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Abstract In parallel/distributed computing sys-
tems, the all-to-all personalized communication (or
complete exchange) is required in numerous appli-
cations of parallel processing. In this paper we con-
sider this problem for log N stage Multistage In-
terconnection Networks (MINs).
the set of admissible permutations for a MIN can

We prove that

be partitioned in Latin Squares. Routing permu-
tations belonging to a Latin Square of the parti-
tion provides the all-to-all personalized communi-
cation. From the method of partitioning the set
of admissible permutations, we derive a procedure
to realize the complete exchange with optimal time
complexity, O(N). The implementation proposed,
compared with other ones in literature, does not
need either pre-computation or memory allocation
to record the Latin Square, because an explicit con-
struction of the Latin Square is not required.

Keywords: Multistage Interconnection Net-
works, all-to-all personalized communication, Latin
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1 Introduction

In a parallel/distributed computing system,
processors often need to communicate with
each other. In all-to-all communication every
processor in a processor group sends a message
to all other processors in the group. In partic-
ular, in all-to-all personalized communication
every processor sends a distinct message to ev-
ery other processor. The all-to-all personal-
ized communication (or complete exchange) is
a relevant communication pattern and it plays
an important role in many applications such

as matrix transposition, fast Fourier transform
(FFT) and distributed table lookup.

All-to-all personalized communication prob-
lem has been extensively studied for many net-
works topologies. Many results have been re-
ported for meshes [1, 4, 6, 9] and tori [10, 11, 8],
that are network models with a simple and
regular topology, a bounded node degree and
present a good scalability. Algorithms with
time complexity O(N%) and O(Nkki) for 2-
dimensional and k-dimensional meshes/tori re-
spectively [6, 7, 8, 10, 11], have been proposed.
In [5], an optimal complete exchange algorithm
for an N-node hypercube with O(N log N') and
O(N) time complexity for one-port model and
all-port node respectively, is given. A draw-
back of using high-dimensional hypercubes is
the unbounded node degree, a feature that im-
plies a poor scalability.

In this paper we consider, as interconnect-
ing scheme for a multiprocessor system (see
Fig. 1), Multistage Interconnection Networks,
MINs, of size N (with N inputs and N out-
puts) consisting of log N stages each composed
of N/2 nodes (2 x 2 switching elements). Ex-
amples of topologies for log N stage MINs are
Omega, Flip, Baseline and Reverse Baseline,
Butterfly and Reverse Butterfly that are all
topologically equivalent [2, 3]. log N stage
MINs are banyan, that is a unique path exists
between any input and any output in the net-
work, and present attractive advantages such
as efficient routing algorithms, partitionabil-
ity, small number of switching elements. These
MINs are not rearrangeable, that is cannot
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Figure 1: Communications among N proces-
sors using a MIN of size N.

realize all the N! possible permutations, but
only a subset of them (admissible permuta-
tions, then are suitable for a specialized use, as
in the case of the all-to-all personalized com-
munication problem, for which a full permuta-
tion capability is not required.

MINs have been already considered for the
all-to-all personalized communication among
N processors in [12]. By routing a set of
N permutations forming a Latin Square, the
complete exchange is realized in optimal time
O(N). The permutations belonging to the
Latin Square are obtained by means of an off-
line algorithm run at the time the network is
built. Then, the method proposed in [12] pro-
vides only one particular Latin Square for each
network size, and the requirement to realize the
complete exchange is to keep in memory a ma-
trix of size N x N containing the destination
tags for the N permutations.

In this work we prove that the set of ad-
missible permutations for a MIN can be parti-
tioned in subsets that are Latin Squares, that is
we provide a method to obtain all the possible
Latin Squares. Then we propose a realization
of all-to-all personalized communication, that
can utilize any Latin Square of the partition
and is suitable for any size MIN. The proposed
procedure does not need a pre-computation
and does not require the recording of the ma-
trix of permutations to be realized, because an
explicit computation of permutations belong-

ing to a Latin Square is not necessary.

2 log N stage MINs and Latin
Squares

A log N stage MIN (in the following simply
MIN) has N inputs and N outputs and con-
sists of n = log NV stages of N/2 nodes that
are 2 X 2 switches. FEach node belonging to
stage 7, 0 < 7 < N — 1 is connected with two
nodes of stage 7 — 1 and two nodes of stage
J + 1, according to a rule depending on the
network topology. Each node in stage j = 0
is connected with a pair of inputs and each
node in stage j = N — 1 is connected with a
pair of outputs. Each node of the MIN can
be set to straight or cross. A MIN of size N
can realize 23 108N — N7 permutations, called
admissible permutations for the MIN (since it
consists of %logN nodes), each correspond-
ing to one of the 9% log N possible network con-
figurations of the MIN, defined by the switch
setting of its node. Let us associate to each
node a bit which value is 0 if the node is set to
straight and 1if the node is set to cross. Then a
given network configuration can be represented

as a matrix M = (mpy), h = 0,...,% -1,
k=0,...,log N —1, which entries my j belong
to set {0,1}.

A Latin Square is defined as an N X N ma-
trix A = (a;4), 4,7 =0,..., N — 1, where en-
tries a;; belong to set {0,1,...,N — 1} and
no two entries in a row or a column have the
same value. In particular, for all + and j,
0 <4,7 < N—1, the entries of each row ¢ in the
matrix a; 0, @; 1, ..., a; N—1 form a permutation
and the entries of each column j in the matrix
ao,j, 015, -+, aN—1,; form a permutation.

In this work a column of A represents a
permutation p realized by the MIN and the
elements a;; of column j, 7 = 0,...,N — 1,
represent input tags of information arrived at
output 7 (and not the destination tag as often
used), see Fig. 2.

The realization of the N permutations be-
longing to a Latin Square by means of a MIN
provide the all-to-all personalized communi-
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Figure 2: Example of permutationrepresented
by means of input tags, on a Butterfly of size
N =8.

cation. The lower bound on the maximum
communication delay is given by the following
lemma [12]:

Lemma 1 The mazimum communication de-
lay of all-to-all personalized communication in
alog N stage MIN of size N is at least Q(N +
log N)

Infact each message must pass through log N
stages from the source processor to the destina-
tion processor and each processor must receive
one message from all other N — 1 processors.

In the following section we prove that: a)
the set of admissible permutations, P, for a

Niog v
MIN can be partitioned in 22Ng - N3!
— 1, each consisting

sets, P!, | = 0,...,]\7%_1
of N permutations; b) permutations belonging
to a set P! form a Latin Square.

Example 1 In the following tables two ways
of partitioning admissible permutations for a
Butterfly of size N = 4 are shown. Each row
of tables is a Latin Square; for each permuta-
tion the binary matrix, representing the net-
work configuration producing it, is specified.

Partition 1

0213 | 00 | 2031 | 01 | 1302 | 10 | 3120 | 11
00 01 10 11
0231 | 00 | 2013 | 01 | 1320 | 10 | 3102 | 11
01 00 11 10
0312 | 00 | 3021 | 01 | 1203 | 10 | 2130 | 11
10 11 00 01
0321 | 00 | 3012 | 01 | 1230 | 10 | 2103 | 11
11 10 01 00

Partition 2

0213 | 00 | 2031 | 01 | 1320 | 10 | 3102 | 11
00 01 11 10
0231 | 00 | 2013 | 01 | 1302 | 10 | 3120 | 11
01 00 10 11
0312 | 00 | 3021 | 01 | 3120 | 10 | 2103 | 11
10 11 01 00
0321 | 00 | 3012 | 01 | 1203 | 10 | 2130 | 11
11 10 00 01

3 Canonical partition of ad-
missible permutations in
Latin Squares

In this section we describe a method to ob-
tain a canonical partition of set P of admis-
sible permutations for a MIN in sets P!, [ =
0,.. .,N%_l — 1 and then we prove that the
sets obtained are Latin Squares. (In the Ex-
ample above Partition 1 is the canonical parti-
tion).

With this method we obtain the N binary
matrices providing the network configurations
that produce the N permutations belonging to
aset P, To this end, we indicate with S the set
of all possible binary matrices of size % xlog N,
and with S! the set of binary matrices that
produce permutations belonging to the set P'.
Note that any permutation corresponds to one
and only one network configuration, then there
is a one-to-one mapping between elements of P
and elements of S and between sets P! and sets
St then it is equivalent to refer to P! or S



3.1 LS Construction Method

When the index [ of the set S! to be built
is fixed, even one of the binary matrices be-
longing to S! is implicitly fixed, and it is the
matrix which sequence of rows ro, ry,...,ry_,
provide the binary representation of [. Since

a matrix in S' has & rows and log N columns,
N
~1

ﬂlogZN
and [ =0,..., 22N —1 = N2""—1, then the
matrix fixed in S’ has its first row consisting
of 0s. Let it be M'0,
XOR phase: Let M", 2 = 1,...,N — 1,
be the other matrices belonging to S! and
let Zjogny—1...2129 be the binary representa-
tion of 2. The XOR phase consists of N — 1
steps, each of which produces a matrix M"®,
x=1,....,N—1.

XOR step z: Row i of MH", rﬁ’x, is obtained
1,0

from row i of M40, T,

as

l,x {,0

ri"=r" XOR Zpgn-1...2120

or, equivalently, entry mi’f of matrix M**

is obtained from entry mﬁ’? of matrix M0
as

mi’j = mi:? XOR Tlog N—1—j
This XOR operation performed in the XOR
step z implies that column j of matrix M0 is
flipped if bit z1og y—1—; of the binary represen-
tation of z is 1. Note that, since the first row
of M'0 consists of all 0s, the first row of M5®
provide the binary representation of x. For this
reason and for the meaning of [ in M'° we call
this partition canonical.

Hence, by applying the XOR step sequen-
tially for all possible value of z from 1 up to
N — 1, to a given matrix M'°, the XOR phase
is performed and all matrices belonging to the
set S! are generated.

Example 2 Two elements of the partition ob-
tained with the LS Construction Method in the
case N = 8. Both P! and S! are shown in the
following tables.

P'® and S'8

02465713 | 000 | 20647531 | 001
000 001
010 011
010 011
46021357 | 010 | 64203175 | 011
010 011
000 001
000 001
13574602 | 100 | 31756420 | 101
100 101
110 111
110 111
57130246 | 110 | 75312064 | 111
110 111
100 101
100 101

P235 and 5235

06257134 | 000 | 60521743 | 001
011 010
101 100
011 010
52603471 | 010 | 25064317 | 011
001 000
111 110
001 000
17346025 | 100 | 71430652 | 101
111 110
001 000
111 110
43712560 | 110 | 34175206 | 111
101 100
011 010
101 100

Lemma 2 The LS Construction Method pro-
vides a partition of P as P = {P!|l

0,...,]\7%_1 — 1}, by partitioning the set
of binary matrices of size % X log N as S
(Si=0,...,Nz1 -1}

Il

Proof. Sets S, [ =0,.. .,N%_l — 1 are gen-
erated sequentially starting from [ = 0. By
definition, matrix M*%, which row sequence
T TNy provides the binary representa-

tion of /, belongs to S'. The remaining N — 1



.. ,N —1, of S' are
generated ordinately starting from z = 1. It
is guaranteed that, by varing [ from 0 up to
N>~! _ 1 and 2 from 1 up to N — 1, all the
possible binary matrices of size % X log N are
generated.

It is obvious that if I3 # I, 0 < [1,l; <
NZ=1 1, then MU0 £ M0,

To generate M € S', ¢z =1,...,N — 1,
the logical operation XOR between all rows of
M"0 and the binary representation of z is per-
formed bitwise. It follows that if z; # 22 then
MU= £ MY72 Therefore elements belonging
to S! are all different, that is elements in P’

are all different.

elements M"*, 2 = 1,.

Furthermore, basing on properties of binary
representation and logical operation XOR we
have that M "1 = M2 if and only if [ = [,
and 21 = z5. Then a matrix M"* can belong
only to one set S!. Hence, by applying this
method a partition of S, and consenquently of
P, is obtained. Q.E.D.

Lemma 3 Permutations belonging to set P',
obtained by means of network configurations
given by binary matrices in S', form a Latin
Square, for any l =0, .. .,N%_l - 1.

Proof. The set P! can be represented as a
matrix A! of size N x N which columns are
the N permutations in P'. To prove Al is a
Latin Square we have to prove that any row
and any column is a permutation.

Columns correspond to permutations by def-
inition.

Row i of AL, i =0,..., N —1, represents the
sequence of input tags of information arrived
on output 2 for each of the N permutations
belonging to P'; row i is a permutation if any
element a;, € {0,...,N=1},h=1,..., N, ap-
pears only once. Due to the banyan property
of log N stage MINs, an information reaches its
destination by means of a unique path given
by the sequence of nodes crossed and their
state (straight or cross). Since matrices M"?,
z=0,...,N — 1, belonging to the set S’ are
all different, then N different paths arriving to

output ¢ are defined, that is IV different start-
ing inputs are used to reach output ¢:. Then
any row is a permutation.
Hence matrix A’ is a Latin Square. Q.E.D.
From Lemma 2 Lemma 3 the following the-
orem immediately derives:

Theorem 1 The LS Construction Method
gives a partition of the set P of admissible per-
mutations for a MIN in Latin Squares.

The following theorem provides a way to ob-
tain a Latin Square starting from any of its
element.

Theorem 2 Given any binary matriz of size
% x log N, the set S* to which belongs to can
be obtained by applying to it the XOR phase
of the LS Construction Method.

Proof. The binary representation of index [ is

provided by the XOR, between the sequence of

rori...rx_, of rows of the given matrix and
2

the sequence rgrg...rg, where rg appears %
times, performed bitwise. Due to properties of
the logical operation XOR, all elements of S!
can be generated by applying the XOR phase

to the given binary matrix. Q.E.D.

4 Realizing all-to-all personal-
ized communication

The realization of the all-to-all personalized
communication on a MIN can be obtained by
realizing the N permutations belonging to any
of the sets P' of the partition. Then, it is not
necessary to realize a particular Latin Square,
that is to compute and record the N permuta-
tions belonging to P'.

In view of Theorem 2 all binary matrices
producing permutations of a Latin Square can
be generated starting from any given matrix
applying to it the XOR phase of the LS Con-
struction Method. Since a binary matrix repre-
sents a network configuration, Theorem 2 can
be used to derive an implementation method
for the all-to-all personalized communication.



For the sake of homogeneity, we can gener-
alize the XOR phase by performing the XOR
step also for x = 0, since this operation leaves
the binary matrix (network configuration) un-
changed.

To generate the N network configurations
that realize the N permutations of a Latin
Square (and implementing the all-to-all per-
sonalized communication), the self-routing ca-
pability of MINs is not used, but switches are
set according to the value obtained from the
XOR betweeen a given initial network config-
uration and the binary representation of num-
bers 0,1,..., N — 1, performed sequentially.

All-to-all personalized communication
network procedure

- The binary representations of numbers
0,1,..., N — 1 are sequentially generated;

- messages starting from every input of the
MIN are equipped with the current binary rep-
resentation;

- when information passes through a node of
stage log N — 1 — j the switch is set to straight
or cross according to the value, 0 or 1 respec-
tively, of the XOR between the binary value
associated with the switch itself and the j-th
bit of the binary representation associated with
the information;

- when the information leaves the switch it is
necessary to reconfigure the switch to its initial
value, because for each new binary representa-
tion considered, the XOR between it and the
value of the initial switch configuration must
be computed; then a further application of the
XOR with the already used binary representa-
tion is needed to reconfigure the switch to its
initial value.

The information flux pass through the stages
of the network in a synchronous way, then
when N messages leave a stage, other new N
messages can enter the switches of this stage,
that is the N permutations can be realized in
pipeline fashion and the procedure proposed
for the all-to-all personalized communication
problem takes O(N+log N) = O(N) time, that

is optimal.

Network Node Diameter Topol. Time
model degree compl. compl.
Hypercube | log N log N O(N) O(NlogN)
one-port
Hypercube | log N log N O(N) O(N)
all-port
2D 4 O(N7) O(N?) O(N7)
mesh/torus
3D 6 O(N%) O(N?) O(N%)
mesh/torus
MIN 7} losN | O(NlogN) | O(N)

Table 1: Comparison of different network mod-
els.

In Table 1 (see also [12]) the time complexity
for all-to-all personalized communication, the
node degree, the diameter and the topological
complexity (number of nodes) for different net-
work models are shown. From the Table one
can see that MINs and Hypercubes achieve the
minimum time complexity, but MINs present
the advantage to have a bounded node degree
that reflects a better scalability of this network
model.

5 Conclusions

In this work an optimal procedure for the all-
to-all personalized communication problem on
log N stage MINs has been proposed. These
MINs are network models suitable for interpro-
cessor communication (if a complete permuta-
tion capability is not required), for the short
latency time, due to their moderate depth, and
for their scalability.

The LS Construction Method described in
Section 3.1 provides a partition of admissible
permutations for log N stage MINs in Latin
Squares.  Since a Latin Square represents
a set of permutations which realization pro-
vides the all-to-all personalized communica-
tion, from this method we derive a simple net-
work procedure. Starting from any network
configuration, it is possible to realize the N
permutations forming a Latin Square by set-
ting the switches of the MIN by performing in
a suitable way the logical XOR between the



initial node configuration and the binary rep-
resentation of numbers from 0 the N — 1.

This method, compared with that presented
in [12], does not necessitate of either pre-
computation or memory allocation for a pre-
computed Latin Square, because an explicit
construction of it is not required. Further-
more, algorithms described in [12] provide only
one Latin Square (corresponding to set P
obtained with the LS Construction Method),
whereas the LS Construction Method gives all
the possible Latin Squares obtainable from ad-
missible permutations for a MIN.

As shown in Example 1, the partition of ad-
missible permutations in Latin Squares is not
unique, then could be interesting to find other
way to obtain partitions.
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