2. Other DCF features, limits
and extensions
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Fragmentation

= Splits message (MSDU) into =2 Each fragment reserves channel

several frames (MPDU) for next one
= Same fragment size = NAV updated fragment by fragment
- except the last one => Missing ACK for fragment x
= Fragmentation burst = Release channel (automatic)
= Fragments separated by SIFS = Backoff
> Channel cannot be captured by => Restart from transmission of fragment x

someone else

= Each fragment individually ACKed

sender

receiver
NAV (RTS)
NAV (CTS)
NAV(fragl)
Other I =
: NAV
stations
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Why Fragmentation?

= High Bit Error Rate (BER)
= Increases with distance
= The longer the frame, the lower the successful TX probability
= High BER = high rts overhead & increased rtx delay

- Backoff window increases: cannot distinguish collisions from tx error!

Fadio
impairment
11 EEEEEEE, L,
l T B

b e b L
E iﬂ?:_ llglil._ % __g__'_!' Cnce again &
Fragmentation not Viable with
Radio ‘modern” 802.11 rates - not used
impairment
J
:'.-."--'.'.-i-'.'-".-.i‘ "Itl"l._r u .|'_|'||||'|:_ T BN R '_-'..-'_-'_-1'. SRR

ey | oy E = ——- - - -
c C c L G EJ
[A [ ] 1A [
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Fragment and sequence numbers
DATA FRAME (28 bytes excluded address 4)

Frame | [Duration Sequence
Control /1D Address 1 Address 2 Address 3 Conirol Address 4 Data FCS
MVore Retry| Fragment
Frag Sequence number
number
4 12

= Fragment number
= Increasing integer value 0-15 (max 16 fragments since 4 bits available)
= Essential for reassembly

=> More fragment bit (frame control field) set to:
= 1 for intermediate fragments
= 0 for last fragment

= Sequence Number

= Used to filter out duplicates
—> Unlike Ethernet, duplicates are quite frequent!
—> Retransmissions are a main feature of the MAC

= Retry bit: helps to distinguish retransmissions
= Set to 0 at transmission of a new frame
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Multi-rate operation

=> Rate selection: proprietary mechanism!
= Result: different chipsets operate widely different
= Two basic approaches

= Adjust rate according to measured link quality (SNR
estimate)
—>How link quality is computed is again proprietary!
= Adjust rate according to frame loss
- How many retries? Step used for rate reduction?

—>Problem: large amount of collisions (interpreted as frame loss)
forces rate adaptation
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Performance Anomaly
[M. Heusse, et al. “Performance Anomaly of 802.11b”, INFOCOM 2003]

= Question 1:

= Assume that throughput measured for single 11 mbps greedy stations is approx 6
mbps. What is pr-STA throughput when two 11 mbps greedy stations compete?

= Answer 1:
= Approx 3 mbps (easy!
=)

= Question 2:

= Assume that throughput measured for a single 2 mbps greedy stations is
approx1 Z mbps. What is per-STA throughput when two 2 mbps greedy stations
compete”

= Answer 2:
= Approx 0.85 mbps (easy!)

= Question 3:

= What is the per-STA throughput when one 11 mbps greedy station compete with
one 2 mbps greedy station?

=» Answer 3:
= ...
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An intuitive answer..

=> The probability that at each contention a given
station gets the next channel access (i.e. extracts the
lower backoff) is fixed for all the stations!

= In long terms, all the stations receive the same
number of transmission grants

= |f payload size is fixed: the throughput of high rate and low rate stations is

the same, regardless of the transmission rate

—>throughput fairness
—>low rate stations waste resources for high rate stations
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Understanding Answers 1&2

(neglect collisions — indeed rare with only two stations)

In average, STA1 and STA2 alternate their transmissions on the channel!

; backoff :
’ Frozen backoff .
STA L |y Joms || [ [[|||STA2 krs CJOESs |||
ACK ACK
1 e .......j:;ill.EI.é-ﬁ.r.‘;l.é.----.--.-..............-.---------------_.-................-_-.F
El payload] _ 1500 =8

The{l] = Thni2] =

Elevele time]  T,,,,[1]+ SIFS + ACK + DIF5 + T, [2]+ 5IF5 + ACK = DIFS + E[backaff]

= [ata Eate = 11 mbps; ACK rate = 1 mbps = Data Kate = 2 mbps; ACH rate = 1 mbps
=% Payload = 1500 bytes =% Payload = 1500 bytes
Tyopy =192+8-(28+1500)/11= 1303 T o =192 +8-(28+1500)/2 = 6304
T =192+8-14/1=304 T =192+8-14/1=304
SIFS =10 DIF5=30 SIFS=10; DIFS =30
E[Backaff]=—2%20=310 E[Backoff] =22 x 20 =310
Thr 15008 33Mbps  Thr il — 0.88Mbps

~ 2%(1303+10+304+50)+310 " 2%(6304+10+304+50) =310
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Computing answer 3

4 Frozen backoff .

STA (2mbps) [z o [ |[STA Her s | ]

ACK ACK

RESULT: SAME THROUGHPUT (in the long term)!!

Elpayload] _

Eleyele time] -

Tm{l]=Th[2]=

1500 %8
T, [1]+ SIFS + ACK + DIFS + T, [2]+ SIFS + ACK + DIFS + E[backaff]
) 15008
6304+1303+ 2(10+ 304+ 50) + 310

=139 Mgt 111

DRAMATIC CONSEQUENCE: throughput is limited by
STA with slowest rate (lower that the maximum throughput

achievable by the slow station)!!
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Performance anomaly into action

Why the network is

s0000 slow today? We're 50
Close, we have a b4 mbps and
“excellent’ channel, and we get
Less than 1 mbps ...

Hahahahahah!!

Fh:u:w channel, Rate-fallbacked @ 1mbps &

——— Giuseppe Bianchi, llenia Tinnirello




Spatial reuse
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Exposed Nodes

=» Any node within carrier sense range of transmitter and out
of interference range of receiver

= Prevents simultaneous transmissions

=» Reduction in Spatial Reuse - RN
= C in carrier sense range of A v al
&& out of interference range of B //
/ PR N I
/ 7 AN
I / \
I I
G+—O O >
D |\ C \ A B
\ \
/
\ \ “ y
\
> ~
N _ - ”
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Is exposed node a problem?

=> Not really!
= Remember that DCF handshake is asynchronous...

= [fCtxtoD && a tx to B, =TT T~
No interference @ D & B P
BUT: .
C still TX to D && B replies to A / PR
with an ACK -> / .” S
/ N\
Interference on Al!!!l / // \
I I
G+—0— O+——0 |
D |\ C \ A B
\ \
\ \ ,/
\ N o _
\ ~-
\
N\
S< _ .
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Node chains

=> In practical scenarios, packets can be often delivered
from source to destination through multiple radio
hops

= dramatic performance impairment in node chains

= Nodes can forward only a single packet at a time,
blocking neighbor transmissions

= Hidden nodes
source

destination
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Chain capacity

[J. Li, et al “Capacity of Ad Hoc Wireless Networks”]

= Assume that Transmission, Interference and CS ranges
coincide

=> Simultaneous transmissions along the chain:
= |f node distance = CS+1 -> collision! (e.g. back collision at node 2!)

= |f node distance > CS+1 -> spatial reuse. (e.g. node 4 and node 7 receive
correctly!)

Never empty
tx queue
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Maximum chain capacity

= Question: if r is the throughput when node 1 transmits alone towards node
2, what is the maximum packet delivery rate between 1 and 8, assuming
ideal packet scheduling?

= Answer: if tx order is 1-2-3-4-5-6-7-8, we have 7 tx before a packet delivery -
> max thr =r/7

= Answer: we can exploit simultaneous tx! After a transient tx order cyclically
is (1,4,7)-(2,5)-(3,6): we have 3 tx before a packet delivery -> max thr =r/3

ordered

SG—2 @ @ 6 ® @ B gy

e
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Maximum chain capacity

= Question: if r is the throughput when node 1 transmits alone towards node
2, what is the maximum packet delivery rate between 1 and 8, assuming
ideal packet scheduling?
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S @ @—) ©® ® @ D®  eivery
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Maximum chain capacity

= Question: if r is the throughput when node 1 transmits alone towards node
2, what is the maximum packet delivery rate between 1 and 8, assuming
ideal packet scheduling?

= Answer: if tx order is 1-2-3-4-5-6-7-8, we have 7 tx before a packet delivery -
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S® ® @ ® @ D delivery

ordered delivery
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Maximum chain capacity
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2, what is the maximum packet delivery rate between 1 and 8, assuming
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Maximum chain capacity

= Question: if r is the throughput when node 1 transmits alone towards node
2, what is the maximum packet delivery rate between 1 and 8, assuming
ideal packet scheduling?

= Answer: if tx order is 1-2-3-4-5-6-7-8, we have 7 tx before a packet delivery -
> max thr =r/7

= Answer: we can exploit simultaneous tx! After a transient tx order cyclically
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Maximum chain capacity

= Question: if r is the throughput when node 1 transmits alone towards node
2, what is the maximum packet delivery rate between 1 and 8, assuming
ideal packet scheduling?

= Answer: if tx order is 1-2-3-4-5-6-7-8, we have 7 tx before a packet delivery -
> max thr =r/7

= Answer: we can exploit simultaneous tx! After a transient tx order cyclically
is (1,4,7)-(2,5)-(3,6): we have 3 tx before a packet delivery -> max thr =r/3

ordered

S® @ & @ 6 & @ —E® delivery

ordered delivery
+simultaneous tx

s b o @ 4
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Actual chain capacity

= DCEF is totally distributed! No ideal scheduling among the node

transmissions

= Dramatic hidden node problem, especially for the first nodes of the

chain

= Along the chain, is rare that contiguous nodes are simultaneously active
= Collisions on the back of the packet flow direction (e.g. collision @node 2, not @node 4!)

1.

@ ®&® ® © b®

node 1 tx its first
packet

node 1 and node 2
contend for the next
channel access

After the first node 2
successful tx, it is
very likely that next
node 1 tx is originated
during ongoing node 3
tx!
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Actual chain capacity

= DCEF is totally distributed! No ideal scheduling among the node

transmissions

= Dramatic hidden node problem, especially for the first nodes of the
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= Along the chain, is rare that contiguous nodes are simultaneously active
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1.

S &2 G —¢ 6 & @ B
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node 1 and node 2
contend for the next
channel access

After the first node 2
successful tx, it is
very likely that next
node 1 tx is originated
during ongoing node 3
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Can RTS/CTS help?

Two different collision events @node 2:
= node 3 starts its tx during ongoing node 1 tx;
= node 1 starts its tx during ongoing node 3 tx

= RTS/CTS do not solve the second collision event, which is

the most common!

1.

2.
s 9—L @@ @ 6 ® o@P®
RTS
2.
3.

s® @ ® @ 6 ® oP®

node 1 tx RTS

node 2 replies with a
CTS packet which blocks
node 3 tx

node 1 tx DATA: Ok!

node 3 tx RTS

node 4 replies with a CTS
packet blocking node 5 tx

node 1 tx RTS: collisions at
node 2! (often more
subsequent RTS collisions
during the same node 3
data tx)
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RTS/CTS Collision Times

in node chains

=

@—@ 6 ©® @ ®

DATA
DATA 3->4 ACK
CTS CTS CTS
Timeout Timeout Timeout
RTS l— ‘ ‘ RTS l— ‘ ‘ RTS
< >

2 drawbacks:

Actual collision times are not reduced!
Because of multiple collisions, higher CW and higher next access delays!
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Spatial reuse
via directional antennas

=> Smart antennas/ switched beam
may be effectively deployed over
multiple transceiver APs

= Possible capable of independent simultaneous
TX/RX on all beams

= Goal: enable simultaneous tx/rx in
different beasm

= Space-Division Multiple Access (SDMA)

= Design Constraint: omnidirectional
antennas on STA

=> Not a problem: beam forming done
at the AP (valid for both TX and RX
directions)
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Cell Capacity

= If we complicate the AP structure, with multi transceivers and
directional antennas, we can multiply the radio resources available
in a given cell

=» Omni-directional vs. Directive Beams: more beams, more capacity!

= Does it work with standard DCF??
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Actual scenario: some thoughts

= How much directive antennas may increase the
capacity of a cell?

= We are not interested here to increase covered distance

= Working assumption
=1 central AP;
= |deal operation of directional antennas
= Many STA, all in reciprocal visibility

—> Antenna technology used to increase capacity; no power control
i1ssues considered

= Assume STA positions known
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Simultaneous uplink/downlink TX

. AP is transmitting to STA A

. STA B performs carrier
sensing

STA B sends omnidirectional
DATA

. STA B DATA destroys STA A
ongoing reception

W MNH

=» Conclusion

= We need to prevent TX from B
- E.g. via omnidirectional CTS
from A
= |f all STAs are in range,
simultaneous uplink/downlink TXs
impossible
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Simultaneous downlink

1. AP is transmitting to STA
A and STA B

simultaneously

2. DATA to B ends; after a
SIFS B sends ACK

3. .. Which destroys A
reception

=» Conclusion

= Unless accurate scheduling
considered, simultaneous
downlink TX are not possible
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Simultaneous uplink

1. B transmits to AP

2. A might transmit to AP
too..

Note that subsequent ACK would be
directed and would not interfere

3. ..but senses the channel
busy

= Conclusion
= Exposed terminal problem
magnified
= Simultaneous uplink
transmissions are not possible
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Summarizing...

=>The asynchronoud DCF handshake is way
far from being suited to support SDMA

=\We have just proven that, in full coverage, only a
SINGLE transmission at a time my occur into a cell

=» Solutions:
= Centralized MAC;
= Power control
=New MAC (Throw DCF away!)
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Multiple Radio MAC

=> Taking dinamicity in the
MAC: multi-channel MAC
—>[Nasipuri, Zhuang, Das,
1999];
[Jain, Das, Nasipuri,
2001]
—->[Tseng, Wu, Lin, 2001]

—->[Hung, Law, Leon-Garcia,
2002]

= Multiple channels available

= DATA transmitted on
channel selected via
(modified) RTS/CTS
handshake

= RTS/CTS handshake on
Common Control
(signalling) Channel

——— Giuseppe Bianchi, llenia Tinnirello
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Implementation issues

= Implementation transparent to MAC

- Multichannel handshake coded into PLCP header
» [Technical report in italian project FIRB-PRIMO)|

—->MAC sees a unique channel

=> Technical issues (not discussed in papers)
= Multi-channel carrier sense
—->Hard with commercial components...
= Timing constraints for channel switching
- Again, many products do not support required timing
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Multi Channel MAC
o [0 AN AN AN /BN AR AR

Data ch. 1

= Legacy RTS/CTS handshake Legenda

~>On control channel, only I:l s I:I _ I e I
= Limited exploitation of parallel TX

- Approach not exploited to its full capabilities
- Channel separation wastes capacity

= Tradeoffs required
—->How much bandwidth to (bottleneck) signalling channel?

IR
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Rate optimization

Control channel data rate cannot be arbitrarily
low, in order to avoid data channel wastes

mil Rl Ml Bl >l @[] B[]

NN N TN N DTN N OEeEE N e E

fully utilized data channel

[T | | 2 ] | 737 | | [T | |

BN BNl §EEN

Resource wastes due to lack of reservations
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QoS Support
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802.11 MAC evolution

(802.11e, finalized in dicember 2005)

Dead &

Intended for

Contention-Free

Services

Jsed for service

differentiaiion
(priorties)

Legacy

PCF

(polling)

HYBRID COORDINATION FUNCTION

HCF

HCF Controlled
Channel Access

HCCA

{=cheduling)

Enhanced Distributed
ChanneldAccess

EDCA
(prioritized CSMA)

DCF
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Virtual Collision Handler

=>4 Access Categories
= Mapping the 8 priority levels provided by 802.1p

= Different channel access probability through different access
parameters

= Independently operated as multiple MAC

CW,_..,.CW,_,

Multiple Queues

7944

L

MAC Entlty

= Queues in the same station can (virtually) collide!
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Distributed Prioritization:
channel accesses

= More channel accesses to High Priority stations
reducing the backoff expiration times

= By giving probabilistically lower backoff counters (CWmin, CWmax)
= By giving deterministically lower backoff resume times (AIFS)

< <
busy ’| HP T||| HP
43210 6 543210
LP 77776 6 65432 1

N.B. Tunable CWmin can also be used for performance
optimizations as a function of the network load!!
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Distributed Prioritization:
transmission grants

= Given the channel access probability, we can also
differentiate the number of packet transmissions
allowed for the stations which wins the contention

= More transmissions opportunities back-to-back to
High Priority stations

= Channel grants not on MSDU basis, but in terms of “channel holding

times”
HP HP ] LP HP HP
——
HP TXOP LP TXOP

TXOP not only for throughput repartition, but also for efficiency improvements!
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802.11: Old MAC and New PHYs..

= In standard DCF, channel accesses are packet oriented:
each MSDU transmission requires a different access

N\ e b I

A

__—

20"8/R* |« > 14*8/R"« > 28*8/R< F’*8/R/ =:-<

e Channel wastes are due to both PHY layer constraints and
MAC operations:

SIFS, DIFS, SlotTime, Preamble, TX rates R and R*

RTS, CTS, ACK, # of bk slots, Collision Probability
New PHYs allow higher TX rates..

Overheads are not reduced proportionally
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Overheads @ different rates

(Packet=1500 bytes)

0 2000 4000 6000 8000

Transmission Time (usec)

O DFS o RIS+SIFS 0 CIS+SIFS O Fayload+-SIFS @ ACK

System efficiency degrades for high data rates/
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802.11e transmission extensions

= Key idea: the system efficiency improves by maximizing the
payload transmission in each channel access (since overheads
are reduced proportionally reduced)

= But maximum payload size is limited to 2304 bytes!

= TXOP & BACK:
= Perform multiple transmissions in burst in each channel access
= Acknowledge more packet transmissions with a cumulative ACK

Frame transmissions are separated by SIFS -> No other station can
access the channel during the burst \

O [ [/ e | []
jmEEs § 1 11BN []

The ACK is sent just after an explicit request and refers to multiple frames
(bit map related to per-frame transmission result)
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ACK Aggregation: does it work?

AR ACK
q Timeout

q
__1 B i EEE 1 5 B

Long Collision Time!

Collisions are revealed only after the transmission of the ACK Request
(ARq) frame -> Collision times increase significantly.

Since only the Head Of Burst frame is subject to possible collisions,

better strategies could be:
ACK

Timeout

RTS CTS ARi ACK | |

a) Preliminary RTS/CTS exchange in order to confirm the

successful access ACK
ACK ARGACK Timeout

11 1 FIEEE

b) Explicit ACK for the first Data Frame before start the TX burst
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Different Access and ACK policies
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More on TXOP..

Basically, limit the channel holding times of the competing stations in
presence of delay-sensitive traffic

However, TXOP implications are much deeper..

The channel access is managed with a completely different perspective
The access unit is not the MSDU (as in standard DCF), but a temporal
interval -> temporary channel-service establishment with higher

efficiencies

DCF

< » <
< » «

DCF + TXOP
802.1 1e can natively provide temporal fairness via TXOP!
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