Esercizio 1	(a)) Si	costruiscano	tutti	i	sottogruppi	dei	seguenti	gruppi:
-------------	-----	------	--------------	-------	---	-------------	-----	----------	---------

$$(\mathbb{Z}_{143},+), \quad (\mathbb{Z}_{36},+), \quad (\mathbb{Z}_{30},+)$$

(b) Costruire, per ciascuno dei gruppi precedenti, un diagramma che espliciti le di inclusione tra i sottogruppi (precisamente, un grafo avente per vertici i sottograto tra i sottogruppi Z, T se $Z \subset T$ e non esiste un sottogruppo R tale che $Z \subset T$ (c) Verificare che l'applicazione $f: \mathbb{Z}_6 \to \mathbb{Z}_9$ ottenuta ponendo $f(\overline{n}) = \overline{6n}$ è ber	$\begin{array}{c} \text{uppi e u} \\ R \subset T) \end{array}$
ed è un omomorfismo di gruppi. Determinarne poi il nucleo.	

Esercizio 2 Determinare

$$G = \left\{ A = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \mid \overline{a}, \overline{b}, \overline{c}, \overline{d} \in \mathbb{Z}_2, \det(A) \neq 0 \right\}.$$

O P. P	classi laterali de	Suic C Sillisuic.	

Esercizio 3 (a) Si consideri l'operatore lineare $L_A: \mathbb{R}^3 \to \mathbb{R}^3$, $L_A(X) = AX$, associato alla matrice

$$A = \begin{pmatrix} 1 & -1 & -2 \\ 0 & \alpha & 0 \\ \alpha & -1 & 3 \end{pmatrix}.$$

- (α è un parametro reale).
- (a) Determinare basi per l'immagine e il nucleo di L_A al variare di $\alpha.$
- (b) Provare che per $\alpha = 1/2 L_A$ non è diagonalizzabile.
- a da

(d)* Determinare i valori di α per cui A è diagonalizzabile.	(c) Provare che per $\alpha = -4$ L_A è diagonalizzabile. Trova autovettori per L_A .	
	(d)* Determinare i valori di α per cui A è diagonalizzabile.	

Esercizio 4 Sia

$$U = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \mid \left\{ \begin{array}{l} x_1 + 2x_2 = 0 \\ 2x_1 + 3x_2 - x_4 = 0 \\ x_2 + x_4 = 0 \end{array} \right\}.$$

((\mathbf{a})	Determinare	una	base	per	U	٠.
- 1		Doublining	and		POI	\sim	

Scrivere esplicitam etriche a traccia null	a.	insmo tra C	e ii sottospaz.	io dene matrici	Z X Z S.