQ: S, A, C



DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to 

source route
5. Node D receives RREQ, unicasts RREP to C

� Puts source route accumulated in RREQ into 
RREP

A

B

C D
S RREQ: S, A, C



DSR: Route Discovery

4. Node C receives RREQ, has no route to D
� Rebroadcasts packet after adding its address to 

source route
5. Node D receives RREQ, unicasts RREP to C

� Puts source route accumulated in RREQ into 
RREP 

A

B

C D
S RREP: S, A, C, D



DSR: Route Discovery

6. Node C receives RREP
� Unicasts to A

A

B

C D
S RREP: S, A, C, D



DSR: Route Discovery

6. Node A receives RREP
� Unicasts to S

A

B

C D
S
RREP: S, A, C, D



DSR: Route Discovery

8. Node S receives RREP
� Uses route for data packet transmissions

A

B

C D
S
RREP: S, A, C, D



General node operation upon 
receiving RREQ

If the pair <initiator address, request 
ID> has recently been seen, DISCARD
If the node ID is already listed in the 
source route DISCARDÆ avoids loops
If I’m the destination, send a RREP
Otrherwise, append my ID in the source 
route and rebroadcast (orange cases 
already seen in the previous slides)



Route maintenance

The two endpoints of a failed link are 
transmitted to the source in a route error 
packet
Upon a receiving a RERR packet a node 
invalidates all the routes going through that 
link
If the route is invalidated and it is needed, a 
new route must be discovered



Optimizations (1)
Extensive use of caching (caching source routes 
means that I already know all the routes to 
intermediate destinations, the discovery of a 
better route to an intermediate destination also 
brings me to improving the route to the final 
destination). Transmitting packets or sending 
back replies make me learn routes.
A node that knows a route to a given destination 
(has a source route in cache) can immediately 
answer a RREQ 
� Broadcast storm? Each nodes waits for a time which is 

C*(h-1+r), r random in (0,1), h length of the route I’m 
advertising. Only if I haven’t received other routes –
listen to other routes tx in the meanwhile-I transmit 
mine.



Optimization (2)
Operation in promiscuous mode (I keep 

discovering new routes by transmission of routes 
by my neighbours)
RREQ overhead minimization: first set a TTL=1, if 
I do not get answer I set it to infinity
Path shortening: if Y receives a packet by node X 

but in the source route we have X, B,…,C,Y, Y 
signals the path can be shortened (unsolicited 
RREP)
What if the network is disconnected? Exponential 
back-off to decrease the quantity of RREQ sent



AODV and DSR Differences

DSR uses source routing;
AODV uses next hop entry
DSR uses route cache;
AODV uses route table





Geographically-Enabled Routing

Outline
� Problems with proactive approaches
� Problems with reactive approaches
� A new way of naming\locating the 

destination node
� Two seminal protocols
�DREAM & LAR, proactive and reactive

� Geo-enable routing and the link state idea



Proactive Solutions: 
Drawbacks

Updates overhead, especially in 
presence of high mobility
Overhead for enforcing loop freedom
Large routing tables
Low scalability
¾Is it really necessary to maintain a 

consistent view of the network 
topology?



Reactive Protocols: Drawbacks

The discovery phase introduces long delays
Route discovery and maintenance is very 
sensitive to node mobility
Route caching is memory greedy
Operating in promiscuous mode is very 
energy cnsuming
The size of the header of a data packet can 
become cumbersome (no scalability)
¾Is the dependency on the network topology 

avoidable?



Location-Enabled Ad Hoc 
Routing 

Nodes are equipped with positioning 
system devices (e.g., Global Positioning 
System receivers) that make them 
aware of their position
This enables “directional” routing
Possible solutions differ on how the 
location information of the destination 
nodes is achieved



Strengths

No need to update big routing tables, 
no need to piggyback routes to the 
packet

No need to know the nodes on the way 
to the destination: they can be moving 
while the packet travels



Drawbacks

Needs extra hardware

Depends on the extra hardware 

limitation (and resource requirements)

Scalability is an issue

� need to update nodes’ location info



DREAM

Distance routing effect algorithm for 
mobility [Basagni+, 1998]

A proactive, effective way to spread 
location information 

Directional routing



Disseminating Location 
Information: Problems

Need to periodically update the 
location of a moving node.
� Efficient broadcast of location information
� Determining how far each location packet 

should travel
� Determining how often a location packet 

should be sent



Disseminating Location 
Information: Solutions

Mobility-adaptive, deterministic 
broadcast

Distance effect

Rate of updates is bound to the mobility 
of the node 



Mobility-Adaptive Broadcast

Deterministic solution that takes into account 
MAC layer characteristics
Flooding of location packets proceeds “wave 
expanding” from the source to the intended 
destinations 
Deterministic, interference-independent 
delivery is obtained  by using Time-Spread 
Multiple-Access (TSMA) protocols



The Distance Effect



The Distance Effect

“Closer nodes look like they are moving 
faster”
Need to receive more location updates 
from closer node
Each packet is associated with an age 
that determines how far that packet 
must travel



DREAM: Rate of updates

Triggered by the mobility of the nodes

The faster the node the more updates it 
sends

A plus: slow moving nodes impose little 
overhead



DREAM: Directional Routing

Source S determines the location of 
destination D at time t0 based on its location 
table
Based on the current time t1 and t0 S 
determines the area in which D can be found 
(hence, D’s direction)
S transmits the data packet to all its 
neighbors in D’s direction
Each neighbor does the same till D is reached



DREAM: Routing a Data 
Packet



DREAM, Strengths

First of its kind: after that, the deluge!

Robustness: multiple routes to the 
destination



DREAM, Weaknesses

It is flooding, although only directional

It is not that scalable, geographic info 

updates have to be periodically 

transmitted (even if mechanisms to 

limit such overhead are enforced)



Location-Aided Routing (LAR) 
Exploits location information to limit scope of 
RREQ flood
Expected Zone: region that is expected to hold 
the current location of the destination
� Expected region determined based on potentially old 

location information, and knowledge of the 
destination’s speed

RREQs limited to a Request Zone that contains 
the Expected Zone and location of the sender 
node



LAR: Expected Zone

D

D'

r

D = last known location of node
D, at time t0

D' = location of node D at current
time t1, unknown to node S

r = (t1 – t0) * estimate of D’s speed

Expected Zone



LAR
The request zone is the smallest rectangle that 
includes the current location of the source and 
the expected zone
Only nodes within the request zone forward 
route requests
� Node A does not forward RREQ, but node B does

Request zone explicitly specified in the RREQ
Each node must know its physical location to 
determine whether it is within the request zone



LAR: Request Zone

D

D'

r

S

Request Zone

Network Space

BA

(XS, YS) (XD+ r, YS)

(XS, YD + r) (XD+ r, YD+ r)



LAR, Possible Failures
If route discovery using the smaller 
request zone fails to find a route, the 
sender initiates another route discovery 
(after a timeout) using a larger request 
zone
� The larger request zone may be the entire 

network
Rest of route discovery protocol similar to 
DSR



LAR, the Routing
The basic proposal assumes that, initially, location 
information for node X becomes known to Y only during 
a route discovery
This location information is used for a future route 
discovery

Variations
Location information can also be piggybacked on any 
message from Y to X
Y may also proactively distribute its location information



LAR, Pros and Cons

Advantages
� Reduces the scope of RREQ flood
� Reduces overhead of route discovery

Disadvantages
� Nodes need to know their physical locations





In a sensor network we seek..

For solutions which scale
Which are energy saving
Which are well integrated with awake/asleep schedules
Which do not require to maintain routing tables
Which are simple
Solutions such as AODV and DSR has been proven to work  well iff

they exploit intensively caching and promiscous mode operation
(energy inefficientÅ work by L. Feeney et al, 2001) and have been
shown not to scale to the volumes of nodes expected in sensor networks 

(work by E. Belding Royer and S.J. Lee)
What can we use?
� communication sensors – sink
� Info such as localization and some level of synchronization often needed 

by the application (if I sense an event I have to say WHERE and WHEN it 
occurred, otherwise the information is not very interesting)



An example: GeRaF

Integrates 
� geographic routing
� awake/asleep schedule
� MAC

How do nodes alternate between 
awake ans asleep states? According to 
a duty cycle (time ON/time ON+ OFF)

ON ON

OFF OFF



GeRaF basic idea

Geographic routing: 
each node needs to 
know its location, the 
destination (sink) 
location, and the 
location of whom is 
transmitting 
(communicated in the 
packet)
Greedy approach: 
tries to select relays 
so to advance as 
much as possible 
toward the destination 
at each hop



GeRaF: operations
Main problem to be solved: how to make a 
contention-based scheme/routing work in the 
presence of sleep modes
� Flat solution
� Integrated MAC/routing/awake-asleep but awake-

asleep schedule and routing decoupled Æ each node 
does not know its neighbor and their schedules Æ
low overhead

Tightly integrated with the routing layer (no 
clear separation really)
� Without requiring routing tables/routing table updates
� Based on the knowledge of the nodes location and on 

the knowledge of the sink location



Example of GeRaF operation
RTS invites all awake neighbors to become 
a relay
Nodes in best position should win
� Nodes within tx range are divided in areas 

depending on how close they are to the final 
destination (the closest the better as relay)

•Need of location awareness



GeraF operation
Node i sends RTS with the identity of the area it 
is polling now (starting from the closer to the sink, 
among the slices in  which its tx range has been 
divided)
Each node, upon receiving the RTS, decides 
whether it belongs to the polled area or not 
(based on location info)
Only nodes in the polled area answer with a CTS
� No node answers Æ node i polls next area (no node 

available for forwarding in the area-there are no nodes 
or they are sleeping)

� One answer, CTS correctly received, send DATA
� Multiple answersÆ COLLISION, sender sends a collision 

packet, MAC needed to solve collision (next slide)



GeraF operation (how to 
handle collision)

1)A node receiving a collision packet tosses a 
coin and with probability p transmits a CTS iff
it was participating to the previous phase (it 
had previously sent a CTS resulting in 
collision)
� if only one node answers node i sends data
� If no node answers, node i asks these nodes to 

toss a coin again..
� if more nodes answer COLLISION. Collision 

packet is sent. GO TO 1) (only the nodes which 
have lead to collision survive to the next phase)



What If

All areas are polled unsuccessfully?
� Try again after some time (exponential 

backoff)

Can  I always reach the destination in 
this way?



What if (answer)

No. Here is
An example

Solutions? (mechanisms have to be added to 
recognize the problem, do backtracking and 
try another route)

•sink

•Tx radius



How to solve dead-ends
A problem at low--medium density
We will see a solution (ALBA-R) in the 

part on sensor networks

•sink

•Tx radius



GeRaf performance

square area 320m x 320m
Transmission range=40m
100-1000 randomly deployed nodes (avg
degree 5-50)
Duty cycle =0.01,0.1,0.5
Comparable costs for tx/rx/idle
Poisson packet arrival
Channel data rate 38Kbps

Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005



GeRaf performance, d=0.1
Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005



GeRaf performance, d=0.1
Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005



GeRaf performance, d=0.1
Casari, Marcucci,Nati, Petrioli, Zorzi IEEE MILCOM 2005

Con i meccanismi per evitare dead end si sale a % di successfully
Delivered packets nel caso di 200 nodi pari a 93-97%



Localization in sensor 
networks

Thanks to Prof. Mani Srivastava
These slides have been derived
From his tutorial on sensor networks
Given at Rome Un. On July 2003



Localization
Useful info
� Helps with some protocols (e.g. GeraF)
� Needed for being able to identify where events occur 

Why not just GPS (Global Positioning System) at 
every node?
� Large size
� High power consumption
� Works only when LOS to satellites (not in indoor, heavy 

foliage…)
� Over kill – often only relative position is needed (e.g. 

enough to know that relative to a coordinate system 
centered in the sink the event occurred in a position 
(x,y). Starting from relative info if some nodes have 
global coordinates global coordinates of events can be 
inferred.

� Works only on earth ☺



Localization
Basic step is to evaluate distance between 

two nodes (ranging). Different techniques 
depending on the available HW:
� AoA (e.g. directional antennas)
� RSS
� ToA
Range free approaches (number of hops 

between nodes used to estimate the 
distance between them without using any 
extra HW)



Techniques for Location 
Sensing (AoA)
Measure direction of landmarks
� Simple geometric relationships can be used to 

determine the location by finding the intersections 
of the lines-of-position

� e.g. Radiolocation based on angle of arrival (AoA) 
measurements of beacon nodes (e.g. base 
stations)
� can be done using directive antennas + a compass
� need at least two measurements

BS

BS

BS

MS

φ1

φ2

φ3



Measure distance to landmarks, or Ranging
� e.g. Radiolocation using signal-strength or time-of-flight

� also done with optical and acoustic signals

� Distance via received signal strength
� use a mathematical model that describes the path loss attenuation with 

distance
� each measurement gives a circle on which the MS must lie

� use pre-measured signal strength contours around fixed basestation
(beacon) nodes

� can combat shadowing
� location obtained by overlaying contours for each BS

� Distance via Time-of-arrival (ToA)
� distance measured by the propagation time

� distance = time * c
� each measurement gives a circle on which the MS must lie
� active vs. passive

� active: receiver sends a signal that is bounced back so that the receiver knows 
the round-trip time

� passive: receiver and transmitter are separate
� time of signal transmission needs to be known

� N+1 BSs give N+1 distance measurements to locate in N dimensions

Techniques for Location Sensing (RSS or ToA)



Radiolocation via ToA and RSSI

x1

x2

x3

d1

d3

d2

MS

BS

BS

BS

•But what if the circles 
do not intersect due to 
measurement errors (e.g. 
due to fading etc.)?
Æwill have to identify the best ‘guess’ given errors



Location in 3D



Location in 3D



Location in 3D



A possible solution: Absolute 
Localization

Beacon

Unkown Location

Randomly Deployed Sensor Network

Beacon nodes

• A small fraction of the nodes
is aware of their locations

• Rest need to collaborate to 
estimate their locations



Atomic Multilateration
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Beacon node 
with known 
location

Our objective function is:

Metrica di interesse
Errore quadratico medio

Nodi che hanno
almeno 3 vicini
(in 2D, se si usa
Ad esempio RSS) 
beacon 
possono stimare
la loro posizione
(triangolarization)

In presenza di errori



Iterative Multilateration
Nodes that estimate their locations can become 
beacons and help other nodes discover their 
locations.

Some observations:
� Can work for small networks, if ranging is accurate
� Energy efficient
� Still requires quite a lot of initial beacons
� Suffers from error accumulation
� Bad geometry yields bad results => unpredictable 

performance
� Still a useful primitive for Distributed Collaborative Multilateration

Primo approccio semplice, vasta letteratura

Ref: based on slides by Andreas Savvides



Range free localization
Non usa ranging, ma solo informazioni

che si possono ottenere tramite algo di
routing tradizionali
Idee su come possa funzionare?



Qualche idea sull’approccio …
Servono degli anchor, nodi che
conoscono la propria posizione in un 
sistema di coordinate comune

X1,Y1

X2,Y2

X3,Y3



X1,Y1

X2,Y2

X3,Y3

• Tutti I nodi calcolano il numero min. di hop tra
loro e gli anchor

• Anche gli anchor lo fanno tra loro

Qualche idea sull’approccio …



Anchor A: conosco la posizione esatta mia e 
degli altri anchor, il num. di hop, posso stimare la 
‘lunghezza media di un hop’
Questa informazione e’ usata per stimare le 
distanze da tutti I nodi agli anchor. Sulla base di
tali distanze, le corrette coordinate degli anchor, 
per triangolarizzazione ciascun nodo stima le 
proprie coordinate

Pro: Non serve extra HW
Cons: si perde in precisione

Qualche idea sull’approccio …





Scalability Problems and 
Clustering

What happens to protocols when the number 
of network nodes grows?
� Especially crucial in WSNs

A traditional networking solution: Hierarchical 
organization of the nodes
Network nodes are grouped into clusters
Some nodes, locally the “best,” are selected 
to coordinate the clustering process: 
Clusterheads



How to Select the Best Nodes

Independence of the clusterheads

Dominance of the clusterheads

Possibility to express “preferences”

Distributed operations

Fast and simple implementation



Previous Approaches

Heuristics based on Independent Sets
� Minimum ID approach (Gerla & al.)
� Maximum degree (Ephremides & al.)

Heuristics based on Dominating Sets
� The concept of “spine”
� Minimum connected dominating set



Previous Approaches: 
Drawbacks

No preferences 
Clustering “set up” differs from 
clustering maintenance
One and two hops neighbors have to be 
known at each node
Problems with nodes mobility
No analytical results



Maximum Independent Set 
(MIS)

A subset V’ of the vertices V of a graph 
G=(V,E) is independent when for each 
u,v ∊ V’ the edge {u,v} ∉ E
MIS is an Optimization Problem
Input: A Graph G=(V,E) with n vertices
Output: A subset V’ of V that is 
independent and has maximum size



MIS: Hardness

No known algorithm computer a MIS in 
polynomial time
Need for approximate solutions
And approximation algorithm is an algorithm 
that produces a solution that is not optimal, 
but that approximates it
We sacrifice optimality in favor of a “good” 
solution that can be computed efficiently



MIS is HARD to Approximate

Bad news
� Not only MIS is computationally hard

� It is also hard to approximate:
� Approximate solutions are not so good

� They are “unboundedly” far from the optimum

We consider the simple greedy heuristic 
for the MIS



Greedy Heuristic for MIS, 1

Select the vertex with minimum degree
and put it in the MIS
� The degree of a vertex is the number of its 

neighbors
� Cardinality of its adjacency list

� Keep going till all the vertices are either in 
the MIS or COVERED by a vertices in the 
MIS



Greedy Heuristic for MIS, 2

MIS(V,E,d) // d is the vector of degrees
mis = Ø
while V ≠ Ø do

v = vertex with min degree
mis = mis U {v}
V = V – {{v} U  N(v)}

return mis



Greedy MIS: Maximal Solution

The greedy solution provides a maximal
independent set
� An independent set is maximal when, if you add a 

vertex, the set is no longer independent
� You cannot make an maximal independent set bigger

This solution is also a minimal dominating set
� A dominating set D subset of V is a set such that a 

vertex v ∊ V is either in D or it has a neighbor in D 



Using Greedy MIS on UDG to 
Computer a DS

Bad news: Still computationally hard
Better news: Minimum DS It is 
approximable “up to a constant”
� It means that the ratio between the size of 

a DS computed by MIS greedy on UDGs
and the size of a MDS is < c, c a constant

This constant is 5



Greedy MIS for MDS on UDG 
is 5-approximable, 1

Key fact: In a UDG disk (radius 1) there 
are at most 5 independent nodes
Consider an Optimal solution and a 
Greedy solution
Since Opt is dominant, it dominates 
Greedy
Assign every vertex of Greedy to one 
dominator in Opt (choose one if more)



Greedy MIS for MDS on UDG 
is 5-approximable, 2

For each u in Opt consider its assigned 
vertices v1(u), v2(u), …, vk(u) of Greedy
How big is k?
Well, all vi(u) must be distant 1 from u 
and they also have to be independent
Greedy: at most 5 times bigger than 
Opt



MIS and Dominating Sets and 
Wireless Networks

UDGs model ad hoc networks

IS and DS are useful for clustering ad hoc 
networks
� Gives the network a hierarchical organization

� Decreases the amount of information at each node

� Enhances scalability

� Helps in “resource assignment”



MWIS-Based Clustering

MWIS = Maximal Weight Independent 
Set 
Clustering selection based on generic 
weights (real numbers > 0)

� Mobility/node related parameters

� Generalizes previous “Independent 
Set” solutions 



Two Protocols

Distributed Clustering Algorithm (DCA)
� Quasi-mobile networks, periodical 

reclustering. Allow complexity analysis, fast 
and simple

Distributed and Mobility-Adaptive 
Clustering (DMAC) Algorithm
� Same rules/procedures for clustering set 

up and maintenance, adaptive to nodes 
mobility and node/link failures



DCA: Distributed Clustering 
Algorithm, 1

Assumptions

� Knowledge of IDs and weights of one-hop 
neighbors

� Broadcast transmission of a packet in finite 
time (a “step”)

� Nodes do not move during clustering



DCA, 2

(Only) Two messages:
� CH(v): Sent by a clusterhead v
� JOIN(u,t): Sent by ordinary node u when it 

joins the cluster of clusterhead t

Three (simple) procedures:
� Init (start up)
� OnReceivingCH(v), OnReceivingJOIN(u,v) 

(message triggered)



DCA
Ogni nodo conosce i suoi vicini ed il loro peso
Un nodo è init se ha il peso più grande dei 
pesi dei suoi nodi vicini
Gli init node diventano clusterhead e invitano 
i loro vicini a far parte del loro cluster
Un nodo x aspetta di ricevere messaggi dai 
vicini di peso maggiore prima di prendere una 
decisione
� Se un vicino di peso maggiore lo invita a far parte 

del suo cluster allora x entra a far parte del cluster 
del vicino di peso maggiore che lo contatta 
(inviando un messaggio di Join) Æ nodo ordinario

� Altrimenti diventa clusterhead lui stesso e invia 
un messaggio di CH



DCA

Due tipi di messaggi
� CH(v) è usato da un nodo v per rendere 

consapevoli i suoi vicini del fatto che ha 
assunto il ruolo di clusterhead

� JOIN(v,u) è usato dal nodo v per 
comunicare ai suoi vicini che sarà parte di 
un cluster il cui clusterhead è il nodo u



DCA

Variabili
� Cluster(v) indica l’insieme dei nodi che vanno 

parte del cluster di cui è clusterhead v
� Clusterhead è una variabile che identifica il 

clusterhead del mio cluster
� Ch(u) è vero quando o ha mandato un messaggio 

CH (u==v) oppure quando ha ricevuto un 
messaggio di CH dal nodo u

� La variabile booleana Join (u,t) è vera se il nodo v 
ha ricevuto un JOIN(u,v) dal nodo u  



DCA-Procedure (eseguite dal 
nodo v)

Init
Se tutti i nodi vicini hanno un peso 

minore di v
invia CH(v);
Cluster(v)=Cluster(v)U{v};
Ch(v)=true;
Clusterhead=v;



DCA-Procedure (eseguite dal 
nodo v)

On receiving CH(u)
Ch(u)=true;
Se i vicini di peso maggiore di v con 
peso maggiore di u hanno tutti 
mandato un Join, allora

Clusterhead=u;
invia JOIN(v,Clusterhead);



DCA-Procedure (eseguite dal 
nodo v)

On receiving JOIN(u,t)
Join(u,t)=true;
Se v è un clusterhead allora se t==v 

Cluster(v)=Cluster(v)U{u};
Se ho ricevuto Join da tutti i vicini più piccoli EXIT

Altrimenti si verifica se tutti i vicini di peso maggiore hanno preso 
una decisione sul ruolo. 

Se questo è il caso e tutti i vicini di peso maggiore hanno 
mandato JOIN

mandiamo un CH(v);
Cluster(v)=Cluster(v)U{v};
Clusterhead =v;
Se si è ricevuto JOIN da tutti i vicini minori EXIT.

Altrimenti se uno o più vicini di peso maggiore hanno mandato un
CH

Clusterhead=il vicino di peso maggiroe con peso più 
grande tra quelli che sono diventati clusterhead e mi hanno 
invitato.

manda JOIN(v,Clusterhead);
EXIT;



Example

4(9)

5(8)

7(5)

6(1)

2(3)

1(6)

8(1)

3(2)

Cluster 1
Cluster 2

Cluster 3

clusterhead clusterhead

clusterhead

I Step II Step III Step IV Step V Step



DCA: Provable Properties

Consider 
τ: V Æ {1,2,3, … , 2k}

V = set of network nodes, k = number of 
clusters
Proposition: Each node v in V sends exactly 
one message by τ(v) steps
Corollary 1: DCA message complexity is n 
=|V|
Corollary 2: DCA terminates correctly in at 
most 2k steps ( <= 2n)



A Note on the Average Time 
Complexity

We notice that
k <= α(G)

G = topology graph, α(G) = G’s stability 
number
We see the network as a random graph, for 
which

(2k <= ) 2 α(G) = circa O(log n)
Log’s base is a function of n and the number 
of the network links



Adapting to Mobility and 
Node/Link Failures: DMAC

DMAC is for clustering set up AND 
maintenance
Nodes can move during the clustering
Each node reacts to
� Reception of a message
� Presence of a new link
� Link failure

Same assumptions of DCA, plus knowledge of 
neighbors’ roles (no role = ordinary role)



DMAC: The Procedures

INIT
Link-dependent procedures:
� Link_Failure
� New_Link

Message-triggered procedures:
� OnReceivingCH(v)
� OnReceivingJOIN(u,t)



Joining Clusterheads: Dynamic 
Backbone 

A theorem from Chlamtac and Farago:
If a network is connected, and DCA is used, 
then if and only if each clusterhead is linked 
to all the clusterheads at most three hops 
away, the resulting backbone network is 
connected
Inherently mobility adaptive and stateless
Good if the random graph model could be 
used





4 Backbone Formation Protocols

3 representatives of major approaches
� Selection of independent set of nodes and 

backbone construction (DCA)
� Rich dominating set formation and pruning 

(WuLi)
� Two-phase algorithm with theoretical 

guarantees (WAF)
1 proposal after the performance 
comparison (DCA-S) 



Distributed Clustering Algorithm 
(DCA)

Distributed and localized implementation 
of the greedy for independent set
Takes node status into account for node 
selection
Independent nodes are joined into a 
connected backbone (connectivity is 
guaranteed) via gateways
Low degree of parallelism (“dependency 
chains”)



A DCA Backbone



WuLi: Wu and Li protocol

Distributed and localized protocols for 
forming a connected dominating set
Build a rich connected dominating set
Applies localized rules for pruning 
unnecessary nodes/links
High degree of parallelism (“all 
localized”)



A WuLi Backbone



WAF: Wan, Alzoubi and 
Frieder

Two phases
� Leader election: One node is chosen 

among all network nodes to be the root of 
a tree

� Nodes at different levels of the trees can 
be chosen to form a connected dominating 
set 

The “leader election tree” is quite 
expensive
Very low degree of parallelism



A WAF Backbone



DCA-S: DCA Sparsified

Build a connected dominating set (say, with 
DCA) and consider its spanned sub-graph H 
(include gateways)
Erdös: If a graph does not have small cycles 
then it is sparse
Find and break small cycles (small=log n)
� In practice we search and break cycles with 3 and 

4 links
Breaking cycles does not compromise 
connectivity 



Simulation Results

Metrics (all averages)
1. Protocol duration
2. Operation overhead (in bytes)
3. Energy consumption (per node)
4. Backbone size
5. Route length
6. Backbone robustness (node deaths for 

disconnections)



Simulation Results, 2

Parameters of ns2-based simulations
� Nodes: ≤ 300, IST EYES prototype
� Tx range: 30m
� Initial (residual) energy: 1J
� Tx, Rx, idle power: 24, 14.4, 0.015 (mW)

� Area: 200 x 200m
� Six scenarios with increasing densities 

(avg. degrees: 3.5 to 20)



Protocol Duration
WuLi is fastest
� Simple operation; parallelism
DCA: Reasonably fast
� Possible dependencies and gateway selection
DCA-S: As DCA
� The sparsification phase is executed by fewer 

nodes and requires little info exchange
WAF: Slower
� Non-trivial leader election 



Protocol Duration, 2



Protocol Overhead



Protocol Overhead, 2

Average number of protocol bytes per 
node
WuLi: Best performing
� Simple list exchange
DCA(-S): Almost twice as much
� Bit more info needed (weight, IDs, …)
WAF
� Leader election complexity



Energy Consumption

Important metric per backbone set up 
and maintenance
Similar to overhead results
WuLi and DCA perform quite well
DCA-S performs similarly: No difference 
in breaking cycles with 3 or 4 links
WAF: High consumption due to first 
phase



Energy Consumption, 2



Backbone Size

Important metric: Aggregation and 
awake/asleep cycles
� Small backbone + role rotation: key for 

WSNs

Decrease with n increasing (bigger 
clusters)
WAF: “Slimmer” backbone (tree like)
DCA-S, 4 > DCA-S, 3 > DCA > WuLi



Backbone Size, 2



Route Length

Flat topology (“visibility graph”) as a 
base
Expected increase: Hierarchy routes are 
longer
DCA & WuLi: 7 to 34.7% longer routes
DCA-S: Up to 9% more than DCA
WAF: Up to 33.4% longer than DCA



Route Length, 2



Backbone Robustness

Number of nodes needed to disconnect the 
backbone
Useful for planning backbone re-orgs
Increases with network density
WuLi and DCA: More robust
� Resilient to up to 25 “death” when n = 300

WAF: Quite a disaster (tree-like topologies)
DCA-S: In the middle



Backbone Robustness, 2



“To Go”
Hierarchical organization is effective for 
prolonging network lifetime
Four protocols for backbone formation:
� DCA, WuLi, WAF and DCA-S

Nice theoretical features Æ hard to implement
Simple solutions (WuLi, DCA): Good starting 
point for efficient implementations
DCA-S: “Slimmer” backbone at a reasonable cost
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