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ABSTRACT
The use of mobile sensors is of great relevance to moni-
tor critical areas where sensors cannot be deployed man-
ually. The presence of data collector sinks causes increased
energy depletion in their proximity, due to the higher re-
lay load under multi-hop communication schemes (sink-hole
phenomenon). We propose a new approach towards the so-
lution of this problem by means of an autonomous deploy-
ment algorithm that guarantees the adaptation of the sensor
density to the sink proximity and enables their selective ac-
tivation.

The proposed algorithm also permits a fault tolerant and
self-healing deployment, and allows the realization of an in-
tegrated solution for deployment, dynamic relocation and
selective sensor activation.

Performance comparisons between our proposal and pre-
vious approaches show how the former can efficiently reach
a deployment at the desired variable density with moderate
energy consumption under a wide range of operative set-
tings.

1. INTRODUCTION
The deployment of mobile sensors is attractive in many

scenarios. For example, mobile sensors may be used for
environmental monitoring to track the dispersion of pollu-
tants, gas plumes or fires. They may also be used for public
safety, for example to monitor the release of harmful agents
as a result of an accident. In such scenarios it is difficult to
achieve an exact sensor placement through manual means.
Instead, sensors may be deployed somewhat randomly from
a distance, and then reposition themselves to provide the
required sensing coverage. We formally prove the termina-
tion of our approach. The potential of such applications has
inspired a great deal of work on algorithms for deploying
mobile sensors. Most of this work has addressed the deploy-
ment of homogeneous sensors to achieve a uniform coverage
of a certain density in a specific Area of Interest (AoI). When
the sensor network centralizes the communications towards
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a single or a few sinks, the energy depletion due to com-
munications is uneven and may possibly cause the so-called
sink-hole phenomenon [1, 2, 3] . In this paper we address
this practical and challenging problem by deploying sensors
at variable densities to ensure uniform energy depletion even
under imbalanced communication load.

We propose an algorithm which is based on a general-
ization of the Push & Pull approach presented in [4]. In
summary, our contributions are:

• We identify the models of load imbalance caused by
centralized communications towards one or more sinks
in the network and propose a density function that
models the varying density requirements over the AoI
as a consequence of those unbalanced communications;

• We propose a new algorithm based on the known Push
& Pull algorithm so as to allow it a more direct control
over the placement of redundant sensors, to provide a
sensor deployment at variable controlled density;

• We extend a virtual forces based algorithm to operate
in a scenario with variable density requirements, in
order to make fair comparisons between our approach
and the one based on virtual forces.

The Push & Pull algorithm is practical as it provides very
stable sensor behavior, with fast and guaranteed termina-
tion and moderate energy consumption. It does not require
manual tuning or perfect knowledge of the operating condi-
tions, and works properly if the sensor positioning is impre-
cise. The algorithm does not require any synchronization
during the deployment phase. The achieved deployment
permits the use of alternate sensor activation that can be
adopted if a loose synchronization is possible during the op-
erative phase of the network. Because it converges quickly
and does not require a priori knowledge of the deployment
environment, it is also well suited for dynamic environments
in which multiple sinks can be dynamically placed in conse-
quence to dynamically changing missions.

The paper is organized as follows. Related work is pre-
sented in Section 2. In Section 3 we motivate the problem
and introduce some preliminary concepts. Section 4 is the
core of the paper and presents a new algorithm for variable
density sensor deployment. In Section 5 we show how to
exploit the described algorithm to jointly solve the problem
of sensor deployment, dynamic relocation, self-healing and
selective activation. Section 6 is devoted to summarize a
virtual force based algorithm that we use to perform exper-
imental comparisons whose results are shown in Section 7.
Section 8 concludes the paper addressing some final remarks.



2. RELATED WORK
Various solutions have been proposed to the problem of

mobile sensor self-deployment. The majority of them are ei-
ther based on the virtual force approach (VFA) or on compu-
tational geometry models. According to the VFA technique
[5, 6, 7, 8] the interaction among sensors is modelled as a
combination of attractive and repulsive forces. Other solu-
tions [9, 10] have been inspired by different physical models.
All these approaches require a laborious tuning of thresh-
olds and constants to determine the magnitude of the forces
and to control possible oscillations. The choice of these val-
ues influences the resulting deployment, the overall energy
consumption and the convergence rate.

Most of the deployment methods based on computational
geometry model the deployment problem in terms of Voronoi
diagrams or Delaunay triangulations [11, 12]. Similarly to
the VFA approach, these proposals rely on the off-line tuning
of key parameters to avoid movement oscillations.

All the above mentioned solutions do not address the sink-
hole problem. Only [13] presents a unified solution for sensor
deployment and relocation crowding sensors in the presence
of events. This approach could be adopted to increase the
sensor density in proximity of the sink. On the contrary,
papers dealing with the sink-hole problem explicitly, only
focus on static sensor deployment [14, 2, 3, 15].

The aim is to mitigate the effects of the uneven energy
depletion due to communication with a sink by means of
a variable density deployment. In the next section we will
detail some of these results that will be useful for our con-
tribution.

Many works deal with the k-coverage deployment prob-
lem. In [16], Vu and Verma reduce the problem of sensor
placement with a redundancy of at least k sensors to the
problem of distributing k points evenly on a torus manifold
by minimizing the Riesz energy. In [17] the k-coverage sen-
sor deployment problem is considered in both cases of the
binary and probabilistic sensing models. They also distin-
guish the problem of sensor placement in the case of the
different relation between the sensing radius rs and com-
munication radius rc, i.e. rc <

√
3rs and rc ≥

√
3rs and

propose two different dispatch schemes.
The k-coverage sensor placement can be obtained by shrink-

ing a grid deployment until the k-coverage is achieved. In
both [4] and [18] the shrinking is used to obtain a denser
hexagonal grid.

In the present work a redundant coverage with adaptive
redundancy level k, is obtained by superimposing several
grid translated from each other to the purpose of achieving
a variable controlled density deployment. Furthermore the
k-coverage is exploited to the purpose of ensuring uniform
energy depletion by performing a selective activation of the
sensors.

3. ENERGY CONSUMPTION DUE TO COM-
MUNICATIONS

Li and Mohapatra address the sink-hole problem in [2].
The authors analyze the applicative context of environmen-
tal monitoring and data gathering. In this context they
assume that each sensor generates new traffic with a con-
stant bit rate (CBR) and sends it to the sink via multi-hop
communications. The examined deployment consists of a
uniform random placement of devices over the AoI, where

N is the total number of devices and Anet is the measure
of the area of the AoI, hence the uniformly deployed den-
sity is ρ = N/Anet. Sensors transmit their packets to the
destination by selecting the next-hop which is closest to the
destination.

The authors propose a model to evaluate the per-node en-
ergy consumption, by considering three main contributions,
namely energy spent for sensing, transmissions and recep-
tions. They divide the AoI into several concentric circular
crowns of radius equal to the transmission range r, centered
at the sink position. The energy consumption of the sensors
is then calculated separately in each crown.

According to this model the per-node energy consumption
of the i-th crown is the following:
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where i = 0, 1, . . . , (M

2
− 1), and the parameters are the fol-

lowing: b is the constant bit rate generated by each sensor,
α1, β1, β2 and γ1 are technology dependent constant factors
that are considered in the definition of the three energy con-
tributions mentioned above, and the AoI is divided into M

2

concentric circular crowns with a step size of r meters.
Also Olariu and Stojmenović deal with the sink-hole prob-

lem in [3]. The authors also consider a uniformly deployed
sensor network, with devices transmitting the same number
of reports towards the sink. The authors conclude that the
energy consumption of sensors located inside the i-th circu-
lar crown centered at the sink, and determined by the radii
ri−1 and ri, is as follows:
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where T is the number of tasks handled by the network
during its lifetime, c is a technology dependent positive con-
stant, α > 2 is the power attenuation and ρ is the sensor
uniform density over the AoI.

Finally the problem of uneven energy depletion due to
many-to-one communications is addressed in [1] under nonuni-
form sensor deployment. The authors find a suboptimal de-
ployment technique to ensure energy efficiency and mitigate
the sink-hole problem. They propose to deploy sensors into
circular crowns at different densities where the ratio between
the sensor densities of the adjacent (i + 1)-th and the i-th
crowns is equal to

ρi+1

ρi

=
(2i − 1)

q(2i + 1)
(3)

and q > 1 is the geometric proportion defining the increase
in the number of sensors from the outer to the inner crowns.
The circular crowns are centered at the sink position, and
are dimensioned so as to ensure that the sensors of each
crown act as forwarders for the outer crowns.

The authors assume a constant bit rate generated by each
sensor and two energy contributions due to transmissions
and receptions.

In this paper we refer to the above mentioned work [1]
to define the non-uniform density requirements to be ad-
dressed by the deployment algorithm in order to balance
the energy consumption among the sensors of the network.
By deploying the sensors according to Equation (3) the pro-
posed approach ensures the network energy efficiency and



prolong the network lifetime avoiding the generation of sink
holes due to communications.

4. VARIABLE DENSITY DEPLOYMENT OF
MOBILE SENSORS

The proposed algorithm, called δ-Push&Pull, is inspired
by the algorithm introduced in [4], to which we made major
modifications to the purpose of deploying sensors at variable
densities according to position dependent requirements.

Given a point P in the AoI, we define δ(P ) the coverage
density required in position P . Let V be a set of equally
equipped sensors able to determine their own location, en-
dowed with boolean sensing capabilities and isotropic sens-
ing and communication model. Notice that location capa-
bilities are only necessary to recognize the borders of the
AoI while, in order to make movement decisions, each sen-
sor only needs to know the position of its communicating
neighbors.

As in its original counterpart, according to δ-Push&Pull,
the sensors aim at realizing a complete coverage of the AoI
and a connected network by means of a hexagonal tiling
deployment, where the side of each hexagon is set to the
sensing radius rs. The hexagonal tiling is realized by snap-
ping the necessary number of sensors over the AoI in grid
positions located in correspondence to the vertices of a tri-
angular lattice with side

√
3rs. Such sensors will be referred

to as snapped. Given a snapped sensor x, we refer to Hex(x)
as to the hexagonal area that is covered by the sensor x and
to Px as to the position of the sensor x.

At the same time, δ-Push&Pull deploys redundant sen-
sors over the covered area, by distributing them at vari-
able density, according to δ(P ) as follows: the number of
sensors that will be located in Hex(x) centered at Px is

nδ(Px) , ⌈δ(P ) · 3
√

3

2
r2

s⌉.
The nδ(Px)− 1 sensors utilized to obtain the desired den-

sity in a specific hexagon will be indicated as adjunct-snapped
sensors. The sensors located in Hex(x) which are neither
snapped nor adjunct-snapped will be named slaves of x. We
hereafter refer to S(x) as the set of slave sensors of x.

The algorithm starts with the concurrent creation of sev-
eral tiling portions. Every sensor not yet involved in the
creation of a tiling portion gives start to its own portion in
an instant which is randomly selected in a given time in-
terval. Such a starter sensor is called sinit. The algorithm
consists of four main interleaved activities: snap, push, pull
and merge.

Snap activity
The sensor sinit elects its position Pinit as the center of the
first hexagon of its tiling portion. It collects information
on the sensors in radio proximity, that will compose the
set L(sinit). Among the sensors located in its own hexa-
gon, sinit chooses up to nδ(Pinit) − 1 sensors for the role
of adjunct-snapped. Such sensors will remain in their orig-
inal hexagon and will not participate in the following ac-
tivities. The sensors belonging to L(sinit) which have not
been declared adjunct-snapped can be used to cover adjacent
hexagons. To this purpose, sinit selects at most six sensors
among those belonging to L(sinit) and makes them snap to
the center of adjacent hexagons. Such deployed sensors, in
turn, give start to their own selection and snap activity, thus
expanding the boundary of the current tiling portion. This
process continues until no other snaps are possible, because

either the whole AoI is covered, or the boundary tiles do not
contain any unsnapped sensors.

Sensor x starts the push activity if slave sensors are still
present in Hex(x) after the adjunct-snapped declaration and
the adjacent positions are all covered by snapped sensors.
By contrast, sensor x starts the pull activity if (1) the num-
ber of adjunct-snapped sensors is lower than necessary to
fulfill the density requirement, or (2) some hexagons adja-
cent to Hex(x) are left uncovered and x has no slaves.

All the snapped sensors position the adjunct-snapped sen-
sors in their hexagon according to a same common rule. This
way it is possible to obtain the desired distribution of sensors
over the hexagon area. Moreover, it is possible to perform a
selective sensor activation which allows energy saving during
the operative phase of the network, giving rise to alternate
activation of different hexagonal grids composed by adjunct-
snapped sensors in the same position. Obviously, these ad-
junct grids have the same coverage and connectivity features
of the main hexagonal grid, that is the grid composed by the
snapped sensors.

Push activity
After the completion of their snapping activity, snapped sen-
sors may have slave sensors located inside their hexagon. In
this case, they pro-actively push such slave sensors towards
the areas demanding a higher number of sensors. Conse-
quently, slave sensors being in overcrowded areas migrate to
zones with unsatisfied density requirements.

In order to avoid endless cyclic movements of slaves, we
introduce the following δ-Moving Condition. The offer of
slave sensors by a sensor x to a sensor y located in radio
proximity is allowed if and only if:

{|S(x)| > (|S(y)|+1)}∨{|S(x)| = (|S(y)|+1)∧id(x) > id(y)}

where id(·) is a function initially set to the unique identity
code of the sensor radio device.

If the δ-Moving Condition is verified, sensor x can push
at least one of its slaves towards the destination hexagon
Hex(y) selected as the one that needs a higher number of
sensors to fulfill the local density requirements or to fill an
adjacent coverage hole; among the slave sensors which can
be pushed to the destination, x selects the closest to Hex(y).

Pull activity
The sole snap and push activities are not sufficient to ensure
the maximum expansion of the tiling and the achievement of
a deployment at the required density. In the δ-Push&Pull al-
gorithm, the pull activity starts whenever a sensor x notices
either a hole in its adjacent snapping position or a density
in Hex(x) that is lower than nδ(Px).

Snapped sensors may detect a coverage hole adjacent to
their hexagon and may not have available sensors to make
them snap. Similarly, a snapped sensor may need more
adjunct-snapped sensors than available to fulfill the den-
sity requirements. In these cases, they send hole trigger
messages, and re-actively attract non-snapped sensors and
make them fill the hole or the density gap.

In order to start the pull activity, sensor x broadcasts an
invitation message at a higher and higher number of hops,
until it receives an acceptance of invitation from a snapped
sensor having a redundant slave. The inviter acknowledges
the acceptance message if it has not found a number of slave
sensors sufficient to fill the hole or the density gap, or reject
it otherwise. In the former case, an agreement has been



reached between the two sensors and the slave can start
moving. When the snapped sensor that is performing the
pull activity reaches its objective (to fill either the hole or
the density gap), it stops sending slave invitation messages.

Merge activity
The possibility that many sensors act as starters can give
rise to several tiling portions with different orientations. In
order to characterize and distinguish each tiling portion,
the time-stamp of each starter is included in the header
of all exchanged messages. Then, messages coming from
sensors located in different tiling portions include different
starter time-stamps. When the boundaries of two tiling por-
tions come in radio proximity with each other, the one with
older starter time-stamp absorbs the other one by making its
snapped sensors move into more appropriate snapping po-
sitions. Hence this activity provides a mechanism to merge
all the tiling portions into a unique regular and uniformly
oriented tiling.

We conclude this description of the algorithm with an ac-
tivity called role exchange. According to the previous de-
scription of δ-Push&Pull, slaves consume more energy than
snapped and adjunct-snapped sensors, because they are in-
volved in a larger number of message exchanges and move-
ments. We introduce a mechanism to balance the energy
consumption over the set of available sensors making them
exchange their roles. This mechanism is similar to the tech-
nique of cascaded movements introduced in [19]. Namely,
any time a slave has to make a movement across a hexagon
as a consequence of either push or pull activities, it evalu-
ates the opportunity to substitute itself with the snapped
and adjunct-snapped sensors of the hexagon it is traversing.
The criterion at the basis of this mechanism is that two sen-
sors exchange their role whenever the energy imbalance is
reduced. As a result, the energy balance is significantly en-
hanced, though the role exchange has a small cost for both
the slave and the snapped sensor involved in the substitu-
tion. Indeed, the slave sensor has to reach the center of the
current hexagon and perform a profile packet exchange with
the snapped sensor that has to move towards the destination
of the slave. A profile packet contains the key information
needed by a sensor to perform its new role after a substitu-
tion.

4.1 An example of the algorithm execution
Figure 1 illustrates the interleaved execution of the algo-

rithm actions through an example. For simplicity, we do not
consider the role exchange activity.

Figure (a) shows a starting configuration in which a sink
is positioned in the central point of the right vertical side
of the AoI and requires a density variation in its proximity.
The sensor 8 assumes the starter role.

This sensor snaps three of its slaves, as shown in figure (b),
where the id values of such snapped sensors are highlighted.

Figure (c) shows that the snapped sensor 8 has some un-
snapped sensors in its hexagon, and therefore starts the push
activity towards its three adjacent hexagons. In the mean-
time, the sensor 4 acts as starter and another grid portion
is initiated. As it is in a zone with density requirement 4, it
designates the sensors 20, 36 and 11 as adjunct-snapped.

In Figure (d) the snapped sensor 19 detects a coverage
hole. As it has an un-snapped sensor in its hexagon, it per-
forms the snap activity. The sensor 6 must satisfy a density

requirement 2, so it designates the sensor 34 as adjunct-
snapped. Notice that the snapped sensor 1 does not have
any hole around its hexagon, so its slave remains where it
is; furthermore, it does not execute any push action as the
Moving Condition is not satisfied. The snapped sensor 8,
having many slaves, continues its push activity. At the same
time, the snapped sensor 4 snaps three of its slaves. Figure
(e) shows that, while the snapped sensors 4 and 8 continue
their push activities, the sensors 3 and 7 start the pull ac-
tivity, as both detect a coverage hole and do not have any
slaves to snap, so new sensors are snapped in the left grid.

In view of the pull activity, some sensors arrive in the
hexagons of sensors 3 and 7, and become adjunct-snapped.
The same happens in the right grid, with sensors 15, 28 and
31 – see Figure (f). The sensors 4 and 8 continue their push
activity.

In Figure (g) the snapped sensors 4 and 8 continue their
push activity while some new sensors are snapped. In the
meantime, the snapped sensors in the zone with density re-
quirement 4 designate some adjunct-snapped sensors.

As soon as the grid portions come in radio proximity with
each other, the tiling merge activity is started (Figure (h))
and a unique grid is built. The adjunct-snapped sensors
located inside the hexagon of the sensor 31 will change their
status from adjunct-snapped to slaves, because the sensor
31 has been snapped outside the AoI in consequence of the
merge activity. Finally, Figure (j) concludes this example,
showing the last activities performed to completely cover the
AoI.

5. JOINT SOLUTION TO SENSOR DEPLOY-
MENT, SELECTIVE ACTIVATION, SELF-
HEALING AND DYNAMIC RELOCATION

5.1 Selective activation
Our approach relies on the availability of a sufficient num-

ber of sensors to cover each hexagonal tile at the required
density, namely with a given number of adjunct-snapped
sensors. If the necessary number of sensors is available, the
algorithm achieves a complete coverage, with a regular pat-
tern that permits the use of topology control algorithms [20]
and allows a selective sensor activation which saves energy
during the operative phase of the network. As already high-
lighted, each snapped sensor will place its adjunct-snapped
in fixed positions according to a predefined oriented pattern
inside each hexagonal tile.

The deployment of the adjunct-snapped sensors according
to the same pattern in each tile with the same density re-
quirements, allows us to define a selective activation pattern.
The selective activation of the sensors in a pattern guaran-
tees the continuity and completeness of the coverage of the
tiles that belong to the same circular crown.

When in an AoI there are crowns with different density
requirements, temporary holes can appear along the bound-
ary of these zones since sensors in different positions of the
hexagons are activated in neighboring areas. This situation
is described in Figure 2. Observe that the coverage discon-
tinuity of Figure 2(b) is only intermittent, and many real
applications may not suffer from it. Indeed, for some appli-
cations a continuous sensing of the AoI is not required, for
example in the case of monitoring systems for the detection
of pollutant levels, temperature or humidity conditions. In
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Figure 1: Algorithm execution: an example

these cases, the monitoring activity can rely on the sole in-
terpolation of local measurements taken at discrete points
in the AoI.

By contrast, other more critical applications require that
every point in the target area be accurately monitored, for
example when the sensors are deployed to monitor the pres-
ence of human-life threats such as radioactive or chemical
plumes or a forest fire. In these cases, coverage discontinu-
ities can be eliminated by positioning the adjunct-snapped
sensors in the wiggle region of the snapped sensor. Indeed,
the wiggle region has been defined in [18] as the region com-
prising all those points in which a sensor could be reposi-
tioned such that full coverage is maintained. Of course, the
adoption of the wiggle region requires a slight shrinking of
the hexagonal lattice. In particular, if w is the radius of the
circle inscribed in the wiggle region, then the grid size must
be set to

√
3(rs−w), instead of

√
3rs. It follows that in order

to create a wiggle region that is sufficiently large to accom-
modate all the adjunct-snapped sensors, it is necessary to
deploy a larger number of sensors.

Notice that only a loose clock synchronization is actu-
ally necessary to perform the described selective activation
scheme.

5.2 Self-healing and dynamic relocation
The proposed algorithm ensures that, when a sufficient

number of sensors are available, the density requirements
defined in correspondence to the center of each tile, will be
fulfilled. Nevertheless, the algorithm does not give any in-
dication on where to place redundant slave sensors, which
instead are uniformly spread over the network as a conse-
quence of the push activity. The redundant slave sensors
will thus be available to recover possible failures. More in
detail, as soon as a coverage hole is detected by the sensors
located in proximity (for example, the detection may happen
thanks to a periodic polling scheme or signalled by a failing
sensor whose battery is almost exhausted), the detecting
sensors can restart the algorithm with the consequence that
the hole is immediately covered or a pull activity is exe-
cuted to attract the closest slave sensors. The redundant
slave sensors can thus be dynamically relocated to respond



(a) (b)

Figure 2: Coverage holes at the borders of the cir-
cular crowns during the execution of the alternate
activation of the adjunct-snapped sensors.

to pull invitations issued by the sensors located nearby failed
devices. This process endows the network with self-healing
and self-adapting capabilities that are not present in previ-
ous solutions.

In addition, a sensor network application may require sen-
sor relocation capabilities (see [13, 19]) also to respond to
dynamically occurring events when the deployment of new
sensors is not possible, and the only choice is to re-use and
move the available ones. In consequence of a dynamically
occurred event, each snapped sensor may declare a new den-
sity requirement, which better reflects the required position
dependent accuracy.

This way the new set of redundant slave sensors become
available to respond to new pull invitations necessary to re-
activate the algorithm execution and fulfill the new density
requirements.

6. ON THE USE OF THE VIRTUAL FORCE
APPROACH FOR VARIABLE DENSITY
DEPLOYMENT

In order to evaluate the performance of the δ-Push&Pull
algorithm proposed in this paper, we compare it with an
algorithm based on virtual forces called Parallel and Dis-
tributed Network Dynamics (PDND), proposed in [21]. In
PDND the force exerted by the sensor si on the sensor sj is
modelled as a piecewise linear function. It is repulsive when
the distance between si and sj is lower than an arbitrar-
ily tuned parameter r∗; it is attractive when the distance is
larger, until it vanishes at another arbitrarily set distance.
In order to ensure the convergence of PDND, the formu-
lation of this force must respect the condition of Lipschitz
continuity. In this case, the single sensor movement is lim-
ited by an upper bound that guarantees that the potential
energy is always decreasing, hence avoiding oscillations.

PDND works under the assumption that density require-
ments are uniform over the AoI. In order to make the al-
gorithm achieve a variable density deployment, we need to
redefine the force that one sensor exerts on the others. Ac-
cording to the algorithm PDND, this implies the definition
of the rest distance r∗ at which the force exerted by two
interacting sensors is null. More specifically, we assign to all
sensors inside a region with the same density requirement
a position dependent virtual sensing radius. In particular,
we set the virtual sensing radius of a sensor as inversely

proportional to the density requirement in its position. We
consider a value of r∗ that allows to minimize the overlaps
among sensing disks, obtained as a combination of the sens-
ing radii of two interacting sensors i and j, ri and rj , namely
r∗ = ri+rj . This value of r∗ models the interaction between
two sensors trying to position themselves so that their sens-
ing circles are tangential.

It is to notice that the discontinuity of the density re-
quirements over the AoI implies a discontinuity in the force
function, that no longer respects the Lipschitz condition.
For this reason, the convergence of the algorithm PDND
is no longer guaranteed. In this particular setting, PDND
looses its peculiar characteristic of guaranteed convergence
and behaves as all the other algorithms based on virtual
forces that, since the inspiring model is inherently dynamic,
are prone to oscillations. In order to halt the execution
of the PDND algorithm, we introduce a centralized oscil-
lation control method as in [6]. By examining the history
of movements of each sensor, we determine if oscillations
are going on by checking if the sensor has moved back and
forth around the same location many times. More formally,
we say that a sensor is in an oscillatory state if in the last
m movements it has not moved away more than ǫm meters
from the barycenter of such movements. We artificially ter-
minate the algorithm as all the sensors are in an oscillatory
state. We highlight that, although impractical, this oscilla-
tion control is of benefit for the performance of PDND and,
for this reason, our comparisons are fair.

7. SIMULATION RESULTS
In this section we compare our proposal with the PDND

algorithm, adapted to our context as described in Section 6.
To this purpose, we developed an OPNET based simulator.
We use the following parameter setting: rtx = 10 m, rs = 5
m, sensor speed v = 1 m/sec. We consider a squared AoI of
120 m × 120 m with three concentric circular crowns, cen-
tered at the sink position, located at the center of the AoI.
According to [1], each crown has a different density require-
ment increasing geometrically towards the sink as described
by Equation 3. In particular, we set the density requirement
of the most external zone to one sensor per hexagon, and we
use a parameter q = 1.2 for the geometric progression. In
such a setting, the crown density requirements are 1, 2, 4
and 12 sensors per hexagon as we move from the outer to
the inner crown.

We consider a random sensor initial deployment, as de-
picted in Figure 3(a). Figure 3(b) and 3(c) show an exam-
ple of the final deployment achieved with 950 sensors by δ-
Push&Pull and PDND, respectively. As it will be explained
in the following, PDND achieves a more uniform deployment
at the cost of a higher energy consumption and deployment
time.

In order to compare the performance of the two algorithms
we increase the number of deployed sensors from 800 to 1100.
The results are obtained by averaging over 30 simulation
runs.

Figure 4(a) shows the completion time, i.e. the time re-
quired to reach the final deployment. Recall that the PDND
algorithm is artificially halted since it does not guarantee the
termination. Despite this external intervention to halt the
execution of PDND, the termination time of δ-Push&Pull
is two orders of magnitude shorter than PDND. The slow-
ness of PDND is due to the limitation to the distance each
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Figure 3: Initial configuration (a). Final deployment under δ-Push&Pull (b) and PDND (c).
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Figure 4: Performance comparisons between δ-Push&Pull and PDND

sensor is allowed to traverse at each round. On the other
hand, δ-Push&Pull let sensors traverse entire hexagons at
each movement, thus resulting in a shorter termination time.

Figure 4(b) shows the average traversed distance. δ-Push&Pull
has a decreasing traversed distance as the number of sensors
increases. This is due to the fact that less sensors have to be
pulled in order to achieve the desired density as the number
of deployed sensors increases. The PDND algorithm shows
a higher traversed distance than δ-Push&Pull due to the os-
cillating movements typical of virtual force based solutions.

The average number of starting/stopping actions is shown
in Figure 4(c). This is an important metric for mobile sen-
sor deployment algorithms, because start and stop actions
consume high energy [11]. PDND shows an average number
of starting/stopping two orders of magnitude higher than
δ-Push&Pull. As for the deployment time, this is due to
the short distance each sensor can traverse at each round.
δ-Push&Pull, instead, moves the sensors precisely and with-
out oscillations, resulting in a lower number of movements.

We now consider the average energy consumption of a sen-
sor under the two algorithms. A sensor consumes energy due
to communications (sending and receiving messages) and
movements (travelling and starting/stopping movements).
We consider two cumulative energy consumption metrics,
namely the average energy spent in communication and the
average total energy consumed by sensors. Such metrics are

expressed in energy units: the reception of a message cor-
responds to one energy unit, a single transmission costs the
same as 1.125 receptions [22], a 1 meter movement costs
the same as 300 transmissions [11] and a starting/stopping
action costs the same as 1 meter movement [11].

Figure 4(c) shows the energy spent in communications
and the total energy consumption. As expected, PDND has
worse performance under both metrics. On the one hand,
the energy spent in communications is higher because of the
high number of rounds required by PDND to terminate. In-
deed, under PDND, each sensor advertises its position to
the neighborhood at each round. δ-Push&Pull, instead, has
no round based communications, and messages are only ex-
changed to perform the algorithm activities. On the other
hand, the higher number of starting/stopping actions as well
as the higher traversed distance, result in a major total en-
ergy consumption of PDND with respect to δ-Push&Pull.

We finally evaluate the two algorithms considering the
quality of the achieved deployments. We compared the per-
centage of AoI not meeting the desired density at the end
of the algorithm execution. The results are shown in Figure
5. The regularity of the deployment achieved by PDND re-
sults in a better fulfillment of the requirements. However,
such regularity is achieved at the cost of a higher energy
consumption and a longer deployment time. δ-Push&Pull
consumes two orders of magnitude less energy with respect



 0

 2

 4

 6

 8

 10

 750  800  850  900  950  1000  1050  1100  1150

%
 o

f a
re

a 
vi

ol
at

in
g 

de
ns

ity
 r

eq
ui

re
m

en
t

Number of sensors

Push&Pull
PDND

Figure 5: Percentage of area not meeting the density
requirements.

to PDND, and is able to achieve a final stable deployment in
a much shorter time. It shows a small gap in the percentage
of area not meeting the desired density, that decreases as
the number of sensors increases. This gap corresponds to
the boundaries between adjacent circular crowns. Indeed,
the density requirement of a tile is advertised according to
the position of its snapped sensor. Nevertheless, when a tile
is crossed by the boundary line of a circular crown, one of the
two sections lies on a crown where the density requirement
is different from the one declared by the snapped sensor.

8. CONCLUSIONS
We proposed an original algorithm for mobile sensor self

deployment, according to which sensors autonomously coor-
dinate their movements to achieve a complete coverage with
variable density. The sensor density varies so as to uni-
form the energy depletion due to communications towards
the sink. The final deployment consists in a hexagonal tiling
with a variable number of sensors deployed in each tile. Sim-
ulations show that our algorithm performs better than pre-
vious approaches in terms of several performance parame-
ters. Furthermore we discussed some of the benefits related
to the regularity of the obtained deployment. In particular
we show how the regularity of the sensor distribution can
be exploited to implement energy saving techniques and to
achieve fault tolerance and self-healing capabilities.

9. REFERENCES
[1] X. Wu, G. chen, and S. K. Das, “On the energy hole

problem of nonuniform node distribution in wireless
sensor networks,” IEEE Transactions on Parallel and
Distributed System, vol. 19, no. 5, pp. 710–720, 2008.

[2] J. Li and P. Mohapatra, “Analytical modeling and
mitigation techniques for the energy hole problem in
sensor networks,” Pervasive and Mobile Computing,
no. 3, pp. 233–254, 2007.

[3] S. Olariu and I. Stojmenovic, “Design guidelines for
maximizing lifetime and avoiding energy holes in
sensor networks with uniform distribution and
uniform reporting,” Proceedings of INFOCOM, 2006.

[4] N. Bartolini, T. Calamoneri, E. Fusco, A. Massini, and
S. Silvestri, “Push & pull: autonomous deployment of
mobile sensors for a complete coverage,”
ACM/Springer Wireless Networks, 2009.

[5] Y. Zou and K. Chakrabarty, “Sensor deployment and
target localization based on virtual forces,” Proc.
IEEE INFOCOM, 2003.

[6] N. Heo and P. Varshney, “Energy-efficient deployment
of intelligent mobile sensor networks,” IEEE
Transactions on Systems, Man and Cybernetics,
vol. 35, 2005.

[7] J. Chen, S. Li, and Y. Sun, “Novel deployment
schemes for mobile sensor networks,” Sensors, vol. 7,
2007.

[8] S. Poduri and G. S. Sukhatme, “Constrained coverage
for mobile sensor networks,” Proc. of IEEE ICRA,
2004.

[9] M. R. Pac, A. M. Erkmen, and I. Erkmen, “Scalable
self-deployment of mobile sensor networks; a fluid
dynamics approach,” Proc. of IEEE IROS, 2006.

[10] W. Kerr, D. Spears, W. Spears, and D. Thayer, “Two
formal fluid models for multi-agent sweeping and
obstacle avoidance,” Proc. of the Joint Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), 2004.

[11] G. Wang, G. Cao, and T. L. Porta,
“Movement-assisted sensor deployment,” IEEE
Transaction on Mobile Computing, vol. 6, 2006.

[12] M. Ma and Y. Yang, “Adaptive triangular deployment
algorithm for unattended mobile sensor networks,”
IEEE Transactions on Computers, vol. 56, 2007.

[13] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and
E. Leonardi, “A distributed sensor relocation scheme
for environmental control,” The ACM/IEEE Proc. of
MASS, 2007.

[14] X. Wu, G. Chen, and S. K. Das, “On the energy hole
problem of nonuniform node distribution in wireless
sensor networks,” Proc. of IEEE MASS, pp. 180–187,
2006.

[15] M. Cardei, Y. Yang, and J. Wu, “Non-uniform sensor
deployment in mobile wireless sensor networks,” Proc.
of WoWMoM, pp. 1–8, 2008.

[16] C. Wu and D. Verma, “A sensor placement algorithm
for redundant covering based on riesz energy
minimization,” Proc. ISCAS, 2007.

[17] Y.-C. Wang and Y.-C. Tseng, “Distributed deployment
schemes for mobile wireless sensor networks to ensure
multilevel coverage,” IEEE Transactions on Parallel
and Distributed System, vol. 19, 2008.

[18] M. Johnson, D. Sarioz, A. Bar-Noy, T. Brown,
D. Verma, and C. Wu, “More is more: the benefits of
denser sensor deployment,” Proc. INFOCOM, 2009.

[19] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor
relocation in mobile sensor networks,” Proc. of IEEE
INFOCOM, 2005.

[20] S. Pattem, S. Poduri, and B. Krishnamachari,
“Energy-quality tradeoffs for target tracking in
wireless sensor networks,” Proc. of ACM International
Conference on Information Processing in Sensor
Networks (IPSN), Springer Lecture Notes in
Computer Science, vol. 2634, 2003.

[21] K. Ma, Y. Zhang, and W. Trappe, “Managing the
mobility of a mobile sensor network using network
dynamics,” IEEE Transaction on Parallel and
Distributed Systems, vol. 19, no. 1, pp. 106–120, 2008.

[22] G. Anastasi, M. Conti, A. Falchi, E. Gregori, and
A. Passarella, “Performance measurements of mote
sensor networks,” Proc. of ACM MSWiM 2004.


