
Noname manuscript No.

(will be inserted by the editor)

Push & Pull: autonomous deployment of mobile sensors

for a complete coverage

Novella Bartolini · Tiziana Calamoneri ·

Emanuele Guido Fusco · Annalisa Massini ·

Simone Silvestri

Received: October 30, 2008 / Accepted: date

Abstract Mobile sensor networks are important for several strategic applications de-

voted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed

manually and are either sent from a safe location or dropped from an aircraft. Mobile

devices permit a dynamic deployment reconfiguration that improves the coverage in

terms of completeness and uniformity.

In this paper we propose a distributed algorithm for the autonomous deployment of

mobile sensors called Push & Pull. According to our proposal, movement decisions are

made by each sensor on the basis of locally available information and do not require any

prior knowledge of the operating conditions or any manual tuning of key parameters.

We formally prove that, when a sufficient number of sensors are available, our

approach guarantees a complete and uniform coverage. Furthermore, we demonstrate

that the algorithm execution always terminates preventing movement oscillations.

Numerous simulations show that our algorithm reaches a complete coverage within

reasonable time with moderate energy consumption, even when the target area has

irregular shapes. Performance comparisons between Push & Pull and one of the most

acknowledged algorithms show how the former one can efficiently reach a more uniform

and complete coverage under a wide range of working scenarios.

Keywords Coverage Completeness · Coverage Uniformity · Distributed Algorithm ·
Mobile sensor networks · Self Deployment

1 Introduction

Research in the field of mobile wireless sensor networks is motivated by the need

to monitor hostile environments such as wild fires, disaster areas, toxic regions or

Animations and the complete code of the proposed algorithm are available for download at
the address http://www.dsi.uniroma1.it/∼novella/mobile sensors/

N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, S. Silvestri

Department of Computer Science

”Sapienza” University of Rome, Italy

E-mail: {bartolini, calamo, fusco, massini, simone.silvestri}@di.uniroma1.it

2

battlefields, where static sensor deployment cannot be performed manually. In these

working settings, sensors may be dropped from an aircraft or sent from a safe location.

Mobile sensors can dynamically adjust their position to improve the coverage with

respect to their initial deployment.

This paper addresses the problem of coordinating sensor movements to reach a

more satisfactory deployment in terms of coverage extension and uniformity.

Centralized solutions to this problem are inefficient because they require either

a prior assignment of sensors to positions, or a starting topology that ensures the

connectivity of all sensors (for global coordination purposes). On the one hand, a prior

assignment is inapplicable because it requires an excessive amount of movements to

deploy sensors independently of their initial position. On the other hand, connectivity

cannot be guaranteed in any starting scenario. Therefore, feasible and scalable solutions

should employ a distributed scheme according to which sensors make local decisions to

meet global objectives.

When designing solutions to the deployment problem, energy consumption is an

important issue. Indeed, due to the limited power available, each sensor should coordi-

nate with others with very few messages and should reach its position traversing small

distances. Energy consumption should also be controlled by uniformly placing redun-

dant sensors when available. In fact, a uniformly redundant coverage of the AoI allows

to prolong the network lifetime, for example by allowing an alternative activation of

sensors without any loss of coverage. A redundant sensor placement has also several

benefits as it allows a better target sensing, stronger environmental monitoring, and

fault tolerance capabilities.

The main contribution of this paper is an original fully distributed algorithm for

mobile sensor deployment called Push & Pull, which is radically different from any pre-

vious one. Most of the existing approaches fall into one of two main categories, as they

are either inspired by molecular physics [1–8] or by computational geometry [9–13]. In

general, they aim at reaching a final deployment which is similar to the one targeted

by our algorithm. Nevertheless, the solutions inspired by physical models usually tend

to non-stable deployment, due to the dynamicity of the equilibrium that characterizes

molecular systems. Hence such solutions necessitate proper countermeasures to ensure

a gradual decrease of movements. On the other hand the approaches inspired by com-

putational geometry are often unable to handle concave AoIs and lead to non-uniform

deployments.

The design of our solution follows the grassroots approach [14] to autonomic com-

puting. Self-organization emerges without the need of external coordination or human

intervention as the sensors autonomously adapt their position on the basis of a local

view of the surrounding scenario. This way our algorithm shows the basic self-* prop-

erties of autonomic computing, i.e. self-configuration, self-adaptation and self-healing.

This algorithm produces a hexagonal tiling by spreading sensors out of high density

regions and attracting them towards coverage holes. Decisions regarding the behavior

of each sensor are based on locally available information and do not require any prior

knowledge of the operative scenario or any manual tuning of key parameters. Location

awareness is only necessary in the case of sensor deployment over a specific target area,

whereas this capability is not required when sensors are to be deployed in an open

environment.

We formally prove that our algorithm terminates and provides a complete coverage

regardless of the particular shape of the AoI; moreover, we propose a variant that

3

exploits redundant sensors to produce a k-coverage, where k depends on the number

of the available sensors and on the shape and extension of the AoI.

We ran numerous simulations to evaluate the performance of our algorithm and

compare it to existing solutions. Experimental results show that our algorithm reaches

a complete and stable coverage within reasonable time with moderate energy con-

sumption, even when the target area has an irregular shape. It turns out that our

proposal provides better performance than one of the most acknowledged and cited

algorithms [9]. Furthermore, our solution also outperforms previous approaches pro-

ducing a redundant coverage with guaranteed uniformity.

This paper is organized as follows. In Section 2 we describe the Push & Pull algo-

rithm. We devote Section 3 to a discussion on the implications of coverage uniformity

on fault tolerance and network lifetime. In this section we also propose an algorithm

variant which privileges uniformity over other performance requirements. In Section

4 we formally prove some important properties of the final deployment, namely ter-

mination, coverage completeness and uniformity. The simulation analysis is shown in

Section 5. Section 6 describes the state of the art, while Section 7 concludes the paper.

2 The Push & Pull algorithm

In order to make the exposition clearer, we outline the algorithm, before giving deeper

details.

2.1 The idea

Sensors aim at realizing a complete and uniform coverage of the AoI by means of a

hexagonal tiling. Notice that the hexagonal tiling corresponds to a triangular lattice

arrangement, that is the one that guarantees optimal coverage and density, as discussed

in [15], and connectivity, as we detail in section 4.3. The algorithm starts with the

concurrent creation of several tiling portions. Every sensor not yet involved in the

creation of a tiling portion gives start to its own portion in an instant which is randomly

selected in a given time interval.

In the following, when we talk about sinit we refer, more in general, to any starter.

The algorithm mandates that four main activities are carried out in an interleaved

manner. The combination of the described activities expands the tiling and, at the

same time, does its best to uniformly distribute redundant sensors over the tiled area,

preventing oscillations.

Snap activity. The sensor sinit elects its position as the center of the first hexagon of its

tiling portion. It selects at most six sensors among those located within its transmission

radius Rtx and makes them snap to the center of adjacent hexagons. Such deployed

sensors, in turn, give start to their own selection and snap activity, thus expanding the

boundary of the current tiling portion. The sensors that are positioned in the center of

a hexagon according to the snap activity, are hereafter referred to as snapped sensors.

This activity continues until no other snaps are possible, because either the whole AoI

is covered, or the boundary tiles do not contain any unsnapped sensors.

4

(a) (b) (c) (d) (e) (f)

Fig. 1 An example of snap and push activities: (a) starting configuration; (b) sinit snaps itself
at the center of the first tile; (c) sinit selects six sensors to make them snap in the adjacent
hexagons; (d) configuration after the snap activity of sinit; (e) sinit pushes a sensor to a nearby
hexagon, while a just deployed sensor gives rise to a new snap activity; (f) a snapped sensor
causes the snap of the sensor that it has just received from the starter.

Push activity. After the completion of their snapping activity, snapped sensors may

still be surrounded by non-snapped sensors located inside their hexagon, hereafter

referred to as their slaves. In this case, they proactively push such slaves towards lower

density areas located within their transmission range. Consequently, slaves being in

overcrowded areas migrate to low density zones, thus accelerating the coverage process

and enhancing its uniformity. A snapped sensor stops the push activity when the

maximum detected density difference does not exceed one sensor.

Pull activity. Snapped sensors may detect a coverage hole adjacent to their hexagon

and may not find available sensors to make them snap. In this case, they send hole

trigger messages, and reactively attract non-snapped sensors and make them fill the

hole. Such sensors keep on advertising the presence of a hole until either the holesis

filled or a timeout occurs.

Tiling merge activity. The possibility that many sensors act as starters can give rise

to several tiling portions with different orientations. In order to characterize and dis-

tinguish each tiling portion, the time-stamp of each starter is included in the header

of all messages. As a result, messages coming from sensors located in different tiling

portions will be characterized by different starter time-stamps. Our algorithm provides

a mechanism to merge all these tiling portions into a unique regular and uniformly ori-

ented tiling. When the boundaries of two tiling portions come in radio proximity with

each other, the one with older starter time-stamp absorbs the other one by making its

snapped sensors move into more appropriate snapping positions.

Figure 1 shows an example of the execution of the first two activities. Namely,

Figure 1(a) depicts the starting configuration, with nine randomly placed sensors and

Figure 1(b) highlights sinit starting the hexagonal tiling. In Figure 1(c) the starter

sensor sinit selects six sensors to make them snap in adjacent hexagons, according to

the minimum distance criterion. Figure 1(d) shows the configuration after the snap

activity of sinit. In Figure 1(e), a just deployed sensor starts a new snap activity while

sinit starts the push activity sending a non-snapped sensor to a lower density hexagon.

In Figure 1(f) one of the deployed sensors causes the snap of the sensor just received

from the starter, thus leading to the final configuration. Figure 2 shows an example of

the execution of the tiling merge activity. In particular, Figure 2(a) shows two tiling

portions meeting each other. The portion on the left has the oldest time-stamp, hence

5

it absorbs the other one. Two nodes of the right portion detect the presence of an

older tiling and abandon their original position (Figure 2(b)) to honor snap commands

coming from a sensor of the left portion (Figure 2(c)). These just snapped sensors,

now belonging to the older portion, detect the presence of three nodes belonging to the

right portion (Figure 2(d)) and make them snap as soon as they leave their original

tiling portion (Figures 2(e)-(f)).

(a) (b) (c)

(d) (e) (f)

Fig. 2 An example of tiling merge activity: (a) two tiling portions meet each other (the one
on the left has the oldest time-stamp); (b) two nodes of the right portion detect the presence
of the older portion; (c) the two nodes abandon their original portion and are snapped to new
positions in the older portion; (d) these just snapped sensors detect the presence of three nodes
belonging to the right portion and (e-f) make them snap.

We defer the introduction of the example regarding the pull activity to the next

section when more details will be available to clarify the explanation.

2.2 Details of Push & Pull

In order to describe the algorithm in more detail, we give some definitions and specify

the operative setting.

Let V be a set of equally equipped sensors able to determine their own location, en-

dowed with boolean sensing capabilities. We adopt an isotropic communication model

and assume that sensors are in active mode for all the deployment phase. We set the

hexagon side length lh to the sensing radius Rs. This setting guarantees both coverage

and connectivity when Rtx ≥
√

3Rs. This requirement is not restrictive as most wire-

less devices can adjust their transmission range by properly setting their transmission

power.

All sensors that are neither snapped nor slaves are called free. Given a sensor x,

snapped to the center of a hexagon, we denote by S(x) the set of slaves of x and by

Hex(x) the hexagonal region whose center is covered by x. We define L(x) the set

6

Fig. 3 Behavior of the snapped sensor p.

composed by the sensors located in radio proximity from x (i.e. the free sensors in

radio proximity from x the slaves S(x)). We also refer to V P (x) (vacant positions) as

to the set of positions detected by the sensor x at the center of the hexagons adjacent

to Hex(x) that are not yet occupied by any snapped sensor.

We now give additional details on the activities sketched in Section 2.1.

Snap activity. At the beginning of the deployment process, each sensor may act as

starter of a snap activity from its initial location at an instant randomly chosen over a

given time interval. In order to propagate a tiling portion, a snapped sensor x performs

a neighbor discovery, that allows x to gather information regarding S(x) and all the

free and snapped sensors located in radio proximity from x and the positions belonging

to V P (x). To give start to new snap activities, x selects the sensor in L(x) which is

the closest to each uncovered position and snap it there. A snapped sensor leads the

snapping of as many adjacent hexagons as possible and gives start to the push activity,

as described in Figure 3.

If some of the positions in V P (x) cannot be covered because L(x) does not contain

enough sensors, x starts the pull activity. If otherwise all the hexagons adjacent to

Hex(x) have been covered and V P (x) = ∅, x stops any further snapping, and uses the

available slaves (if any) to give start to the the push activity.

Figure 4 shows a detailed flow chart of the Snap, Push and Pull activities, in

agreement with the underlying coordination protocol which is described in [16]. In this

figure, for clarity, we denote with G(x) the set of snapped sensors located in hexagons

adjacent to Hex(x).

Push activity. Given two snapped sensors x and y located in radio proximity to each

other, x may offer one of its slaves to y and push it inside its hexagon if |S(x)| ≥
|S(y)|+1. Note that, if |S(x)| = |S(y)|+1, the flow of a sensor from Hex(x) to Hex(y)

leads to a symmetric situation in which |S(y)| = |S(x)| + 1 possibly causing endless

cycles. In such cases we restrict the push activity to only one direction: x pushes its

slave to y only if id(y) < id(x), where id(·) is a function initially set to the unique

identity code of the sensor radio device (notice that this is not the only possibility,

id(·) could be set for example to a random non negative value). We formalize these

observations by defining the following Moving Condition, that enables the movement

7

Neighbor

Discovery
VP(x) = �

No

L(x) = �
Select y � L(x),

Snap y

No

Yes

� y ��G(x) s.t.

moving_cond(y�x)�

Yes

wait Slave received

No Set id = 0 and timeout,

send trigger notification

wait(timeout)

L(x) = � Send trigger extension

YesNo
Reset id

� y ��G(x) s.t.

moving_cond(y�x)

S(x) = �
NoYes

� y ��G(x) s.t.

moving_cond(x�y)�

Push l � S(x) to Hex(y),

Broadcast |S(x)|

Yes

wait

Yes

No

Set id and timeout,

Broadcast trigger

notification/extension

Reception of a

trigger extension

Reception of a

trigger notification

Broadcast |S(x)|

SNAP

PULL

PUSH

Reset id

Trigger ext. timeout

Slave received

Fig. 4 A detailed flow chart of the Snap, Push and Pull activities.

of a sensor from Hex(x) to Hex(y):

{|S(x)| > |S(y)| + 1} ∨ {|S(x)| = |S(y)| + 1 ∧ id(x) > id(y)}.

The snapped sensor x executes a push action by sending one of its slaves s towards

the hexagon of a snapped sensor y.

The destination hexagon Hex(y) is selected such that x verifies the moving condi-

tion with respect to y. In particular, as destination of the push action, x selects the

closest hexagon among those with the lowest number of slaves. Among the sensors

which can be pushed to the destination, x selects the closest to Hex(y).

If a snapped sensor receives a neighbor discovery request while involved in a push

activity, it replies as if the ongoing movements were already concluded. Indeed, if a

snapped sensor communicated its own number of slaves without keeping into account

the ongoing movements, it could cause inconsistencies (for example either too many

sensors could move to the same hexagon or the same sensor could be offered to several

snapped sensors). The snapped sensors involved in a push activity always alert their

neighborhood of the changed number of slaves.

Pull activity. The sole snap and push activities are not sufficient to ensure the maxi-

mum expansion of the tiling. This may happen when there exists a direction in which

the density decreases of at most one sensor at a time, and the Moving Condition is false

due to the order relationship induced by function id(·). The same problem may cause

8

(a) (b) (c)

(d) (e)

Fig. 5 An example of the pull activity: (a) a tiled AoI with a coverage hole in the bottom
left corner; (b) the two snapped nodes detecting the hole set their id to 0 and send a trigger
notification message that is propagated by their neighbors which modify their id; (c) the closest
available slave moves towards the hole; (d) the hole is covered and (e) all ids are set back to
the previous values.

also non-uniform coverage. For this reason, we introduce the pull activity that makes

use of a trigger mechanism when some holes occur. Namely, let x be a snapped node

detecting a hole in an adjacent hexagon, with S(x) = ∅. If x has not the possibility to

receive any slave from its neighbor hexagons, i.e. the Moving Condition is not verified

for any of them, then it activates the following trigger mechanism. Sensor x temporar-

ily alters the value of its id function to 0 and notifies its neighbors of this change by

means of a trigger notification message. This could be sufficient to make the Moving

Condition true with at least a snapped neighbor, so x waits until either a new slave

comes into its hexagon or a timeout occurs. If a new slave enters Hex(x), x sets back its

id value and snaps the new sensor, thus filling the hole. If the timeout expires and the

hole has not been covered yet, x extends the trigger to its adjacent hexagons by sending

them a a trigger extension message. As a consequence, the snapped neighbors of x set

their id value to 1 and send the related trigger notification message. This mechanism is

iterated by x over snapped sensors at larger and larger distance in the tiling until the

hole is covered. Each snapped sensor involved in the trigger extension mechanism sets

its id to a value that is proportional to the distance from x. All the timeouts related

to each new extension are set proportionally to the maximum distance reached by the

trigger mechanism. At this point, as a consequence of timeouts, each involved node

sets back its id to the original value. In order to better detail the trigger mechanism,

we show the following example. Figure 5(a) shows a tiled AoI with a coverage hole in

the bottom left corner. Snapped nodes detecting the hole set their id to 0 and send a

trigger notification message. As their neighbors do not have slaves, they need to send a

trigger extension message, provoking a propagation of the id modification (see Figure

5(b)). As soon as the unique snapped sensor with a slave alters its id to honor the

9

trigger mechanism, the Moving Condition is satisfied and therefore the slave is pushed

towards a snapped sensor that is closer to the hole, as shown in Figure 5(c). In Figure

5(d) the hole coverage is highlighted and, after the timeouts expire, all ids are set back

to the previous values (Figure 5(e)).

It should be noted that more snapped nodes adjacent to the same hole may inde-

pendently activate the trigger mechanism, possibly at different times. In this case, if a

node receives a trigger extension message from two or more nodes, it honors only the

one with the lowest id. The detection of several holes may cause the same node y to

receive several trigger extension messages. These are stored in a pre-emptive priority

queue, privileging the messages related to the closest hole.

Tiling merge activity. If several sensors act as starters, several tiling portions can be

generated with different orientations. By contrast, our algorithm aims to cover the

AoI with a perfectly regular tiling thus minimizing overlaps of the sensing disks and

enabling a complete and uniform coverage. Hence, we design a merge mechanism ac-

cording to which as soon as a sensor x receives a neighbor discovery message from

another tiling portion it joins the oldest one (it discriminates this situation by evaluat-

ing the time-stamp of the starter action). It should be noted that the detection of the

sole neighbor discovery messages is sufficient to ignite the tiling merge activity because

such messages are sent after any tiling expansion and, if two tiling portions come in

radio proximity, at least one of them is increasing its extension. In the following, we

call Gold and Gnew the tiling portions with lower and higher time-stamp, respectively.

We distinguish three possible cases:

1) x belongs to Gnew: if x is a slave, sensor x switches its state to free and communicates

its new state to the neighborhood. From now on x will honor only the messages coming

from Gold and will ignore those from Gnew. This proactive communication is needed

to advertise the presence of Gnew when there is no message exchange within Gnew per-

ceivable by the sensors in Gold. This way, the snapped sensor to which x belonged, can

properly update its slave set. If x is instead a snapped sensor, it cannot immediately

switch its state to free because of its leading role inside Gnew (e.g. it leads the slave

sensors in S(x) and performs push and pull activities). Hence, x temporarily assumes

a hybrid role: it declares itself as free to the nodes of Gold and, at the same time, acts

as a snapped sensor in Gnew until it receives a snap command coming from Gold. After

the reception of such a snap command, x moves to the new snap position and elects

one of its slave as a substitute. If no slave is available, x advertises its departure to its

neighbors in Gnew.

2) x belongs to Gold: if x is a slave, it ignores all messages from Gnew. If x is snapped,

it performs a neighbor discovery, ignores all messages coming from Gnew (apart from

the neighbor discovery replies) and honors only messages from Gold. Observe that the

neighbor discovery is necessary to ignite the merge mechanism. The neighbor discov-

ery allows each snapped sensor in Gold to collect complete information about nearby

sensors that previously belonged to Gnew.

3) x is free: the sensor x honors only messages from Gold and ignores those from Gnew.

2.3 Balancing energy consumption

According to the previous description of Push & Pull, slaves consume more energy than

snapped sensors, because they are involved in a larger number of message exchanges

10

and movements. We introduce a mechanism to balance the energy consumption over the

set of available sensors making them exchange their roles. This mechanism is similar

to the technique of cascaded movements introduced in [13]. Namely, any time a slave

has to make a movement across a hexagon as a consequence of either push or pull

activities, it evaluates the opportunity to substitute itself with the snapped sensor of

the hexagon it is traversing. The criterion at the basis of this mechanism is that two

sensors exchange their role whenever the energy imbalance is reduced. As a result, the

energy balance is significantly enhanced, though the role exchange has a small cost for

both the slave and the snapped sensor involved in the substitution. Indeed, the slave

sensor has to reach the center of the current hexagon and perform a profile packet

exchange with the snapped sensor that has to move towards the destination of the

slave. A profile packet contains the key information needed by a sensor to perform its

new role after a substitution.

2.4 The sensor coordination protocol

The implementation of our algorithm requires the definition of a protocol for the coor-

dination of activities among locally communicating sensors. The coordination protocol

provides the rules to solve contentions that may happen in several cases. For example,

two or more snapped sensors can decide to issue a snap command to more than one

sensor towards the same hexagon tile or a low density hexagon can be selected by

several snapped sensors as candidate for receiving redundant slaves. These contentions

are solved by properly scheduling actions according to message time-stamps and by

advertising related decisions as soon as they are made. This protocol is designed to

minimize energy consumption in terms of message exchanges, which is possible be-

cause the algorithm decisions are only based on a small amount of local information.

Furthermore, we assume that the protocol of Push & Pull is implemented over a com-

munication protocol stack which handles possible errors and losses that may occur on

the radio channels by means of timeout and retransmission mechanisms. We do not

give any further detail on the protocol underlying Push & Pull as it is beyond the

scope of this paper. The interested reader can refer to [16].

Fig. 6 Local formation of a stairwise density distribution.

3 A discussion on uniformity implications

The execution of Push & Pull guarantees coverage uniformity only if the number of

available sensors is exactly the minimum for the given orientation of the final grid. If re-

dundant sensors are available, their movements are regulated by the moving condition,

11

that precludes the flow of redundant sensors from high density to low density hexagons

if the difference between the local densities is only of one sensor. This may cause local

formation of a stairwise density distribution when the order function is monotonically

increasing in the precluded flow direction. An example of such situations is depicted in

Figure 6, where for each hexagon the elements of the pairs represent the order value

and the number of sensors, respectively.

The length of these formations is usually very short due to the random distribution

of the order value over the set of sensors. The worst case, albeit improbable, happens

when a stairwise distribution is as long as the diameter of the AoI.

In order to guarantee the uniformity of the sensor deployment even in the presence

of redundant sensors, we introduce a shrinked grid mode as a variant of the Push &

Pull algorithm. From now on, we will refer to the basic version with the name PP1

and to the shrinked grid mode with the name PP2. In Section 4 we prove that PP2

enables a uniformly redundant coverage, and we provide metrics and related formulas

to calculate the guaranteed redundancy level.

In order to formally describe such mode we introduce the following definition: the

tight number of sensors is the maximum number of hexagons of side length lh necessary

to cover the AoI for each possible initial position of the sensor set and each possible

tiling orientation. This number represents the maximum number of sensors that can be

necessary to cover the AoI with a hexagonal tiling of side lh, regardless of the position

and orientation of the grid.

We denote this number by Ntight(lh, AoI), for short Ntight(lh), as the AoI is clear

from the context. An upper bound on this number can be calculated by increasing the

AoI with a border whose width is the maximal diameter of the tiling hexagon that

is 2lh and dividing the area of such a region (call it AoI’(lh)) by the hexagon area.

Formally:

Ntight(lh) ≤
&

Area(AoI’(lh))

(3
√

3/2)l2h

’

(1)

It should be noted that this upper bound is valid in the general case but its calcu-

lation can be improved if the AoI has a particularly regular shape.

PP2 is executed with a shorter hexagon side length. Namely, lh is set to reduce as

much as possible the number of slave sensors in the whole deployment, and is calculated

as the value that makes the number of sensors equal to the tight number for that side

length, and therefore is the inverse function of Ntight(·), calculated in N , where N

is the number of sensors. More formally, lh = N−1
tight(N). Since function Ntight(·) is

not known, we calculate an upper bound on lh as the inverse of the upper bound on

Ntight(lh), because Ntight(·) is a decreasing function of lh.

PP1 and PP2 produce sensor deployments with different performance in terms of

energy consumption and fault tolerance. The choice between them depends on the

particular application requirements, as discussed below here.

In terms of energy consumption, PP2 performs worse than PP1, as we will show and

motivate in Section 5. Nevertheless, as it guarantees a uniformly redundant coverage, it

makes possible the use of topology control algorithms [17] that permit selective sensor

activation saving energy during the operative phase, which, in turn, follows the de-

ployment phase of the network. Moreover, this mode is beneficial when the application

requires enhanced environmental monitoring and strong fault-tolerance capabilities.

From the fault tolerance point of view, PP1 may be endowed with a periodic polling

scheme to detect new possible coverage holes determined by sensor failures. This way,

12

(a) (b) (c) (d)

Fig. 7 Self-healing capability of PP1: (a) sensor deployment after the execution of PP1; (b)
failure of several closely located sensors; (c) an intermediate step in the execution of the pull
activity; (d) the coverage hole is filled.

Fig. 8 Fault tolerance of PP2 to the failure of several closely located sensors

the detection of new holes causes the restart of the algorithm and the execution of

the pull activity that attracts redundant sensors possibly located far from the cover-

age hole. Hence, PP1 presents self-healing properties which are not found in previous

solutions. An example of such a mechanism is shown in Figure 7. Figure 7 (a) shows

the deployment achieved after the application of PP1. Figure 7 (b) shows a subsequent

situation in which a certain number of sensors failed, creating a coverage hole. The

presence of such a coverage hole is detected by the nearby sensors, which give start

to the pull activity, attracting some redundant sensors located in higher density areas.

Figure 7 (c) shows an intermediate situation, before the redundant sensors succeed in

covering the hole, as shown in Figure 7 (d).

Instead, PP2 can tolerate several failures, even closely located, in a number which

is proportional to the redundancy level. By contrast, PP2 is not able to fill newly

detected holes, because (almost) all sensors are snapped and do not take part in the

movements determined by the pull activity. For this reason we do not introduce any

polling mechanism in PP2, as there are too few slaves available and it would produce

an inefficient pull activity in the case of a hole detection. On the other hand such

version guarantees a uniform redundant coverage, if a sufficient number of sensors are

available, tolerating even numerous sensor failures, as shown in Figure 8, which depicts

the occurrence of several co-located sensor failures without any loss of coverage.

13

4 Algorithm properties

In this section we prove some key properties of the Push & Pull algorithm: coverage,

connectivity and termination.

4.1 Coverage Completeness

In this subsection we prove that Push & Pull (both modes) guarantees the complete

coverage.

Theorem 1 Algorithm Push & Pull guarantees the complete coverage, provided that

at least the tight number of sensors Ntight(lh) are available.

Proof Let us assume that a coverage hole exists. As our algorithm is designed, this

hole will eventually be detected by a sensor x. Furthermore, by the hypothesis on the

number of sensors, it certainly exists a hexagon with at least one redundant slave. Let

us call Cx the connected component containing sensor x. Two different cases may occur

depending on the position of the redundant slaves with respect to Cx.

1) A redundant slave exists in Cx: the snapped sensor x starts the trigger mecha-

nism that eventually reaches a redundant slave so that it is pushed towards x and

consequently it fills the hole.

2) All redundant slaves are located in connected components different from Cx: the area

surrounding each connected component is in fact a coverage hole that will eventually

be detected by a snapped node located at the boundary. According to what stated

for the case 1), all the separated connected components containing redundant slaves

will expand themselves to fill as many coverage holes as possible. Since, by hypothesis,

the number of sensors is at least Ntight(lh), it certainly exists a component containing

redundant slaves that will eventually merge in Cx, leading to the situation described

in the case 1), thus proving the theorem.

Notice that, having Ntight(lh) sensors is a sufficient condition to guarantee the

coverage completeness, but this number is not also necessary. Indeed, Ntight(lh) is

calculated as the maximum among all the minimum numbers of sensors necessary

to cover the AoI, for each orientation of the final grid with side length lh. So it is

possible that Ntight(lh) is larger than the number of sensor strictly necessary for a

fixed orientation and position of the oldest starter.

4.2 Coverage uniformity

We consider two different coverage redundancy metrics. The first metric evaluates the

coverage only in correspondence to the hexagonal grid points. This metric, named

grid coverage level, is of interest for the applications that do not require a continuous

sensing of the area of interest but rely on interpolation of local measurements. On the

contrary, the second metric, named continuous coverage level, is more restrictive and

is introduced to evaluate the coverage redundancy at each point of the area of interest.

Definition 1 The grid coverage level is the minimum number of sensors covering each

point of a regular grid.

14

Fig. 9 Calculus of the grid coverage level.

Definition 2 The continuous coverage level is the minimum number of sensors cover-

ing any point of the area of interest.

In order to compute such metrics for PP1 and PP2, we introduce the following

lemma.

Lemma 1 Given a triangular lattice of side lh, any circle of radius R and centered in
a point of the lattice contains

n(R) =

—

R
√

3lh

�

X

i=−

—

R
√

3lh

�

0

B

@
1 + 2

6

6

6

6

4

q

R2
− 3l2h i2

3lh

7

7

7

7

5

1

C

A
+4

—

R
√

3lh
−

1

2

�

X

i=0

0

B

@
1 +

6

6

6

6

4

q

R2
− 3l2h

`

i + 1

2

´2

3lh
−

1

2

7

7

7

7

5

1

C

A

points of the lattice.

Proof We observe that the points inside the circle of radius R and centered in any point

of the lattice always lie in the same position with respect to the center of the circle

(see Figure 9), then we can slightly modify the reasoning for the well known Gauss’

circle problem, dealing with squared grids.

Let the center of the circle be the origin of a Cartesian plane with axis aligned with

the grid.

We count the points inside the circle considering them as arranged by horizontal

rows.

The number of points in interval (0, R] of the x axis is
j

R
3lh

k

and similarly in interval

[−R, 0). So, counting the origin, there are 1 + 2
j

R
3lh

k

points in interval [−R, R].

Now we count the number of sensors lying on the rows having a sensor on the y

axis.

Let us consider one of these rows lying on the line y = c, it contains 1+2
j√

R2−c2

3lh

k

points. As two such consecutive rows in the same semiplane are
√

3lh far from each

other, it follows that the whole number of sensors on all the rows having a sensor on

the y axis and lying on the positive semiplane is

j

R
√

3lh

k

X

i=1

0

@1 + 2

6

6

6

4

q

R2 − 3l2h i2

3lh

7

7

7

5

1

A .

15

3

7
5

5
5

5
5

5
4

4
4

4

4
4

3

3

3

3

3

6

Fig. 10 An example of continuous coverage levels

Finally, we count the number of sensor lying on the rows not having a sensor on

the y axis.

Let us consider one such row lying on the line y = d; the sensor closest to the y

axis has x-coordinate 3
2 lh, so we consider the interval

√
R2 − d2 − 3

2 lh long. Hence,

the number of sensors on this row is 2

„

1 +

—√
R2−d2− 3

2
lh

3lh

�«

. With arguments similar

to the previous case, we have that the number of sensors lying on these rows in the

positive semiplane is:

j

R
√

3lh
− 1

2

k

X

i=0

2

0

@1 +

6

6

6

4

q

R2 − 3l2h
`

i + 1
2

´2 − 3lh
2

3lh

7

7

7

5

1

A .

The result follows by summing all the described contributions.

Theorem 2 Under the assumption that at least a tight number of sensors are available,

and the shrinked grid mode is enabled, algorithm Push & Pull guarantees a k grid

coverage level, where k = n(Rs).

Proof The definition of lh and lemma 1 imply that, under the given assumptions,

algorithm Push & Pull provides a complete coverage. Given the geometric regularity of

the obtained deployment, every sensing circle surrounding a snapped sensor contains at

least a fixed number k of snapped sensors belonging to the triangular lattice determined

by the hexagonal grid deployment. As all sensors have the same sensing radius, the

sensing redundancy level at the center of the circle is at least k.

In order to estimate the continuous coverage level of any sensor deployment, in [18]

the authors introduce the notion of perimeter coverage. They define a sensor s to be

k-perimeter covered if all points in the perimeter of the sensing circle of s are covered

by at least k sensors (not counting s).

The same authors also prove (see Theorem 1 in [18]) that the sensor deployment

provides a continuous coverage level k if and only if each sensor is k-perimeter covered.

Theorem 3 Under the assumption that at least a tight number of sensors is available,

and the shrinked grid mode is enabled, algorithm Push & Pull guarantees a k continuous

coverage level, where k ≥ n(Rs)−1
3 +

n(
√

3Rs)−n(Rs)
6 .

16

Proof According to the above cited theorem [18], the level of continuous coverage

enabled by the algorithm Push & Pull can be calculated as the minimum perimeter

coverage over all the snapped sensors. In order to calculate such coverage level, we

distinguish two main contributions, the first one coming from sensors located inside

the sensing circle of s, and the second one, coming from the sensors located outside.

All sensors located inside the sensing circle of s contribute to the perimeter coverage

with a circular sector of amplitude α, with 2
3π ≤ α < π. Since any of these sensors

is symmetric to other five sensors inside the circle, with a rotation of π/3 centered in

the position of sensor s, all the six of them contribute to at least a double coverage of

the sensing circle perimeter of s. The sensors forming this first contribution amount

to n(Rs) − 1 (not counting the sensor s itself), and all of them globally guarantee

2
j

n(Rs)−1
6

k

-perimeter coverage.

The second contribution is related to the sensors located outside the sensing circle

of s. We note that the sensing circle of the sensors located farther than 2Rs from s

do not intersect the sensing circle of s, while the sensing circle of sensors located at a

distance d such that
√

3Rs < d ≤ 2Rs intersect the sensing circle of s, determining a

circular arc of amplitude less than π/3. Since we are calculating a lower bound on the

minimum perimeter coverage, we do not consider the contribution of this latter sensors

as it does not guarantee a complete perimeter coverage and therefore may not affect

its minimum value.

For this reason, as a second contribution to the perimeter coverage, we only consider

the sensors located inside the circular crown determined by the radii Rs and
√

3Rs.

This sensors contribute to the perimeter coverage with a circular sector of amplitude β,

with π/3 ≤ β < 2
3π. Since any of these sensors is symmetric to other five sensors inside

the crown, with a rotation of π/3 centered in the position of sensor s, all the six of

them contribute to at least one single coverage of the sensing circle perimeter of s. The

sensors forming this second contribution amount to n(
√

3Rs) − n(Rs) and all of them

globally guarantee a
j

n(
√

3Rs)−n(Rs)
6

k

-perimeter coverage. Notice that the particular

3-axis symmetry, induced by the hexagonal tiling, makes it possible to remove the floor

operator from the two terms, as n(R) − 1 is always divisible by 6.

By summing the two contribution to the perimeter coverage, we derive the claimed

lower bound.

4.3 Coverage and connectivity

In this subsection we motivate the choice of the hexagonal tiling and the assumption

that the sensors operate with Rtx ≥
√

3Rs, that is a less restrictive condition than

usually required in the literature.

In [19], the authors demonstrate that coverage implies connectivity if and only

if Rtx is twice the value of Rs. This statement is generally valid regardless of the

particular distribution of the sensors over the AoI, be it a regular geometrical mesh or

a random deployment. A hexagonal tiling with side length Rs is the one that minimizes

node density while ensuring coverage completeness at the same time, as argued in [15].

Since our algorithm works exactly with this kind of tiling, which corresponds to a

triangular lattice, we can relax the relationship between Rtx and Rs. If the sensors are

regularly deployed on a hexagonal tiling, the distance between any two tiling neighbors

is exactly
√

3Rs, implying the following result.

17

Theorem 4 Under a complete triangular lattice coverage with side length Rs, a nec-

essary and sufficient condition to guarantee connectivity is that Rtx ≥
√

3Rs.

4.4 Termination of Push & Pull

We conclude this section by proving the termination of our algorithm.

Let L = {ℓ1, ℓ2, . . . , ℓ|L|} be the set of snapped sensors.

Definition 3 A network state is a vector s whose i-th component represents the num-

ber of sensors deployed inside the hexagon Hex(i) governed by the snapped sensor i.

Therefore s =< s1, s2, . . . , s|L| > where si = |S(i)| + 1, ∀i = 1, . . . , |L|.

Definition 4 A state s =< s1, . . . , s|L| > is stable, if the Moving Condition is false

for each couple of snapped sensors in L located in radio proximity to each other.

Theorem 5 Algorithm Push & Pull terminates in a finite time.

Proof As long as new sensors are being snapped, the covered area keeps on growing.

This process eventually ends either because the AoI has been completely covered or

because the sensors have reached a configuration that does not allow any further ex-

pansion of the tiling. Due to Theorem 1 the latter can only happen when all sensors

are snapped and thus the state of the network is stable. In order to prove the theorem,

it suffices to prove that, once the AoI is fully covered, the algorithm reaches a stable

configuration in a finite time. Therefore we can consider the set of snapped sensors

L as fixed. The value of the order function related to each snapped sensor, id(ℓi),

is set during the unfolding of the algorithm, it can be modified only temporarily by

the pull activity a finite number of times and remains steady onward. Let us define

f : N
|L| → N

2 as follows:

f(s) =
“

P|L|
i=1 s2

i ,
P|L|

i=1 si · id(ℓi)
”

. We say that f(s) ≻ f(s′) if f(s) and f(s′) are in

lexicographic order. Observe that function f is lower bounded by the pair

(|L|, P|L|
i=1 id(ℓi)), in fact 1 ≤ si ≤ |V |. Therefore, if we prove that the value of f de-

creases at every state change, we also prove that no infinite sequence of state changes

is possible. To this purpose, let us show that every state change from s to s′ causes

f(s) ≻ f(s′). Let us consider a generic state change which involves the snapped sensors

x and y, with x sending a slave sensor to Hex(y). We have that si = s′i ∀i 6= x, y,

and s′x = sx − 1 and s′y = sy + 1. As the transfer of the slave has been done ac-

cording to the Moving Condition, two cases are possible: either sx > sy + 1, or

(sx = sy + 1) ∧ (id(x) > id(y)). In the first case, the inequality sx > sy + 1 implies

that
P|L|

i=1 s2
i >

P|L|
i=1 s′2i . In the second case, since sx = sy + 1 and id(x) > id(y),

lead to
P|L|

i=1 s2
i =

P|L|
i=1 s′

2
i and

P|L|
i=1 si · id(ℓi) >

P|L|
i=1 id(ℓi)s

′
i. Therefore in both

cases f(s) ≻ f(s′). The function f is lower bounded and always decreasing by discrete

quantities (integer values) at any state change. Thus, after a finite number of steps,

it is impossible to perform a further state change, i.e. the network will be in a stable

state in a finite time.

18

5 Simulation results

In order to evaluate the performance of Push & Pull and to compare it with previous

solutions, we developed a simulator using the wireless module of the OPNET modeler

software [20].

(a) (b)

(c) (d)

Fig. 11 Coverage of an irregular AoI under PP1.

(a) (b)

(c) (d)

Fig. 12 Coverage of an irregular AoI under PP2.

We compare our proposal to one of the most acknowledged and cited algorithms [9],

which is based on the construction of the Voronoi diagram determined by the current

sensor deployment. According to this approach, each sensor adjusts its position on the

basis of a local calculation of its Voronoi cell. This information is used to detect coverage

holes and, consequently, calculate new target locations according to three possible

variants. Among these variants we chose Minimax, that gives better guarantees in

terms of coverage extension. Of this algorithm we adopted all the mechanisms provided

to preserve connectivity, to guarantee the algorithm termination, to avoid oscillations

19

(a) (b) (c) (d)

Fig. 13 Trail initial deployment (a) and comparison among PP1 (b), PP2 (c) and VORMM (d).

and to deal with position clustering [9]. In the rest of this section this algorithm will

be named VORMM.

We set the parameters Rtx = 11 m and Rs = 5 m. Such values satisfy the VORMM

requirement Rtx > 2Rs detailed in [9] and do not significantly affect the qualitative

evaluation of Push & Pull. The sensor speed is set to 1 m/sec.

5.1 Examples of mobile sensor deployment

We show some examples of deployment evolution under the two Push & Pull modes:

PP1 and PP2.

Figures 11 and 12 give a synthetic representation of how the sensor deployment

evolves under PP1 and PP2, respectively, when 400 sensors are initially located in a

high density region. The AoI has a complex shape in which a narrows connects two

square regions 40 m × 40 m. Notice that previous approaches fail when applied to such

irregular AoIs. For example, VORMM does not contemplate the presence of concavity in

the AoI, while the virtual force based approaches are not able to push sensors through

narrows [1].

As a second example of sensor deployment, we show experiments conducted with

three different starting configurations over an AoI which is a square 80 m × 80 m.

More precisely, in the first configuration, the initial deployment evidences a trail of

sensors which crosses the AoI, as shown in Figure 13(a). In the second configuration

the sensors are densely placed in a corner of the AoI, as shown in Figure 14(a). In

the third configuration the initial deployment consists in a high density region at the

center of the AoI, as shown in Figure 15(a).

Notice that the first two initial deployments reflect the realistic scenarios in which

sensors are dropped from an aircraft and sent from a safe location at the boundaries

of the AoI. The third deployment is introduced as is widely studied in the literature,

see for example [9] and [10].

In Figures 13, 14 and 15, the subfigures indicated with (b), (c) and (d) show the

final deployments achieved by PP1, PP2 and VORMM respectively.

5.2 Performance comparisons

In the following we compare the performance of PP1, PP2 and VORMM when executed

over a squared AoI, 80 m × 80 m.

20

(a) (b) (c) (d)

Fig. 14 Safe location initial deployment (a) and comparison among PP1 (b), PP2 (c) and
VORMM (d).

(a) (b) (c) (d)

Fig. 15 Central initial deployment (a) and comparison among PP1 (b), PP2 (c) and VORMM

(d).

In order to make reliable performance comparisons, we show the average results

of 30 simulation runs (conducted by varying the seed for the generation of the initial

deployment).

We compare the behavior of the three algorithms with respect to several perfor-

mance objectives: energy consumption, coverage uniformity, termination and coverage

completion time.

All the figures from 16 to 20 contain three plots each. Plot (a) describes the perfor-

mance obtained when starting from the trail initial deployment, plot (b) refers to the

case in which sensors are initially deployed in a safe corner while plot (c) is related to

the case of a dense initial deployment in the center of the AoI. For a better readability,

we adopt different scales of the vertical axis for the three scenarios.

5.2.1 Coverage uniformity

The three algorithms give different importance to the uniformity of the coverage. In-

deed, Push & Pull aims at making the coverage as uniform as possible.

In particular, PP1 builds a coarse grained grid, then it tries to uniform the coverage

only on the basis of a local satisfaction of the Moving Condition.

Instead PP2 constructs a fine grained grid by setting the hexagon side at the

minimum length which guarantees the full coverage of the AoI, thus making sensors

traverse longer distances than other solutions.

21

 0

 1

 2

 3

 4

 5

 6

 7

 100 150 200 250 300 350 400 450 500 550

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PP1
PP2
VOR

 0

 1

 2

 3

 4

 5

 6

 7

 100 150 200 250 300 350 400 450 500 550

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PP1
PP2
VOR

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 150 200 250 300 350 400 450 500 550

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PP1
PP2
VOR

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 150 200 250 300 350 400 450 500 550

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PP1
PP2
VOR

(b)

 0

 1

 2

 3

 4

 5

 100 150 200 250 300 350 400 450 500 550

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PP1
PP2
VOR

 0

 1

 2

 3

 4

 5

 100 150 200 250 300 350 400 450 500 550

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PP1
PP2
VOR

(c)

Fig. 16 Coverage density with trail (a), safe location (b) and central (c) initial deployment.

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300 350 400 450 500 550

A
vg

 tr
av

er
se

d
di

st
an

ce
 (

m
)

Number of sensors

PP1
PP2
VOR

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 150 200 250 300 350 400 450 500 550

A
vg

 tr
av

er
se

d
di

st
an

ce
 (

m
)

Number of sensors

PP1
PP2
VOR

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 150 200 250 300 350 400 450 500 550

A
vg

 tr
av

er
se

d
di

st
an

ce
 (

m
)

Number of sensors

PP1
PP2
VOR

(c)

Fig. 17 Average traversed distance with trail (a), safe location (b) and central (c) initial
deployment.

On the contrary, VORMM aims at covering the AoI regardless of the uniformity of

the final coverage, and sensors stop moving when the AoI is fully covered.

In order to evaluate the coverage uniformity, we compute the coverage density as

the number of sensors covering the points of a squared mesh with side 1 m.

Figure 16 shows the standard deviation of the coverage density. Notice that we

do not show the average coverage density because it is not significant, since it only

depends on the number of available sensors.

The standard deviation of the coverage density achieved by PP1 and PP2 is smaller

than the one obtained by VORMM. In particular, VORMM terminates as soon as the AoI

is completely covered, without uniforming the density of the sensor deployment, while

PP1 and PP2 keep on moving until they uniform the coverage.

This result is particularly important as a uniformly redundant sensor placement

provides self-healing and fault tolerance capabilities. In the case of PP1, the presence of

quite uniformly distributed slaves ensures the self-healing capability of the deployment,

while for what concerns PP2, the guaranteed continuous k-coverage gives tolerance up

to (k − 1) faults.

5.2.2 Energy consumption

We show an analysis of the energy consumption of the three algorithms in terms of

average traversed distance per sensor and average number of starting/braking actions.

Finally we give an overall evaluation which also comprises the communication costs.

22

 0

 10

 20

 30

 40

 50

 100 150 200 250 300 350 400 450 500 550

A
vg

 s
ta

rt
in

g/
br

ak
in

g

Number of sensors

PP1
PP2
VOR

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 100 150 200 250 300 350 400 450 500 550

A
vg

 s
ta

rt
in

g/
br

ak
in

g

Number of sensors

PP1
PP2
VOR

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300 350 400 450 500 550

A
vg

 s
ta

rt
in

g/
br

ak
in

g

Number of sensors

PP1
PP2
VOR

(c)

Fig. 18 Average number of starting/braking with trail (a), safe location (b) and central (c)
initial deployment.

Average traversed distance per sensor. The different weight that the three algorithms

give to the uniformity objective is reflected in the different trends of the average tra-

versed distance shown in Figure 17.

The average traversed distance of VORMM decreases with the number of sensors.

This is due to the fact that more and more sensors maintain their initial positions

when no coverage holes are detected. On the contrary, in both modes of Push & Pull,

all sensors contribute to realize a quite uniform coverage, hence the average traversed

distance becomes approximately constant for large numbers of sensors. This implies

that VORMM spends less energy in movements than Push & Pull at the expense of the

uniformity of the final coverage, in all the considered settings of the initial deployment.

Average number of starting/braking actions per sensor. We now consider the number

of starting/braking actions as they require a high energy consumption [9]. Figure 18

highlights that, when the number of sensors is relatively small, VORMM performs a

number of starting/braking actions higher than PP1 and PP2. On the contrary, when

the number of sensors increases, VORMM apparently performs better, showing a rapid

decrease of the number of starting/braking actions. This is due to the presence of a

growing fraction of sensors which does not move at all, generating a final non uniform

coverage as well as a high energy imbalance among sensors. The most critical scenario

for the VORMM algorithm is the safe location initial deployment (notice the different

vertical scales in Figure 18).

Average energy consumption. We now analyze the overall energy consumption of the

three algorithms. We utilize a unified energy consumption metric obtained as the sum

of the contributions given by movements, starting/braking actions and communica-

tions. The energy spent by sensors for communications and movements is expressed in

energy units. The reception of one message corresponds to one energy unit, a single

transmission costs the same as 1.125 receptions [21], a 1 meter movement costs the

same as 300 transmissions [9] and a starting/braking action costs the same as 1 meter

movement [9].

Figure 19 shows the energy consumption of PP1, PP2 and VORMM in the three

considered scenarios.

PP1 presents a stable energy consumption even when the number of sensors varies

significantly. Indeed, although only a fixed number of them are snapped, all sensors

are involved in the push and pull activities, thus improving the coverage density and

uniforming the energy consumption.

23

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 100 150 200 250 300 350 400 450 500 550

A
vg

 c
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

PP1
PP2
VOR

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 100 150 200 250 300 350 400 450 500 550

A
vg

 c
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

PP1
PP2
VOR

(b)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 100 150 200 250 300 350 400 450 500 550

A
vg

 c
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

PP1
PP2
VOR

(c)

Fig. 19 Average energy consumption with trail (a), safe location (b) and central (c) initial
deployment.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 150 200 250 300 350 400 450 500 550

T
im

e
(s

ec
)

Number of sensors

PP1 - Coverage Time
PP1 - Termination Time

PP2 - Coverage Time
PP2 - Termination Time

VOR

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 100 150 200 250 300 350 400 450 500 550

T
im

e
(s

ec
)

Number of sensors

PP1 - Coverage Time
PP1 - Termination Time

PP2 - Coverage Time
PP2 - Termination Time

VOR

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 150 200 250 300 350 400 450 500 550

T
im

e
(s

ec
)

Number of sensors

PP1 - Coverage Time
PP1 - Termination Time

PP2 - Coverage Time
PP2 - Termination Time

VOR

(c)

Fig. 20 Termination and coverage time with trail (a), safe location (b) and central (c) initial
deployment.

PP2 instead, shows that the consumed energy increases as the number of sensors

grows. Indeed, the more numerous are the sensors, the finer is the grid adopted by PP2.

Therefore, in order to reach their destination, the slaves traverse more hexagons, and

are involved in a higher number of push activities than in the case of PP1. This increases

the number of starting/braking actions as shown in Figure 18 and also increases the

consumed energy consequently .

VORMM consumes more energy than PP1 and PP2, when the number of sensors is

close to the tight value. Although sensors do not traverse long distances (as shown in

Figure 17), the limit on the maximum moving distance per round required by VORMM

increases the number of starting/braking actions (see Figure 18), thus resulting in a

high energy consumption. This effect is particularly evident in the case of the safe

location scenario shown in Figure 19(b).

The average energy consumption of VORMM decreases when increasing the number

of sensors. Notice that this is not due to a better behavior of the algorithm but to

the fact that a greater and greater fraction of sensors do not move at all. This implies

that a considerable number of sensors consume a large amount of energy to move from

overcrowded regions toward uncovered areas. As soon as all the coverage holes are

eliminated, VORMM stops, leaving some zones with very low density coverage. These

zones are prone to the occurrence of coverage holes in case of failures, as the sensor

density is very scarce and the only sensors located in proximity have already consumed

much energy during the network deployment.

Although PP2 consumes more energy when the number of the available sensors

grows, it guarantees a more uniform coverage with respect to VORMM and PP1. More-

over, the regularity of the final deployment enables the use of topology control algo-

24

rithms [17] that permit a selective sensor activation, saving energy during the operative

phase which follows the deployment.

5.2.3 Coverage completion and termination time

Figure 20 shows the coverage and termination time for the three algorithms. Notice

that for VORMM the termination and coverage completion times coincide, while for Push

& Pull some more movements are still executed even after the coverage completion.

In the three considered scenarios, if the number of sensors available is close to the

minimum needed to cover the AoI, VORMM requires a very long time to complete the

coverage, while Push & Pull terminates much earlier. When the number of available

sensors grows, VORMM has a shorter termination time, which instead remains stable

under PP1. On the contrary, the termination time of PP2 grows when the number

of available sensors increases. In particular, VORMM generally requires more time than

PP1 to achieve its final coverage. Only in the case of the central initial deployment,

and for a high number of available sensors (N greater than 320) VORMM terminates in

a shorter time if compared with PP2 (see Figure 20(c)). This is due to the fact that

the termination time of PP2 is delayed by the numerous hole triggers generated by the

pull activity.

It is worth noting that as already discussed, the safe location deployment, consti-

tutes a critical scenario for VORMM as this algorithm works at its best for more uniform

initial sensor distributions. Indeed, Figure 20(b) shows that VORMM requires much more

time than in the other sets of experiments, (a) and (c), to achieve its final deployment

(16000 sec in the case of safe location vs. 1400 sec in the case of trail, and 900 sec in

the case of central initial deployment).

6 Related Work

There is an impressively growing interest in self-managing systems, starting from sev-

eral industrial initiatives from IBM [22], Hewlett Packard [23] and Microsoft [24]. Vari-

ous approaches have been proposed to self-deploy mobile sensors although few of them

can be actually considered autonomic. The majority of these works are either based on

the virtual force approach (VFA) or on computational geometry techniques.

The virtual force approach (VFA) [2–4] models the interactions among sensors as

a combination of attractive and repulsive forces. This approach requires the definition

of thresholds to determine the magnitude of the force one sensor exerts on another. As

shown in [4], the VFA presents oscillatory sensor behavior. This problem is addressed

by defining further arbitrary thresholds as stopping conditions. The tuning of such

thresholds is laborious and relies on an off-line configuration. In addition, it influences

the resulting deployment, the overall energy consumption and the convergence rate.

Moreover, this approach does not guarantee the coverage in presence of narrows. A

variation of the VFA is presented in [5] where the introduction of two virtual forces

guarantees better uniformity by providing at least K neighbors to each sensor. Other

approaches are inspired by physics as well, such as [6] and [7]. In [6] the sensors are

modelled as particles of a compressible fluid and regulates their movement mimicking

a diffusive behavior. In [7] two approaches that make use of gas theory to model sensor

movements in presence of obstacles are proposed. However the last three approaches

still suffer from oscillatory sensor behavior. The work [8] introduces a unified solution

25

for sensor deployment and relocation which also makes use of the virtual force approach.

This proposal deals with a rather different problem with respect to ours. Indeed this

work is designed for an open environmental setting, namely where the target area is

not determined prior to the deployment.

By contrast, the techniques based on computational geometry, model the deploy-

ment problem in terms of Voronoi diagrams or Delaunay triangulations.

The Voronoi approach (VORMM) is detailed in [9]. According to this proposal, each

sensor iteratively calculates its own Voronoi polygon, determines the existence of cover-

age holes and moves to a better position if necessary. In this approach the relationship

between the transmission and the sensing range influences the obtained performances

by either moving sensors toward already covered positions or reducing the resulting

covered area. Furthermore, this approach is not designed to improve the uniformity of

an already complete coverage. According to [10] each sensor makes a rough evaluation

of the local density and calculates the movements needed to reach a final position that

is as close as possible to the points of a hexagonal tiling. This is done by locally con-

structing the Delaunay triangulation determined by the current sensor placement. This

approach suffers from similar limitations to the VFA and does not guarantee oscillation

avoidance if proper threshold parameters are not set.

In [11] the authors analyze the problem of sensor deployment in a hybrid scenario,

with both mobile and fixed sensors in the same environment. They introduce the general

concept of logical movements. Instead of moving iteratively, sensors calculate their

target locations based on a distributed iterative algorithm, move logically, and exchange

new logical locations with their new logical neighbors. Actual movement only occurs

when sensors determine their final locations, thus sparing energy by avoiding zig-zag

motions at the expense of some more messaging activity.

A different approach is proposed in [12], which introduces a technique for sensor

deployment for operative settings where the sensing radius is relatively large, hence

coverage does not necessarily imply connectivity. These operative settings are not ad-

dressed by our paper which instead deals with the most common types of devices for

which the relation between the sensing and the transmission radius is such that the

achievement of a complete coverage also guarantees network connectivity.

7 Conclusions and future work

We proposed an original algorithm for mobile sensor self deployment named Push &

Pull. According to our proposal, sensors autonomously coordinate their movements in

order to achieve a complete and uniform coverage with moderate energy consumption.

The execution of Push & Pull does not require any prior knowledge of the operating

conditions nor any manual tuning of key parameters, as sensors adjust their positions on

the basis of locally available information. The proposed algorithm leads to a guaranteed

final static and uniform coverage, provided that there is a sufficient number of sensors.

As experiments show, Push & Pull outperforms previously proposed approaches thanks

to its ability to cover target areas of even irregular shape. Mechanisms for obstacle

detection and avoidance are being investigated and considered as future extensions of

this work.

26

References

1. A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor network deployment using
potential fields: A distributed, scalable solution to the area coverage problem,” Proceedings
of the International Symposium on Distributed Autonomous Robotics Systems, DARS,
2002.

2. Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based on virtual
forces,” Proc. IEEE INFOCOM, 2003.

3. N. Heo and P. Varshney, “Energy-efficient deployment of intelligent mobile sensor net-
works,” IEEE Transactions on Systems, Man and Cybernetics, vol. 35, 2005.

4. J. Chen, S. Li, and Y. Sun, “Novel deployment schemes for mobile sensor networks,”
Sensors, vol. 7, 2007.

5. S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile sensor networks,” Proc.
of IEEE Int’l Conf. on Robotics and Automation (ICRA), 2004.

6. M. R. Pac, A. M. Erkmen, and I. Erkmen, “Scalable self-deployment of mobile sensor
networks; a fluid dynamics approach,” Proc. of IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems (IROS), 2006.

7. W. Kerr, D. Spears, W. Spears, and D. Thayer, “Two formal fluid models for multi-agent
sweeping and obstacle avoidance,” Proc. of AAMAS, 2004.

8. M. Garetto, M. Gribaudo, C.-F. Chiasserini, and E. Leonardi, “A distributed sensor relo-
cation scheme for environmental control,” The ACM/IEEE Proc. of MASS, 2007.

9. G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,” IEEE Trans-
action on Mobile Computing, vol. 6, 2006.

10. M. Ma and Y. Yang, “Adaptive triangular deployment algorithm for unattended mobile
sensor networks,” IEEE Transactions on Computers, vol. 56, 2007.

11. G. Wang, G. Cao, and T. L. Porta, “Proxy-based sensor deployment for mobile sensor net-
works,” IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS),
2004.

12. G. Tan, S. A. Jarvis, and A.-M. Kermarrec, “Connectivity-guaranteed and obstacle-
adaptive deployment schemes for mobile sensor networks,” The IEEE Proc. of ICDCS,
2008.

13. G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in mobile sensor net-
works,” Proc. of IEEE INFOCOM, 2005.

14. O. Babaoglu, M. Jelasity, and A. Montresor, “Grassroots approach to self-management in
large-scale distributed systems,” Unconventional Programming Paradigms. Lecture Notes
in Computer Science, Springer Verlag, vol. 3566, 2005.

15. P. Brass, “Bounds on coverage and target detection capabilities for models of networks of
mobile sensors,” ACM Transactions on Sensor Networks, vol. 3, 2007.

16. N. Bartolini, A. Massini, and S. Silvestri, “P&p protocol: local coordination of mobile
sensors for self-deployment,”
http://arxiv.org/abs/0805.1981, 2008.

17. S. Pattem, S. Poduri, and B. Krishnamachari, “Energy-quality tradeoffs for target tracking
in wireless sensor networks,” Proc. of ACM International Conference on Information
Processing in Sensor Networks (IPSN), Springer Lecture Notes in Computer Science,
vol. 2634, 2003.

18. C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless sensor network,”
Elsevier Mobile Networks and Applications, vol. 10, 2005.

19. H. Zhang and J. Hou, “Maintaining sensing coverage and connectivity in large sensor
networks,” Ad Hoc & Sensor Wireless Networks, vol. 1, no. 1-2, 2005.

20. “Opnet technologies inc.” http://www.opnet.com.
21. “Performance measurements of mote sensor networks,” ACM Symposium on Modeling

Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 2004.
22. “Ibm: the vision of autonomic computing,”

http://www.research.ibm.com/autonomic/manifesto.
23. “Hewlett packard: Adaptive enterprise design principles,”

http://h71028.www7.hp.com/enterprise/cache/80425-0-0-0-121.html.
24. “Microsoft: The drive to self-managing dynamic systems,”

http://www.microsoft.com/windowsserversystem/dsi/default.mspx.

