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A simple redundant binary number representation suitable for digital-optical computers is presented.
By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums
carried out in constant time and parallel multiplication in log N time. This redundant number
representation naturally fits the 2's complement binary number system and permits the construction of
inherently parallel arithmetic units that are used in various optical technologies. Some properties of this
number representation and several examples of computation are presented.
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1. Introduction
To exploit the inherent parallelism of an optical
computing machine fully, one needs suitable and fast
arithmetic units. The problems of attaining parallel
carry-free addition and parallel multiplication have
been investigated by many authors, who have used
two main approaches: the residue number systeml"2

and redundant number representations.3 In fact, by
means of both approaches it is possible to build totally
parallel adders that operate by symbolic substitution
and in constant time (the adding time is independent
of the operand digit string length N). Using the
residue number system, one can also perform parallel
multiplication in constant time by symbolic substitu-
tion, but the number and the size of the truth tables
required for both addition and multiplication in-
crease greatly with the numerical range involved.2

On the contrary, additions of redundant numbers can
be performed in constant time by small truth tables
and are independent from the digit position and from
the numerical range; in this case, multiplications can
be performed in log time. There are numerous
studies on this subject concerning digital-optical
computers in the case of free transmission of informa-
tion (see, e.g., Refs. 4-11). The modified signed digit
(MSD) representation is the method most widely
investigated; there have been numerous studies, par-
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ticularly in the digital-optical computing field (see,
e.g., Refs. 9-11).

Here, a recoded version of the carry-save number
representations is presented. This simple redun-
dant-binary (RB) number representation permits one
to build an inherently parallel arithmetic with a
two-step carry-free algebraic sum, it naturally fits the
2's complement binary number system, it presents
the same advantages as other redundant number
representations, and it requires only two symbols
(0, 1) instead of three (such as the MSD). The RB
representation permits the construction of efficient
arithmetic units operating by means of symbolic
substitution or other optical technologies (e.g., on the
optical cellular processor, on which an arithmetic
faster than that presented by Huang et al. can be
carried out' 3 1 4).

2. Redundant Binary Representation
In the natural binary system an unsigned integer D is
obtained by

N-1

D = I ai2i,
i=O

(1)

where the digits are ai E 0, 1} and the most-
significant digit is the leftmost of the string. An
integer D obtained by

N-1

D = E: ai2 i-i/2l, N even,
i=O

(2)

is in RB representation. In Eq. (2) (where r 1 repre-
sents the rounding to the upper integer), again ai E
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{0, 1} and the most-significant digit is the leftmost of
the digit string. For i = .. . 7, 6, 5,4, 3, 2, 1, 0, Eq. 2
generates the following sequence of position weights:

... 8 8 4 4 2 2 1 1

r n r n r n r n.

This weight sequence characterizes the RB number
representation. As can be seen, all position weights
are doubled. In each pair of digits of the same
weight n, the left and the right digit are called,
respectively, the r (redundant) and the n (normal)
digit. From Eq. (2) there follows that an RB repre-
sentation of a number can be obtained from its binary
representation by the use of the following recoding
rules:

0 -00, 1 01.

The RB number obtained in this way is in canonical
form. This coding operation is performable in paral-
lel in constant time (one elemental logic step). Each
RB number has a canonical form and several redun-
dant representations. Some examples of unsigned
RB numbers, in canonical and redundant representa-
tions, are shown in Table 1.

3. Arithmetic with Redundant Binary Numbers

A. Addition of Unsigned Numbers by Symbolic
Substitution
The RB number representation permits totally paral-
lel arithmetic operations to be performed by symbolic
substitution. The addition of two RB numbers can
be performed by using rules defined by truth tables
that act on rn digit pairs. Table 2 (Trn) shows these
rules, which, applied in parallel on all pairs of two RB
numbers (operands) arranged on two superposed and
aligned rows, obtain the pairs of two output RB
numbers, still on two superposed and aligned rows.
The procedure is described below.

Procedure 1
(a) The input is two superposed and aligned RB

numbers.
(b) Step 1 is the parallel application of the rules in

Table 2 on all rn pairs (this step generates an
intermediate sum).

Table 2. Symbolic Substitution Rule Truth Table for Redundant Binary
Number Additiona

U

1 00 01 10 11

00 10 00 10
00 00 00 01 01

00 10 00 10
01 01 01 10 10

00 10 00 10
10 01 01 10 10

00 10 00 10
11 10 10 11 11

aThis table acts on rn pairs; u and indicate the upper and lower
rows (inputs) respectively, of each cell. The lower output pair is
shifted left one position.

(c) Step 2 is the parallel application of the rules in
Table 2 on all rn pairs of the intermediate sum (this
step generates the result).

(d) The output is the sum on the lower row and
the zero is in canonical form on the upper row.

Figure 1 shows in more detail the alignment and the
truncation of RB numbers for a correct application of
Table 2.

Remark. The input of Table 2 is two pairs of rn
digits (pairs of digits having the same weight) with
digit positions i + 1 and i, respectively; the output is
(a) an upper pair rn with digit positions i + 1 and i
respectively, and (b) a lower pair nr with digit posi-
tions i + 2 and i + 1, respectively. The table is built
in such a way that the sum of the input pairs is always
equal to the sum of the output pairs.

Lemma 1. If Table 2 is applied on two superposed
and aligned bit strings representing two RB numbers
Lin and Uin (lower and upper operand), as shown in
Fig. 1, the result is always two superposed and
aligned RB numbers Lout and Uut, where Lin + Uin =
Lout + out.

Proof The application of Table 2 preserves the
sum of pairs (see Remark). An RB number is a sum
of rn pairs [see Eq. (2)]; then Lin + Uin = Lout + Uut.E

Lemma 2. If Table 2 is applied twice on two
superposed and aligned bit strings (upper and lower

Table 1. Example of Unsigned Redundant Binary Numbers in Canonical and Redundant Representation

Redundant Binary Representation

Integer Binary Canonical Redundant

0 000 000000
1 001 000001 000010
2 010 000100 000011 001000
3 011 000101 001001 000110 001010
4 100 010000 000111 001100 001011 100000
5 101 010001 010010 001101 001110 100001 100010
6 110 010100 010011 011000 001111 100100 100011 101000
7 111 010101 010110 011001 100101 100110 011001 010110 101010
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r n r n r n r n

a7 a6 a5 a4 a3 a2 a, ao

b7 b6 b5 b4 b3 b2 bi bo

_ _

C7 Q C5 0 c3 0 Cl 0
d8 d7 d6 d5 d4 d3 d2 di 0

S7 S7 S6 S5 84 S3 52 SI 0

result
Fig. 1. Parallel application of the rules in Table 2 on two RB
numbers to perform addition by symbolic substitution. At each
step the input and the output are on two strings: a and bi are the
bits of the input operands, ci and di are the bits of the intermediate
sum, and si values are the bits of the result. The symbol 0 is a
padded zero.

strings) N bits wide (with N even), two resulting bit
strings are obtained, and the resulting upper string is
always formed by N zeros. EZ

Proof The two input bit strings can be considered
strings of pairs,... P2P1Po, wherepi E too, 01, 10, 11}.
After the first application of Table 2 the resulting
upper string contains only pairs pi E 00, 10}. In
consequence, during the second application, only
columns 00 and 10 of this table are used and only
pairspi = 00 are generated in the upper string. U

Theorem 1. Procedure 1 gives the RB representa-
tion of the sum of two RB numbers. Cl

Proof Lemma 1 states that the application of
Table 2 on two superposed and aligned RB numbers
Uin and Lin (upper and lower operand) obtains two
superposed and aligned RB numbers Uout and Lout,
with Uin + Lin = Uout + Lout; this property is obviously
valid also for subsequent applications. Lemma 2
states that, after two applications of this table, Uout is
always a string of N zeros (the RB zero in canonical
form) and, consequently, Uin + Lin = Lout, U

In Fig. 2 an example of addition of two RB numbers
is shown. As can be seen, the addition is completed

(409)10 (00001111000100011110)RB

(576)10 (1000
0 0 0

0010110101011)RB

(214)lo (000101000100
0
1010

0
0)RB

(771)10 (10001010101010110110)RB

(°)10 (00000000000000000000)RB

(985)10 (1001010011001111
0 0

10)RB

Fig. 2. Addition of two unsigned RB numbers by symbolic
substitution using Procedure 1. After two steps the upper row is
zeroed, and the lower row contains the sum.

in parallel in constant time (two elemental logic
steps).

B. Signed Numbers and Algebraic Sum
Following the definition of RB numbers, and in
analogy with the 2's complement binary system, a
signed RB number is obtained by

N-1 N-3

D = - j ai2i-ri/2l + Y ai2 i-i/21
i=N-2 i=0

N even. (3)

Equation (3) guarantees that the canonical represen-
tation of a signed RB number can be obtained from
the corresponding 2's complement binary number
with the same recoding used for unsigned numbers.

The same procedure of the addition of two un-
signed RB numbers obtains the algebraic sum of two
signed RB numbers (see Theorem 1). Hence the
additive inverse of an RB number is obtained by the
following Procedure 2, which is similar to that used in
the 2's complement number system, taking into
account the fact that the value of the negation of all
RB representations of the number ()10 is (-2)1o [in
the 2's complement binary system it is (- 1)1o].

Procedure 2

(a) The input is an RB number.
(b) In step 1 all digits of the RB number are

negated.
(c) Step 2 is the algebraic sum between the RB

canonical form of (2)1o and the RB number.
(d) The output is the additive inverse of an RB

number.

By using the additive inverse of an RB number, the
subtraction of two signed RB numbers is then permit-
ted. The additive inverse of an RB number can be
obtained in parallel and in constant time (three logic
steps). Figure 3 shows examples of the computation
of the algebraic sum of two RB numbers and of the
additive inverse of an RB number.

C. Decoding
In computing the value of an RB number, the use of
Eq. (2) can generate values outside the range of the
corresponding binary number or of the 2's comple-
ment binary number. This fact can mask the true
sign of RB signed numbers.

Let RBn and RBr be two digit strings, RB, =
... n6n4n2n0 and RB, = ... r7r5r 3r,, where n is the
normal digit of an RB number and r is the redundant
one. The decoding of RB numbers, with the correct
truncation, can always be performed with the follow-
ing simple procedure that derives directly from the
RB number definition.

Procedure 3

(a) The input is RBn and RBr.
(b) Step 1 is the binary addition RB + RBr.

Only the first N/2 bits are considered.
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(419)1o (OOlO1 0 0 0
0010110

0
011O)RB

(-45
2

)10 (10000
0 0 0

011000110111)RB

(10)1o (0 0 0 0 0 0 0 0 00001000 1000)RB
(-43)10 (1010100011001100111)RB

(°)10 (00000000000000000000)RB
(-3 3)10 (10101 0 01000110011010)RB

(a)

(499)10 (000110 01001101110110)RB

(-501)10 (1110011 0110010001001)RB

(2 )1o (
0 0 0 0 0 0 0 0

000000000100)RB

(-351),o (1000100010000000001)RB

(-14
8

)1o (10100010100010010000)RB

(°)10 (00000000000000000000)RB

(-49 9)10 (0Olololl0OolOlOOO1O)RB

(b)
Fig. 3. (a) Algebraic sum of two signed numbers; (b) computation
of the additive inverse of an RB number by means of Procedure 2.

(c) The output is the corresponding binary or 2's
complement binary number.

Namely, RB numbers can be converted into binary
or 2's complement binary ones by splitting the RB
number into two binary numbers: the first is ob-
tained by the n digits and the second is obtained by
the r digits. The binary sum of these two numbers
obtains the expected value in natural binary represen-
tation. Using CLA adders,' 5 one can perform this
operation in O(log2 N) time. Signed numbers (in 2's
complement binary representation) can be encoded as
(decoded from) signed RB numbers by the same rules
used for unsigned numbers. An example of decoding
is shown in Fig. 4. If an RB number is in canonical

N

(11100110110010O101)RB

RBn+ (1010100001)2
RBr = (1101101010)2

form, the decoding operation is trivial and perform-
able in parallel in constant time (one elemental logic
step; see Section 2). The nonconstant time complex-
ity of the decoding operation is not a serious problem
because this operation is used only when the data
must be presented to the external world.

D. Multiplication

Equation (2) guarantees that the RB numbers have
shifting properties similar to those of positional num-
ber systems. In fact, multiplication by two is ob-
tained if the RB number is shifted left by two
positions. Keeping this fact in mind, one can carry
out a multiplication algorithm with O(log 2 N) time
complexity following the same outline as Vuillemin12
or Takagi et al. 16 (redundant binary tree).

4. Properties of Redundant Binary Representation

A. Zero and Its Detection
In the case of unsigned RB numbers the ()10 has only
the RB canonical form (see Table 1) and is hence
easily detectable. In the case of signed RB numbers,
(O)10 has many RB representations. As an example,
for six-digit signed RB numbers the representations
of the ()10 are

(°)10 (OOOOOO)RB(1011)RB(101100)RB

(100111)RB(O10111)RB(O11100)RB(O11011)RB.

This difficulty can be overcome by using the number
(- 1)1o instead of (O)10. In fact, any redundant repre-
sentation of the number (- 1)1o obtains the canonical
representation of the (- 1)1o if the following rules
acting on rn pairs are applied (see Theorem 2 in
Appendix A):

(4)

then the (- 1)1o can be detected. If the result of an
algebraic sum between an RB number and an RB
representation of (-1)lo is an RB representation of
the number (-1) o again, this RB number is a repre-
sentation of (O)10. Then the procedure to detect the
number ()10 can be as shown below.

Procedure 4
(a) Input an RB number.
(b) Step 1 is the algebraic sum between the RB

canonical form of (- 1)10 and the RB number.
(c) Step 2 is the application of rules (4) to the

result.
(d) The output is the RB canonical form of (-1)1o

or of another RB number.

(-501)10 (1 ) 2~00101)
N/2

Fig. 4. Example of decoding of a signed RB number. The
least-significant N/2 bits of the result are the binary or 2's
complement binary value,

Procedure 4 can be used to compare two RB numbers
by our using the following procedure.

Procedure 5
(a) The input is the first RB number and the

additive inverse of a second RB number.
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(53)10 (-39)10

(27353)10 (00 0000010011010010o0010100100011001 RB
(30429),o (00 0000010100110101 000O100l1 001101)RB

(59)lo (-35)10

(44)10 (-60)10
(22724)1o (00 0001000101000000B1010000000100000 RB

(35058)lo (00 0000 10101)10011R000011O l1100)RB

(68)1o (-14)10

(°)10 (°)10

(°)10 (00 00000000000000°000000000000000000RB
(57782)1O (000001001110110000 OIOlOlllO 110100 )RB

(112)lo (-74)10

Fig. 5. Example of the algebraic sum of two concatenated RB
numbers. Each string can be considered as a single RB number or
as two RB numbers separated by a pairpi = 00.

(b) Step 1 is the algebraic sum between the two
RB numbers.

(c) Step 2 is the application of Procedure 4 to the
result.

(d) The output is the RB canonical form of (- 1)1o
or of another RB number.

B. Concatenation of Redundant Binary Numbers
The algebraic sum of RB numbers presents a prop-
erty that is useful for optical computers, in which
information is organized on a two-dimensional (2-D)
array with rows much wider than the length of the
number digit string. A digit string may be consid-
ered either as a single RB number or as the concatena-
tion of many RB numbers; in this case, Procedure 1
obtains the respective concatenations of the sums
when the RB number on both input strings has at
least one pair rn = 00 on its left end as a separator
(see Theorem 3 in Appendix A and the example in Fig.
5).

5. Concluding Remarks
The efficiency E of a redundant number representa-
tion can be obtained by

E R ' (5)

where RB is the number of bits needed in the binary
number system and RR is the number of bits needed
in a redundant number representation to write the
same value. The efficiency E is related to the numer-
ical range reached by the different number represen-
tations when bit strings of the same length are used.
In the MSD and carry-save representations, three
symbols are needed (1, 0 ,1} and {0, 1, 2}, respective-
ly), and therefore each digit requires two bits, while
the RB representation needs two symbols {0, 11,
requiring only one bit. As one can see from Table 3,

Table 3. Efficiencies of Different Redundant Number Representations

Digit x
Number Position Bit x

Representation Weight Digit R E

Binary 1 1 1 1
Modified signed digit 1 2 2 0.5
Carry-save 1 2 2 0.5
Redundant binary 2 1 2 0.5

the efficiencies of the various redundant representa-
tions are all equal. As a consequence, the hardware
complexity of computer components is the same in
every case. In Table 3 the residue number system is
neglected because its efficiency, computed by Eq. (5),
strongly decreases when the length of the bit string N
increases.

If the RB number representation is used, the main
arithmetic operations on signed numbers are permit-
ted in an inherently parallel manner. The computa-
tions are made quickly and are independent of the
operand digit string length. The RB number repre-
sentation naturally fits the 2's complement binary
number system, and for this reason, an easy manipu-
lation of signed numbers is permitted. The decoding
operation has log N time complexity (as a MSD
representation), but it is needed only when the data
are to be presented to the outside world. Using
symbolic substitution, one can obtain a two-step
algebraic sum with rules having extremely small
truth tables.

Because the carry propagation is limited to the
adjacent digit the RB arithmetic can also be imple-
mented on an optical cellular processors or on other
processors based on a suitable 2-D algebra (see, e.g.,
Ref. 17). In this way an arithmetic faster than that
presented by Huang et al. 14 and with better features
is permitted; in fact, the properties of the concatena-
tion of RB numbers can be useful for achieving a type
of autoreconfigurable arithmetic unit suitable for 2-D
organized data (with free format) or for row-coded
images.14

Appendix A
Lemma 3. In the RB representations of the num-

ber (-1)1o, only pairs rn E {01, 10} are present. ED
Proof If an RB representation of (- 1)1o is de-

coded by means of Procedure 3, the result of this
decoding operation has to be (.. . 1111)2. This result
is possible only if RB, = RBr. As a consequence, in
each rn pair an = ar- a

Theorem 2. Given any redundant representation
of the number (- 1)o, its canonical representation
can always be obtained by the following rules acting
on rn pairs:

01-*01, 10- 01. M

Proof: It follows immediately from Lemma 3 and
Eq. (2). U
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Theorem 3. If two digit strings are a concatena-
tion of many RB signed numbers, Procedure 1 always
obtains the respective concatenation of sums when
the RB number on both input strings has at least one
pair rn = 00 on its left end (as a separator) in the same
position in both upper and lower rows. D

Proof Procedure 1 consists of two applications of
Table 2 on two aligned and superposed strings of rn
pairs. As can easily be seen, the application of Table
2 obtains the digits i and i + 1 of an rn pair on the
upper row, it obtains digits i + 1 and i + 2 of a pair on
the lower row, and it permits a limited carry propaga-
tion on position i + 2 on the lower string. The
second application of the table permits a further carry
propagation on position i + 3. If positions i + 2 and
i + 3 coincide with the position of the separator and
are masked by a pair 00 in the resulting string, the
correct truncation is performed, and each concate-
nated RB number does not affect its predecessor. 

The authors are grateful to Corrado Bbhm and
Renato Capocelli for their valuable suggestions.
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