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•  A wireless multi-hop infrastructure-less network whose devices 
act as source/ destination of messages & as relay for packets 
generated by a node s and addressed to a node z (iff they are 
on a s-z route) 

•  Pros: No need for infrastructure  low cost, enables 
communication where it  is usually not needed or is not viable 

•  Must be: Self-organizing, self-configuring, self-maintaining 
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•  Collaboration between users in office environments 
•  Disaster recovery applications 
•  Military networks 
•  Personal Area Networks 
•  Home Networking 
•  Wireless Sensor Networks (WSNs) 
•  Inter-vehicular communication 
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•  Highly dynamic networks  device mobility, energy saving sleep/awake 
modes 

•  Need for low energy/resource-consuming, simple protocols 
•  Bandwidth and resource constrained environment 
•  Traffic: 

–  All-pairs in general ad hoc networks, from sensors to sink(s) in sensor 
networks 

–  In many case not high 
•  Scale: Application dependent 

–  10-100 nodes in traditional ad hoc networks 
–  1000-10000 in sensor networks 
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•  Highly dynamic networks  due to device mobility (only in some specific 
applications), to the fact the active node set changes in time for sake of 
energy saving (always to be considered) 

•  Need to design low energy/resource-consuming, simple protocols  very 
critical, energy consumption a real bottleneck 

•  Traffic from sensors to sink(s)  
•  Scalability is a major issue 
•  Code must be simple (small storage capability, very simple, inexpensive, 

resource constrained devices) 
•  First solutions we will see for traditional ad hoc networks do not scale to high 

numbers and are not energy-saving 
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•  Intra-AS routing in the Internet 
–   Link State Approaches 
(info on the topology graph gathered at nodes which run shortest 

path algorithms-Dijkstra- to decide the routes to the different 
destinations –e.g. OSPF routing protocol) 

–   Distance Vector approaches (e.g. RIP) 
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Given a graph G=(N,A) and a node s find the shortest path from s to every 
node in N. 

A shortest walk from s to i subject to the constraint that the walk contains at 
most h arcs and goes through node s only once, is denoted shortest(<=h) 
walk and its length is Dh

i.  
Bellman-Ford rule: 
Initiatilization Dh

s=0, for all h; ci,k = infinity if (i,k) NOT in A; ck,k =0; 
D0

i=infinity for all i!=s. 
Iteration: 

   Dh+1
i=mink [ci,k + Dh

k] 
Assumption: non negative cycles (this is the case in a network!!) 
 The Bellman-Ford algorithm first finds the one-arc shortest walk lengths, 

then the two-arc shortest walk length, then the three-arc…etc. 
distributed version used for routing 
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Bellman-Ford 

Dh+1
i=mink [ci,k + Dh

k] 

Can be computed locally. 
What do I need? 

For each neighbor k, I need to know  
- the cost of the link to it (known info) 
- The cost of the best route from the neighbor k to the destination 
(this is an info that each of my neighbor has to send to me via 
messages) 
In the real world: I need to know the best routes among each 
pair of nodes  we apply distributed Bellman Ford to get the best 
route for each of the possible destinations  



9 

iterative: 
•  continues until no nodes 

exchange info. 
•  self-terminating: no “signal” to 

stop 
asynchronous: 
•  nodes need not exchange info/

iterate in lock step! 
Distributed, based on local info: 
•  each node communicates only 

with directly-attached 
neighbors 

Distance Table data structure  
each node has its own 
•  row for each possible destination 
•  column for each directly-attached 

neighbor to node 
•  example: in node X, for dest. Y via 

neighbor Z: 

D (Y,Z) 
X 

distance from X to 
Y, via Z as next hop 

c(X,Z) + min  {D  (Y,w)} Z 
w 

= 

= 

Cost associated to the (X,Z) link 

Info maintained at Z. Min must 
be communicated 



10 

Link cost changes: 
•  good news travels fast  
•  bad news travels slow - “count to 

infinity” problem! 

X Z 
1 4 

50 

Y 
60 

algorithm 
continues 

on! 

Y detects link cost 
Increase but think can 
Reach X through Z at a  
total cost of 6 (wrong!!)  The path is Y-Z-Y-X 
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Which is the problem here? 
the info exchanged by the protocol!! ‘the best route to X I 
have  has the following cost…’ (no additional info on the 
route) 
A Roman example… 
-assumption: there is only one route going from Colosseo to  
Altare della Patria: Via dei Fori Imperiali.  Let us now consider 
a network, whose nodes are Colosseo., Altare della Patria, 
Piazza del Popolo 

Colosseo Altare Patria Piazza del  
Popolo 

1 Km 1 Km 
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Colosseo Al.Patria P.Popolo 
1Km 1Km 

Count-to-infinity – 
everyday life example (2/2) 
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•  Numero massimo di hop count 
–  L’impatto di loop può essere limitato tramite un campo del pacchetto che tenga 

conto degli hop attraversati. I pacchetti che sono stati in rete per un numero di 
hop superiore ad una soglia prefissata vengono scartati.  

–  se la dimensione della rete è limitata si può limitare (come si fa in RIP) il numero 
di hop num_max_hops al diametro della rete (pari ad es. al valore 15). Se, come 
in RIP, il costo dei link è pari a 1 ponendo infinito=16 il protocollo opera 
correttamente e converge rapidamente nel caso in cui si verifichino problemi di 
tipo count to infinity. 

•  Split horizon con poison reverse 
–  Si limita l’informazione trasmessa. Se A usa informazioni ricevute da B per 

scegliere la rotta verso la destinazione D (A passa tramite B per raggiungere D), 
A non comunicherà un costo per raggiungere D a B oppure (variante Poison 
Reverse) comunicherà un costo infinito. 
   La tecnica assume un mezzo non broadcast ed un vicinato noto 
   Non risolve tutti i loop 

•  Trigger Updates (velocizzazione della convergenza) 
–  Anziché trasmettere periodicamente aggiornamenti tali aggiornamenti possono 

essere immediatamente inviati nel caso in cui si individuino cambiamenti. 
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•  Multi-hop path routing capability 
•  Dynamic topology maintenance 
•  “No loops” 
•  Minimal control overhead 
•  Low processing overhead 
•  Self-starting 
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•  Proactive 
–  Based on traditional distance-vector and link-state protocols 
–  Each node maintains route to each other network node 
–  Periodic and/or event triggered routing update exchange  
–  Higher overhead in most scenarios 
–  Longer route convergence time 
–  Examples: DSDV, OLSR 
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•  Proactive, distance vector approach (uses distributed asynchronous 
Bellman Ford). Updates on route costs transmitted periodically or when 
significant new information is available. 

•  Difference wrt Bellman Ford: in ad hoc networks there are frequent 
changes in the topology, solutions must try to avoid loops (approaches 
such as Poison reverse non effective in broadcast channels, we seek 
solutions which are simple and fully distributed) 

•  Metrics: fresh routes better than stale routes, number of hops used to 
select among the fresh routes 

•  How to identify fresh routes? By means of sequence numbers identifying 
the freshness of the communicated information. When changes occur, 
the sequence number increase. 
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•  Periodically destination nodes transmit updates with a new sequence number 
(and such updates are propagated by the other nodes).  

•  Updates periodically sent by nodes contain information on the costs to achieve 
the different destinations and the freshness of the route  

•  Data broadcast include multiple entries each with: 
–  Destination address 
–  Number of hops required to reach the destination 
–  Sequence number of the information received regarding that destination as originally 

stamped by the destination  
•  In the header the data broadcast also include: 

–  Address (HW address/Net address) of the sender of the message 
–  Sequence number created by the transmitter 

•  Two types of updates (full dump or incremental-only changes- to decrease 
bandwidth consumption. 
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•  How can the costs be modified? Cost=number of hops, target: using fresh routes as 
short as possible  a link cost changes from 1 to inf and from inf to 1 

•  How do we detect that a link is ‘broken’? At layer 2 (no hello messages received for 
some time, or attempts to retransmit a frame exceeds the MAC protocol threshold) 
or at layer 3 (do not receive periodic updates by a neighbor) 

•  Link cost increase (1 inf): 
–  The nodes incident to that link (A,B) discover it (see above)  
–  Routes going through that link get assigned an inf cost in nodes A and B routing tables 
–  A new sequence number is generated by the mobile node. Mobile nodes different from the 

destination use odd SN, the destination even SN. 
–  Updates with routes with infinite cost are immediately transmitted by nodes 

•  Link cost decrease (inf1): 
–  Immediately transmits updates 
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•  When a node  receives updates it sees if costs to reach the different destinations 
can be improved: 
–   routes with more recent sequence numbers to a given destination are used 
–   if more routes available with the same SN the shortest is used 

•  Newly recorded routes are scheduled for immediate advertisement (inf finite 
value) 

•  Routes with improved metric are scheduled for advertisement at a time which 
depends on the estimated average settling time for routes to that particular 
destination (based on previous history)  delayed advertisements to decrease the 
overall overhead 

•  As soon as a route cost changes the node may delay informing its neighbors but 
immediately starts using the new information for its forwarding 
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•  Assuming routing tables are stable and a change occurs 
–   let G(x) denotes the routes graph from the sources to x BEFORE the change (assume no 

loop) 
–   change occurs at i when 1) the link from i to its parent p(i ) in G(x) breaks  i sets to 

inf that route (no loop can occur) 2) node i receives from one of its neighbors k a route 
to x with sequence number SNx

k and metric m which is selected to replace the current 
metric i has to reach x (this occurs only if SNx

k greater than the previous SN I had stored 
Snx

i or if the two SN are equal but the new route has a lower hop cost  in the first case 
if selecting k leads to a loop then SNx

k <= Snx
i  which is a contradiction, in the second 

case comes from the observation reduction in the costs do not bring to loops). 
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•   Optimized Link State Routing (OLSR) is  a link state protocol for MANETs 
–   suited for large and dense ad hoc networks 

•   The key concept is to decrease the overhead of flooding by means of 
identifying a subset of nodes (multipoint relays) in charge of forwarding the 
information during the flooding process 
–   Multipoint relay Y: a node selected by at least one of its 1-hop neighbors (say 

node X) to relay all valid broadcast information it receives from X (the broadcast 
information is valid if it is not expired and not duplicate). 
   MPR(X)=set of multipoint relays of node X 
   neighbors of node X which are not in MPR(X) receive and store the broadcast 

messages transmitted by X but DO NOT retransmit them 
–   A node X which has selected a neighbor Y as multi-point relay is called a 

multipoint relay selector of node Y 
•   Requires only partial link state to be flooded 

–   links from MPR to their selectors must be declared 
   enough to ensure routes to each destination can be found 

–   additional link state information MAYBE advertised 
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•  The protocol is fully distributed 
•  Proactive approach: routes are always available when needed 
•  Other features: 

–  Time between updates can be tuned to increase reactivity to topological 
changes 

–   does not require reliable transmission 
   some losses are tolerated  needed info are periodically transmitted 

–   OLSR control packets are embedded in UDP datagrams 

   sequenced delivery of the messages is not needed  proper recostruction 
of the sequence is possible due to use of sequence numbers 

–   support to other MANET related issues 
  Sleep mode operation 
 Multicasting 
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Ogni nodo mantiene triple <originator address, sequence number, se il messaggio 
e’ stato già inviato> relative a messaggi ricevuti recentemente. In questo modo i 
duplicati vengono scartati 

Sono scartati anche pacchetti con TTL a zero o non coerenti con le specifiche 

in bytes Tempo di validità dell’informazione 

Sorgente del 

messaggio non 

chi lo sta 

trasmettendo 

Inserito dall’originator 

Incrementato ad ogni 

messaggio inviato 

Num. Max di hop 

che un messaggio 

può attraversare 

Es: Hello messages 

Topology declaration 

messages 
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•   Gli hello messages servono a  
–   verificare se i link sono ancora su (link sensing) 

  se non si riceve un hello dal vicino entro un timeout si assume che 
il link non sia più attivo 

  scambiare con i vicini il proprio elenco di vicini 
–   consente ai nodi di aggiornare le in formazioni relative al loro vicinato 

a due hop 
»   Serve per poter individuare i multipoint relay 
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•  Each node X selects its MPRs among its one hop neighbors 
•   The set is selected to cover node X 2-hop neighborhood 

–   MPR(X) is an arbitrary subset of node X one hop neighbors such that 
each node z in node X’s two hop neighborhood have a neighbor in MPR
(X) 
   can be selected with a greedy protocol 

–  MPR(X)=null, C(X)= vicinato a due hop da X 
–  per ciascun vicino Y del nodo  X si calcola il suo degree D (Y) escludendo il 

vicinato a 1-hop di X e X stesso 
–   si inserisce nell’insieme MPR(X)  un nodo Y se è l’unico vicino di X in grado di 

coprire un nodo a due hop da X 
»   C(X)=C(X) \ {nodi coperti da Y} 

–   fino a quando C(X)=null 
»   inserisci in MPR(X) il vicino di X che consente di coprire più nodi rimasti 

scoperti in C(X) (a parità si seleziona in base al degree D) 
»   C(X)=C(X) \ {nodi coperti dal vicino selezionato} 

–   The smaller MPR(X) the less control overhead exchanged 
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•   If the received message is not a duplicate, is valid and 
has a non zero TTL 
–   if it is received by an MPR selector of Y 

  retransmit m 
–   reduce by one the message TTL 
–   increase by one the message hop count 
–   broadcast on all node Y interfaces 

  update or create the entry for the message in the duplicate set 
(upon receiving the same message the node can identify it was 
already received and retransmitted can be discarded) 

Upon receiving a message m at node Y 
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•   Information on topology are disseminated to all the 
network nodes 
–   in an efficient way 

  exploiting the backbone of multipoint relays 
  limiting as much as possible topology information 

•   Each node then locally runs a shortest path algorithm to 
determine paths to the different destination 
–   fills a routing table 
–   upon reception of a data packet forwarding is performed 

according to the routing table 
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•  Proactive protocols are costly in terms of overhead (the bandwidth and 
energy are critical resources) 

•   The cost of maintaining routes updated may not make sense in an 
environment in which 
–  Medium-high mobility 
–  Medium-high dynamicity (awake/asleep states) 
Motivate frequent changes in the  the optimum route (requiring updates) while 
–  Traffic is generally low (so the cost of maintaining always updated routes is 

not balanced by their use) 
If this is the scenario what can we do?  
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•  Reactive (on-demand) 
–  Source build routes on-demand by “flooding” 
–  Maintain only active routes 
–  Route discovery cycle 
–  Typically, less control overhead, better scaling properties 
–  Drawback: route acquisition latency 
–  Example: AODV, DSR 
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•  Reactive (nodes that do not lie on active paths neither maintain any routing 
information nor participate in any periodic routing table exchange; a node does 
not have to discover/maintain a route to a destination till it is on a path to it or 
has to send messages to it) 

•  Route discovery cycle used for route finding 
•  Maintenance of active routes 
•  Sequence numbers used for loop prevention and as route freshness criteria 
•  Descendant of DSDV (standard distance vector approach mapped to ad hoc 

networks), in AODV no periodic updates but pure on-demand operation. 
•  Provides unicast and multicast communication 
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1.  Node S needs a route to D AND does not have routing info for it 
in its table 

A 

B 

C D 
S 
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1.  Node S needs a route to D 
2.  Creates a Route Request (RREQ) 

     Enters D ‘s IP addr, seq#,  
     S ‘s IP addr, seq# 
     hopcount (=0), broadcast ID 

A 

B 

C D 
S 
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1.  Node S needs a route to D 
2.  Creates a Route Request (RREQ) 

     Enters D ‘s IP addr, seq#,  
     S ‘s IP addr, seq# 
     hopcount (=0), broadcast ID 

3.  Node S broadcasts RREQ to neighbors 

A 

B 

C D 
S 

RREQ 



34 

4.  Node A receives RREQ 
–  Makes reverse route entry for S 
     dest=S, nexthop=S, hopcnt=1,expiration time for reverse path 
Source node, Source node SN,D,broadcastID also maintained 
–  It has no route to D, so it rebroadcasts RREQ (hopcount increased) 
–  If it has already received that request (same source and broadcast ID) it 

discards the RREQ 
–   if it knows a valid path to D it will send back a reply to the source  

A 

B 

C D 
S 

RREQ 
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4.  Node A receives RREQ 
–  Makes reverse route entry for S 
     dest=S, nexthop=S, hopcnt=1 
–  It has no route to D, so it rebroadcasts RREQ 

A 

B 

C D 
S 

RREQ 
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5.  Node C receives RREQ 
–  Makes reverse route entry for S 
       dest=S, nexthop=A, hopcnt=2 
–  It has a route to D, and the seq# for route to D              is >= D’s 

seq# in RREQ 

A 

B 

C D 
S 

RREQ 
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5.  Node C receives RREQ (cont.) 
–  C creates a Route Reply (RREP) 
       Enters D’s IP addr, seq# 
       S’s IP addr, hopcount to D (= 1), lifetime of the forward route 
–  Unicasts RREP to A 

A 

B 

C D 
S 

RREQ 
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5.  Node C receives RREQ (cont.) 
–  C creates a Route Reply (RREP) 
       Enters D’s IP addr, seq# 
       S’s IP addr, hopcount to D (= 1)…. 
–  Unicasts RREP to A 

A 

B 

C D 
S RREP 
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6.  Node A receives RREP 
–  Makes forward route entry to D 
     dest = D, nexthop = C, hopcount = 2 
–  Unicasts RREP to S 

A 

B 

C D 
S 

RREP 
RREP 
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7.  Node S receives RREP 
–  Makes forward route entry to D 
     dest = D, nexthop = A, hopcount = 3 

Also the latest SN of the destination is updated when receiving the RREP 

Nodes not along the path determined by the RREP will timeout after 
ACTIVE_ROUTE_TIMEOUT (3000ms) and will delete the reverse pointer 

A 

B 

C D 
S 

RREP 
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7.  Node S receives RREP 
–  Makes forward route entry to D 
     dest = D, nexthop = A, hopcount = 3 
–  Sends data packets on route to D 

A 

B 

C D 
S 
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•   A node receives further RREPs for the same request? (e.g. more 
neighbors of a node had paths to the destination in cache)? 
–   upon reception of another RREP the node updates its routing 

information and propagates the RREP only if the RREP contains either a 
greater destination SN, or the same destination SN with a smaller 
hopcount 
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•   Each node maintains the list of active neighbors, neighbors sending 
to a given destination through it  
–   useful for route maintenance 

•  Routing table entries: dest,next hop, hopcount, dest SN, active 
neighbors for this route, expiration time for route table entry 
(updates each time the route is used for transmitting data  routes 
entries are maintained if the route is active) 



44 

1.  Link between C and D breaks 
2.  Node C invalidates route to D in route table 
3.  Node C creates Route Error (RERR) message 

–  Lists all destinations which are now unreachable 
–  Sends to upstream neighbors 
–   Increases of one the SN of the destination 

A 

B 

C D 
S RERR 
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4.  Node A receives RERR 
–  Checks whether C is its next hop on route to D 
–  Deletes route to D 
–  Forwards RERR to S 

A 

B 

C D 
S 

RERR 
RERR 
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5.  Node S receives RERR 
–  Checks whether A is its next hop on route to D 
–  Deletes route to D 
–  Rediscovers route if still needed (in that case it sends a RREQ with a 

SN which is equal to the last known destination Sequence Number 
+1) 

A 

B 

C D 
S 

RERR 
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•  Expanding Ring Search 
–  Prevents flooding of network during route discovery 
–  Control Time To Live (TTL) of RREQ to search incrementally larger 

areas of network 
–  Advantage: Less overhead when successful 
–  Disadvantage: Longer delay if route not found immediately 



48 

•  Local Repair 
–  Repair breaks in active routes locally instead of notifying source 
–  Use small TTL because destination probably hasn’t moved far 
–  If first repair attempt is unsuccessful, send RERR to source 
–  Advantage: repair links with less overhead, delay and packet loss 
–  Disadvantage: longer delay and greater packet loss when unsuccessful 
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•  Reactive/on-demand 
•  Sequence numbers used for route freshness and loop 

prevention 
•  Route discovery cycle  
•  Maintain only active routes 
•  Optimizations can be used to reduce overhead and 

increase scalability 


