Parallel Sorting of n-strings in Kn Time
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Abstract In this work, using a suitable permuta-
tion network of size N = 2", followed by a hyper-
concentrator network, M n-strings (2 < M < N)
are sorted in Kn time. This is possible by using the
binary string values as destination addresses on the
permutation network. Since M < N, N — M out-
puts do not receive strings. If a hyperconcentrator
network follows, the N — M holes are removed and
the sorted sequence of M wvalues is obtained. Using
a high efficiency permutation network on which a
probabilistic routing algorithm runs, and a suitable
hyperconcentrator network, the time of the overall
operation is Kn or K(log, N) where K is a very
moderate constant.
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1 Introduction

Sorting is a key task because it can often rep-
resent an intermediate step in many different
applications. For this reason it is important
to study algorithms or devices capable to per-
form the sorting of a set of elements in a time
as short as possible. The classical Batcher
sorting algorithm/network [1] is an example of
the correspondence between the algorithm and
its wired (network) realization. Batcher sort-

ing algorithm is based on comparisons between
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pairs of elements chosen according to their re-
ciprocal positions in the network. Batcher sort-
ing network is realized connecting comparison
cells according to the scheme defined by the
algorithm. The Batcher parallel sorting is de-
terministic and has O(logs M log, n) time com-
plexity, where M is the number of elements to
be sorted, n is the n-string length and N = 2"
(for the determination of this time complexity
see Ref. [6]).

In this work a probabilistic parallel sorting
procedure with Kn time complexity which uses
a permutation network followed by a hypercon-

centrator is presented.

2 The sorting procedure out-
line

The sorting procedure is based on the use of a
permutation network followed by a hypercon-
centrator as shown in Fig. 1.

A non-blocking permutation network of size
N, Pn, always allows all one-to-one connec-
tions between N inputs channels and N output
channels. In other words Py allows a permu-

tation of its outputs on its inputs in a time Tp
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Figure 1: A permutation network Pn and a concentrator network Cn cascaded. N = 2" is the
size of the two networks and M is the number of the n-strings to be sorted.

(depending on the depth of the network and on

the routing algorithm time complexity).

A hyperconcentrator network of size N, Cn,
[11] has N inputs and N outputs and can es-
tablish disjoint connections from any subset of
k inputs, for any 1 < k < N, to the first k£ out-
puts. The hyperconcetrator eliminates holes in

a time T¢.

As shown in Fig. 1, values to be sorted (n-
strings) v;,4 = 0,..., M are presented on M
(0 < M < N) of the N inputs of PN. n-
strings can assume all values between 0 and
N = 2" and, if these values are used as output
addresses on Py, they are sorted and scat-
tered on M outputs. Hence N — M holes
are present among the M sorted values. To
eliminate holes, and generate the sequence of

sorted values, the hyperconcentrator network

acts. The overall time of the sorting procedure

Ty is:

Ts =Tp+T¢

3 An implementation of the
parallel sorting

Following the outline presented in the previous
section (use of Pn and Cy), the choice of the
requested networks is critical for its influence
on the overall time complexity T's of the sorting
procedure.

In the past an asymptotically nonblocking
permutation network has been presented, see
Ref. [4, 5]. It consists of three cascaded stacks
of banyan networks on which a parallel prob-
abilistic algorithm runs. In this permutation
network the faults of the probabilistic algo-
rithm can become negligible. The time com-
plexity Tp of this device is 3logy N, where N
is the network size. In another work [2] Cor-

men and Leisersons present an hyperconcen-
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Figure 2: Behavior comparison for some M /N ratios of the time Ts (in steps) versus the number
of elements to be sorted M in the cited sorting procedures.

trator which consists of many merge boxes of
various sizes suitably connected. On this net-
work a deterministic algorithm runs and the
holes among strings are eliminated with time
complexity T = 2logy N.

Using an asymptotically nonblocking per-
mutation network followed by the Cormen and
Leiserson hyperconcentrator the total sorting

time is:

Ts =Tp+Tc =5logy N

Because the length of n-strings is n = logy N

the overall complexity Tg is

T5:5n

4 Discussion and conclusions

Preparata proposed a deterministic algorithm

log, M log, N
logy(M/N)

M < N/4 on N-node hypercubic networks (see

to sort M elements in O( ) steps if
Ref. [9, 7, 8]). This algorithm, for small val-
ues of M (M < \/N/2), considerably improves
the time of the Batcher sorting network which
requires O(log M log, n) steps.

In Fig. 2 a comparison among times
of Preparata sorting algorithm, for M =
N/4,M = N/8,M = /N/2 elements, times
of Batcher sorting algorithm, and times of the
sorting algorithm proposed in this work, for
M = N,.M = N/4,M = N/8 elements, is

shown.



As one can see, times of the proposed paral-
lel sorting procedure is better than all other
ones except the case M < /N/2 of the
Preparata procedure.

The fact that on the permutation network
runs a probabilistic routing algorithm is irrel-
evant because its faults become negligible un-
der suitable conditions [4] (fault occurrences
can become smaller than the MTBF ratio, in
this case the difference between the determin-
istic and probabilistic case disappears, see Ref.

5, 10)).
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