P&P Protocol: Local Coordination of Mobile Sensors for
Self-deployment

Novella Bartolini, A. Massini, S. Silvestri
Department of Computer Science
University of Rome "Sapienza", Italy
{bartolini, massini, simone.silvestri}@di.uniroma1.it

ABSTRACT

The use of mobile sensors is of great relevance for a num-
ber of strategic applications devoted to monitoring critical
areas where sensors can not be deployed manually. In these
networks, each sensor adapts its position on the basis of a
local evaluation of the coverage efficiency, thus permitting
an autonomous deployment. Several algorithms have been
proposed to deploy mobile sensors over the area of interest.
The applicability of these approaches largely depends on a
proper formalization of rigorous rules to coordinate sensor
movements, solve local conflicts and manage possible fail-
ures of communications and devices. In this paper we intro-
duce P&P, a communication protocol that permits a correct
and efficient coordination of sensor movements in agreement
with the PUSH&PULL algorithm. We deeply investigate
and solve the problems that may occur when coordinating
asynchronous local decisions in the presence of an unreliable
transmission medium and possibly faulty devices such as in
the typical working scenario of mobile sensor networks. Sim-
ulation results show the performance of our protocol under
a range of operative settings, including conflict situations,
irregularly shaped target areas, and node failures.

Categories and Subject Descriptors: C.2.2 [Computer
Communication Networks]: [Network Protocols]

General Terms: Algorithms, Performance.

Keywords: Wireless sensor networks, mobile sensors de-
ployment, distributed coordination protocol.

1. INTRODUCTION

The research in the field of mobile wireless sensor networks
is motivated by the need to monitor critical scenarios such as
wild fires, disaster areas, toxic regions or battlefields, where
static sensor deployment cannot be performed manually.

In these typical working situations, sensors may be dropped
from an aircraft or sent from a safe location. In these cases
the initial deployment over the Area of Interest (Aol) is nei-
ther complete nor uniform as would be necessary to enhance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSWiM’09, October 2629, 2009, Tenerife, Canary Islands, Spain.
Copyright 2009 ACM 978-1-60558-616-9/09/10 ...$10.00.

the sensing capabilities and extend the lifetime of the net-
work. Mobile sensors can dynamically adjust their position
to improve coverage with respect to their initial deployment.
Sensor movements should therefore be coordinated accord-
ing to a distributed deployment algorithm.

Out of the solutions proposed in the literature so far for
mobile sensor deployment, those described in [13, 7, 5, 10]
are based on the virtual force approach which models the
interactions among sensors as a combination of attractive
and repulsive forces. Other approaches are inspired by the
physics of fluids and gases such as [9] and [8]. Another
methodology is based on the construction of Voronoi dia-
grams [12, 11]. According to this proposal, each sensor iter-
atively calculates its own Voronoi polygon, determines the
existence of coverage holes and moves to a better position if
necessary. The solutions proposed in [3] and [2] provide in-
stead density driven actions to uniformly distribute sensors
according to a regular grid pattern.

The applicability of these deployment algorithms largely
depends on the proper formalization of rigorous rules to co-
ordinate sensor movements, solve local conflicts and manage
possible failures of communications and devices. Previous
proposals only focus on the design of distributed algorithms
for the adaptive deployment of mobile sensors, aiming at
covering the area of interest according to given efficiency ob-
jectives, in particular coverage completeness and uniformity
and low energy consumption. Seldom do previous works en-
ter the details of the communication protocol necessary to
enable the application of the proposed algorithms.

The main contribution of this paper is a communication
protocol that defines the rules to deploy mobile sensors ac-
cording to the PusH & PULL algorithm proposed in [2]. This
algorithm is based on the autonomic computing paradigm.
It completely delegates to the single sensors every decision
regarding movements and action coordination. This way
self-organization emerges without the need of external coor-
dination or human intervention as the sensors adapt their
position on the basis of their local view of the surrounding
scenario.

Given the absence of a centralized coordination unit, and
the lack of synchronization, sensors have a primary role in
the realization of the algorithm actions. Therefore, the de-
sign of the related coordination protocol is particularly chal-
lenging.

Indeed, under the execution of the PusH & PULL algo-
rithm, several types of conflicts may occur as several sensors
often compete to cover the same position. Sensors should be
capable to solve such conflicts by means of only local inter-

actions. We deeply investigate and solve the problems that
may occur when coordinating asynchronous local decisions
in the presence of an unreliable transmission medium and
possibly faulty devices that characterizes the typical work-
ing scenario of mobile sensor networks.

The proposed protocol works in respect of the algorithm
goals, permitting the realization of a complete and uniform
stable coverage, with low energy consumption. Simulation
results show the performance of our protocol under a range
of operative settings, including conflict situations, irregu-
larly shaped target areas, and node failures.

2. THE PUSH & PULL ALGORITHM

The purpose of PusH & PULL is to let sensors form a
hexagonal tiling that constitutes a complete coverage of the
Aol and a connected network deployment. Notice that the
hexagonal tiling corresponds to a triangular lattice arrange-
ment, that is the one that guarantees at the same time net-
work connectivity, optimal coverage extension and density,
as discussed in [4]. The design of PUsH & PULL is based on
the idea to make some sensors stick to the hexagonal grid
points and let the others uniformly distribute over the whole
Aol. According to the PusH & PULL algorithm, sensors are
involved in four basic activities executed in an interleaved
manner: 1) Snap, described in Section 4, which makes the
sensors move and stick to the grid points of the hexagonal
tiling, 2) Push, described in Section 5, which allows the flow
of non-snapped sensors towards low density areas, 3) Pull,
described in Section 6, which attracts non-snapped sensors
toward coverage holes, and 4) Merge, described in Section
7, which makes several grid portions merge into a unique
regular hexagonal tiling. A fifth activity, role exchange,
described in Subsection 5.3, is introduced to balance the
energy consumption among the available sensors. Note that
the P&P protocol we propose in this paper implements these
activities without the need of global synchronization among
sensor, as it will be explained in the next sections. More
details on the activities at the basis of the PusH & PuLL
algorithm can be found in [2]. For the sake of clearness, in
Figure 1 we give an example of the protocol execution over
a rectangular Aol. We refer to this figure throughout the
paper to describe the main activities implemented by our
protocol.

3. THE P&P PROTOCOL

The implementation of the PusH & PULL algorithm re-
quires the definition of a protocol for the local coordination
of the sensor activities.

The coordination protocol provides the rules to solve con-
tentions that may happen in several cases. For example, two
or more snapped sensors can decide to issue a snap com-
mand to different sensors towards the same hexagon tile or
the same low density hexagon can be selected by several
snapped sensors as candidate for receiving redundant sen-
sors. These contentions are solved by properly scheduling
actions according to message time-stamps and by advertis-
ing related decisions as soon as they are made.

The P&P protocol is designed to minimize energy con-
sumption entailing a small number of message exchanges,
which is possible because the algorithm decisions are only
based on a small amount of local information. Furthermore,
we assume that P&P works over a communication protocol

stack which handles possible transmission errors and mes-
sage losses by means of timeout and retransmission mecha-
nisms. Therefore the treatment of occasional message losses
at the underlying protocol level implies the occurrence of
delays in the corresponding messages at the P&P level that
are dealt by P&P with proper timeout mechanisms.

Before we enter the details of the protocol P&P we intro-
duce some definitions. V' is a set of equal sensors endowed
with location determination, boolean sensing and isotropic
communication capabilities. Notice that location awareness
(usually obtained by means of GPS devices) is only neces-
sary in the case of sensor deployment over a specific target
area. If sensors are to be deployed in an open environment,
the assumption of location determination capability can be
removed, as in other works in the area [6].

The deployment consists in realizing a hexagonal grid with
side length I, less or equal to the sensing radius Rs. This
setting guarantees both coverage and connectivity when the
transmission radius Ry is such that Rix > v3Rs.

A sensor which is deployed at the center of a hexagonal
tile is called snapped. Hex(p) is the hexagonal region whose
center is covered by the snapped sensor p. All the other
sensors lying in Hexz(p) are called slaves of p and compose
the set S(p). All the sensors that are neither snapped nor
slaves are called free. The set composed by the free sensors
located in radio proximity to p and by its slaves is denoted by
L(p). The set VP(p) of vacant positions detected by sensor
p contains the centers of hexagons adjacent to Hex(p) that
are not yet occupied by any snapped sensor.

Table 1 contains a summary of the message types used by
protocol P&P.

4. P&P: SNAP ACTIVITY

In order to describe the snap activity, we need to distin-
guish three cases, according to the role of the involved sen-
sor. Indeed the actions undertaken by the starter sensors,
the already snapped sensors and the sensors being snapped,
are substantially different.

4.1 Starter sensor behavior

At the beginning, any sensor p may give start to the cre-
ation of a tile portion by snapping itself to its present po-
sition in an instant of time tstart (p) randomly selected over
a time interval of length Rix/v, where v is the sensor move-
ment speed. If at the instant tstart(p), sensor p has not yet
received any message, it elects its position as the center of
the first hexagon and establish the orientation of its tile por-
tion. At this point p executes the snap actions under the role
of snapped sensor, as described in the following paragraph.

4.2 Snapped sensor behavior

4.2.1 Neighbor Discovery

A snapped sensor p broadcasts a IAS (I Am Snapped)
message to perform a neighbor discovery. Such message con-
tains the ID of the sender snapped sensor, its geographic
coordinates and the timestamp of the starter action. All
sensors located in radio proximity to p (with the exception
of those slaves located in different hexagons) reply to its IAS,
with a message containing role dependent information: the
snapped sensors reply with an InfoSnapped message, while
the slave and the free sensors reply with an InfoSlave and
an InfoFree message respectively. All three types of replies

i)
;®~3m$iJ
OUl

7 ® ’ ®
B hd B e
® ® ® © o
0 \ s 0 C &2 h
9 @® 9 ®
&1) 3 i N @1 ® 3 & f
g 2 o0\ 5@

Figure 1: Algorithm execution: an example

contain the ID and geographic coordinates of the replying
sensors. In addition, the InfoSnapped message includes also
the virtual cardinality of the replying snapped sensors, that
is the number of slave sensors located inside the hexagon of
the sender as if all the movements were already concluded.
The InfoSlave message includes the energy level of the re-
plying slave sensors.

Thanks to the execution of the neighbor discovery phase,
a snapped sensor p is informed regarding the presence of
vacant positions, i.e. knows the composition of VP(p), and
is able to build the set L(p).

4.2.2 Snap into position

A snapped sensor p selects the closest sensor in L(p) to
each uncovered position and sends it a SIP (Snap Into Po-
sition) message. This message contains the target position
of the correspondent snap action, and the ID of the selected
Sensor.

If a sensor receives a SIP, and is available to fill the vacant
position, it replies with an AckSIP message. This message
contains the ID of the sensor that received the SIP, necessary
for p to discriminate among the several sensors to which it
sent SIP messages. If a sensor receives a SIP when it is not
available to fill the vacant position (e.g it has already been
contacted by another sensor), it does not reply to the SIP
message of p and lets the AckSIP timeout expire. This way
p will be capable to select a new sensor to snap in such still
vacant position.

After the transmission of the SIP messages and the recep-
tion of the related AckSIP, p updates its local information,
i.e. the number of free sensors located within its transmis-
sion range and its virtual cardinality. This way it keeps
into account the departure of some sensors from either its
transmission range or its hexagon.

In order to update the information related to the snapped
neighbors, p waits for the reception of the corresponding IAS

messages, to be sure that position conflicts are solved (see
4.3.3). No messages are involved in this phase that consists
in a mere calculation based on locally available information.

Let p be the sensor that is performing the snap action
and let g be the one to which p sent a SIP message for the
position x. Five cases may occur, described as follows.
1) Sensor p receives both the AckSIP and the IAS message
from ¢g. This means that the snap action performed by p
was successful, therefore p can update the local information
regarding the snapped neighbor gq.
2) Sensor p receives the AckSIP from ¢ acknowledging its
availability to fill position z, but a conflict occurs solved in
favor of another sensor r, which reaches position x before
sensor q. Hence p receives an AckSIP from ¢ and a IAS
from r for the same position . Thus p can update the local
information regarding the snapped neighbor r.
3) Sensor p receives the AckSIP from ¢ acknowledging its
availability to fill position x, but a failure occurred and the
IAS timeout expires. If p detects the availability of another
sensor in L(p) that can be snapped to position z, it retries
the snap action. If such sensor is not available, p starts the
pull action.
4) Sensor p does not receive the AckSIP from g, but receives
a IAS message for position x from another sensor r, before
the expiration of the AckSIP timeout. Sensor p can update
the local information regarding the snapped neighbor r.
5) Sensor p does not receive the AckSIP from g nor the IAS
from any other sensor within the AckSIP timeout. If p de-
tects the availability of another sensor in L(p) that can be
snapped to position z, it retries the snap action. If such
sensor is not available, p starts the pull action.

At the end of the snap activity, a snapped sensor p sends
a CardinalityInfo message to its neighborhood. This mes-
sage contains the ID and the virtual cardinality of p.

4.3 Behavior of the sensors being snapped

Message name | Message fields

IAS ID, coordinates, starter timestamp

InfoSnapped ID, coordinates, cardinality

InfoSlave ID, coordinates, energy level

InfoFree ID, coordinates

SIP ID, receiver ID, target position co-
ordinates

AckSIP ID, receiver 1D

ClaimPosition ID, coordinates, timestamp

PositionTaken ID, coordinates

InfoStopped ID, coordinates

IAYS ID, receiver ID

CardinalityInfo | ID, cardinality

Offer ID, receiver ID, cardinality, trans-
action ID

AckOffer ID, receiver 1D

PositionTaken ID, coordinates

AckInfoArrived ID, receiver ID

MoveTo ID, receiver ID, dest. coord., dest.
snapped sensor ID, trans. ID

InfoArrived ID, receiver 1D, transaction ID, en-
ergy level

HoleInfo ID, hop counter, order value, hole
coordinates, timeout

Subst ID, receiver 1D, energy level

AckSubst ID, receiver ID

SubstArrival 1D, receiver ID

ProfilePacket ID, receiver ID, order value, priority
queue, neighborhood info.

MoveToSubst ID, receiver 1D, order value, priority
queue, neighborhood info.

Retirement ID, hole coordinates

Table 1: Summary of the P&P messages

4.3.1 Sensor localization

A free sensor ¢ which receives a IAS message, coming from
a snapped sensor p, replies with either an InfoFree or an
InfoSlave message depending on its position with respect
to p. If ¢ is located outside the hexagon of p, it remains in
the free state and replies to p with an InfoFree message. If
instead ¢ is located inside the hexagon of p, it switches its
state to slave and replies to p with an InfoSlave message.
In both cases ¢ becomes part of the set L(p), that is the set
of sensors that p can snap to its adjacent vacant positions.
Notice that if ¢ is a slave, there is only one snapped sensor p
such that g € L(p), thus slaves belonging to already snapped
sensors do not reply to the IAS message of p. If instead ¢ is
a free sensor, it may belong to several sets L(-), for different
snapped sensors located in radio proximity from q itself.

4.3.2 Snap into position

Sensor g, be it free or slave, at a certain time, may receive
a SIP message coming from a snapped sensor. Slaves reply
only to SIP messages coming from their related snapped
sensor, while free sensors only reply the first SIP message
they receive and ignore subsequent ones.

After sending the AckSIP reply, sensor ¢ travels towards
the snapping destination until it reaches a distance d from
it. Distance d is set small enough to guarantee the radio
connectivity within the circular disk of radius d and the

Snapped Free Slave Snapped
Sensor p Sensor q Sensor r Sensor z
v IAs
eighl i WS
901 Disgoygr oo
PE ey Neighoo!
Infosyg,
SIP(y) I
‘W SIPK
%‘
Traveling to
distance d
Traveling to Lost contention
distance d STOP

G\a-mpos‘mon(T)

A 4

ClaimPosition(Tq)
Infosto,
\Ef&‘
} timeout

A‘@ %*\ FREE status

Traveling to
snap position

Win contention
SNAP status

‘y IAS Neighbor Discovery
Neighoor Discovery N 7 S sats
©ighbor Discovery

\

Figure 2: A typical scenario of snap position conflict

inclusion of such disk into the hexagonal tile. Therefore
d < V3l/2.

At this point sensor g stops and broadcasts a ClaimPo-
sition message containing a timestamp and waits for the
expiration of a timeout to evaluate if other sensors are try-
ing to snap in the same position and in case to resolve the
related contention. At the timeout expiration, if no conflicts
occurred or if a conflict was solved in its favor, ¢ switches
its state to snapped, sends a PositionTaken message and
proceeds towards the destination. After being successfully
snapped, sensor ¢ starts its own snap activity.

4.3.3 Resolution of snap position contention

Three events may occur when one or more sensors are
engaged in a conflict with sensor ¢ due to the contention for
the same snap position:

1) sensor ¢ receives a ClaimPosition or a PositionTaken
before reaching distance d from the destination,

2) sensor ¢ receives a ClaimPosition after the arrival at
distance d from the destination and before the expiration of
the related timeout,

3) sensor q receives a PositionTaken as a response to its
ClaimPosition. This case may happen if ¢ started travelling
toward the destination when it was too far to perceive the
previous ClaimPosition and PositionTaken messages.

In the first case, g stops moving and sends an InfoStopped
message, to advertise its new position to the neighborhood,
and starts a timeout. Snapped sensor receiving an InfoS-
topped message, verifies if the sender is inside its hexagon
and in this case replies with a IAYS message (I Am Your
Snapped), containing the sender and the receiver ID. If the
stopped sensor receives a IAYS reply within the timeout, it
sets its status to slave. Otherwise, if the timeout expires, it
sets its status to free, not belonging to any hexagon.

In the second case, sensor ¢ compares its timestamp with
the one included in the ClaimPosition message. The sen-
sor with lower timestamp wins the competition for the des-
tination and proceeds its travel, sending a PositionTaken
message, while the other sensor waits for the arrival of the

Snapped Slave Snapped Snapped
Sensor p Sensor r Sensor q Sensor z

JityInfo Cardingj

G
Mov. Cond. true
= | Offer

I — / ofter
y

Cardinajit
Inf
Gardinal® pofo vt

timeout %‘

timeout

Mov. Cond. false
CardinalityInfo

Traveling to
Hex(q)

101y

Figure 3: A typical scenario of the push activity

IAS message of the new snapped sensor to switch its status
to slave.

In the third case, sensor ¢ sets its state to slave of the
newly snapped sensor. Notice that this timestamp based
conflict resolution is designed to avoid redundant replies to
ClaimPosition messages and does not require global syn-
chronization.

Figure 2 shows a typical conflict resolution scenario, where
two sensors r and ¢q receive a SIP message for the same po-
sition x from two different snapped sensors. Both r and ¢
start travelling towards the destination x. Sensor ¢ reaches
distance d from the destination before sensor r, and sends
a ClaimPosition message, with its timestamp. Sensor r re-
ceives such message while travelling, and consequently stops
because the contention for position x was won by sensor q.
Sensor 7 sends an InfoStopped message to alert its neighbor-
hood of its new position and starts a timeout. In the case
depicted in Figure 2, r stops inside the hexagon centered
in position x. For this reason, no snapped sensor replies
to the InfoStopped message, thus after the timeout expira-
tion, sensor r switches its status to free. After the expiration
of the contention timeout, sensor ¢ broadcasts a Position-
Taken message and switches to the snap status while defi-
nitely travelling to position x. When ¢ reaches position z,
it starts a neighbor discovery by sending a IAS message, in
consequence of which, r switches its status to slave.

In order to show an example of the snap activity execu-
tion, we refer to Figure 1. Figure 1 (a) and (b) show that,
at the beginning of our example of P&P execution, only one
sensor assumes the starter role. In figure 1 (c), this sensor
snaps three of its slaves. In a second time, see Figures 1
(f) and (g), another node acts as starter and initiates the
formation of a second grid portion by snapping three of its
slaves as described in Figure 1 (h).

5. P&P: PUSH ACTIVITY

To describe the push activity we distinguish the behavior
of snapped and slave sensors and illustrate the role exchange
mechanism introduced to uniform the energy consumption.

5.1 Behavior of snapped sensors

5.1.1 Push proposal

As soon as a snapped sensor p terminates the snap ac-
tivity, it sends a CardinalityInfo message to its neighbor-
hood. Such message contains its ID and its virtual cardi-
nality. Neighbor snapped sensors that receive this message
update their information regarding sensor p and evaluate the
opportunity to move slave sensors to its hexagon.

Even sensor p evaluates the opportunity to move some of
its slaves to adjacent hexagons to uniform the distribution
of redundant sensors. To this end, it uses its information re-
garding the neighbor snapped sensors, collected in the neigh-
bor discovery phase. Sensor p looks for neighbor snapped
sensors whose hexagons verify the Moving Condition [2] and
have minimal cardinality. Among these, it selects the clos-
est, to which it sends an 0Offer message containing its vir-
tual cardinality, and an identifier of the current transaction,
(transaction ID). If no sensor verifies the Moving Condition
with p, sensor p waits for further events.

5.1.2 Push agreement

The snapped sensor g that receives an 0ffer message from
p, verifies the validity of the Moving Condition as it could
have more updated information than p. This way the re-
sponsibility of the slave movement is held by the receiver,
thus ensuring that it only happens when the Moving Con-
dition is actually valid. This is particularly important to
guarantee the algorithm termination.

Two cases may occur: 1) g accepts the offer it received
from p, or 2) g leaves the offer unreplied.

In the first case, ¢ replies to p with an AckOffer message,
containing only the recipient and sender ID. The sensor g
updates its cardinality value, advertising the new value to
its snapped neighbors, with a CardinalityInfo message.
This way g can participate in further operations of distribu-
tion of redundant sensors with updated information. It also
precludes other snapped sensors from sending unnecessary
offers. When ¢ accepts an offer, it starts a timeout identi-
fied by the transaction ID received in the Offer message.
If ¢ does not receive any message within the timeout, con-
taining the related transaction ID, it decreases its cardinal-
ity and advertises this change with a new CardinalityInfo
message. If, otherwise, sensor ¢ receives an InfoArrived
message related to the current transaction, it replies with
an AckInfoArrived, containing its ID and the receiver ID.
This way the protocol is robust to possible node failures
during the push activity.

The sensor p selects a slave r to be pushed and sends it a
MoveTo message containing the sender and receiver ID, the
position and the ID of the destination snapped node (the
sensor ¢), and the transaction ID. This selection is based on
an energy saving criterion. The sensor p selects the slave
sensor r that will remain with the highest energy after the
completion of the entire movement.

5.2 Behavior of a slave sensor

The slave sensor r selected by the sensor p receives a
MoveTo message and starts moving towards the hexagon of
the sensor ¢q. As soon as the sensor r crosses the boundary
of the hexagon of ¢, it sends an InfoArrived message, stops
moving and waits for the related AckInfoArrived message.
The InfoArrived message contains the sender and receiver
ID, the transaction ID, and the energy level of the sender. If

the AckInfoArrived message is not received within a time-
out, sensor r assumes that sensor ¢ is not there anymore.
Thus it tries to snap in the snapping position of ¢, as if it
would have received a SIP message for that position.

5.3 Role exchange

The PusH & PULL algorithm provides that slaves and
snapped sensors may occasionally exchange their roles in
order to balance the energy consumption over the set of
available sensors. Any time a slave r has to make a move-
ment across a hexagon as a consequence of a push action,
it sends a role exchange proposal consisting in a Subst mes-
sage to the snapped sensor p of the hexagon it is traversing,
and starts a substitution timeout. Subst messages contain
the ID of sender and receiver, the energy level of the sender
and the destination coordinates. The snapped sensor p uses
the energy level value of 7 to decide if a role exchange may
be of benefit in balancing the overall energy consumption
between the two sensors. In this case, p replies with an
AckSubst message.

If sensor r receives an AckSubst message within the sub-
stitution timeout, it travels toward the snap position held by
sensor p, while p waits for the arrival of sensor r before start-
ing to travel towards the destination initially targeted by 7.
Sensor r advertise its arrival to sensor p with a SubstAr-
rival message containing the same fields of the AckSubst
message. Sensor p replies to r with a ProfilePacket mes-
sage that is necessary to enable a complete role exchange
and starts travelling towards the destination.

If sensor r does not receive an AckSubst message within
the substitution timeout, it continues its travel towards the
destination.

Slave and snapped sensor substitutions may also occur at
the beginning of the slave travel. In this case the substitu-
tion is started by the snapped sensor itself which already has
all the available information to evaluate the opportunity to
perform the role exchange. Under these circumstances, the
snapped sensor p sends a MoveToSubst message containing
the profile information necessary to perform the substitu-
tion. As soon as sensor r arrives in proximity to the snap
position held by p, it sends the SubstArrival message de-
scribed before, after which p starts travelling towards the
destination.

5.4 An example

Figure 3 depicts a typical scenario of the push activity.
The snapped sensor ¢ broadcasts its virtual cardinality with
a CardinalityInfo message. The snapped sensors p and z
receive this message and verify the Moving Condition with
the updated information received from ¢. As both p and
z satisfy the condition, they send an 0ffer message to q.
Notice that the Offer message always contains an updated
value of the virtual cardinality of the sender. Since each
node can offer at most one sensor at a time the virtual car-
dinality does not change until the offer timeout expires, or
the receiver replies with an AckOffer message. Sensor g re-
ceives the Offer message from p before the one sent from
sensor z. It verifies the validity of the Moving Condition
with the updated virtual cardinality of p, received in the
Offer message. As the Moving Condition is still satisfied, ¢
replies with an AckOffer message, incrementing its virtual
cardinality and broadcasting a CardinalityInfo message.

When node g receives the 0Offer message from z it verifies

the Moving Condition again. Note that z sent this message
on the basis of an old value of the virtual cardinality of q.
Thus ¢ finds that, as a consequence of the transaction just
concluded with sensor p, the Moving Condition is unsatisfied
with respect to sensor z, and consequently it does not reply
to the offerer. Sensor z waits until the expiration of the offer
timeout, after which it is able to be engaged in other push
actions.

Sensor p receives an AckOffer message from ¢, thus it
selects r within its slaves, and send it a MoveTo message.
Sensor r moves towards the hexagon of ¢, and sends an In-
foArrived message as soon as it arrives. Sensor p sends a
CardinalityInfo message containing the decreased value of
its virtual cardinality.

An example of the push activity execution can be found in
Figure 1, where the values the virtual cardinality are shown.
Figure 1 (d) shows that the snapped node 0 has some un-
snapped nodes in its hexagon, and therefore starts the push
activity towards its three adjacent hexagons. In Figure (e)
the snapped nodes 6 and 9 perform the snap activity. Notice
that the snapped sensor 1 does not perform any snap action
as it does not have any hole around its hexagon. It also
does not execute any push action as the Moving Condition
is not satisfied. In the Figures (e) and (f), the snapped node
0 continues its push activity while the node 9 performs a
snap of its slave. Notice the change in the ord value of the
sensor number 7 in Figure (e) and (f). This change will be
clear in the next section where we describe the pull activity
in deeper details.

6. P&P: PULL ACTIVITY

In the present section we distinguish three possible roles
of sensors involved in the pull activity.

A first role is the one of the sensor detecting a coverage
hole in a neighbor location. This is the starter of the pull
activity, which alters its ord value to enable push actions
from nearby hexagons and sends related trigger notification
messages.

The second role is the one of the neighbor snapped sen-
sors which receive the trigger notification messages while
not having available slaves to send. These sensors act as
forwarder of the trigger messages in order to reach hexagons
with redundant slaves that can be pushed to fill the holes.

The third role is performed by the snapped sensors which
receive a trigger message when having available slaves to
push. These sensors are informed of the changed ord value
of the neighbor snapped sensors, and can contribute to fill
the coverage holes by pushing the available slaves in the
proper direction.

Notice that multiple trigger notification messages may
reach the same sensor while performing any of the three
listed roles. Such messages are inserted in a priority queue.

6.1 Sensors detecting coverage holes

A snapped sensor p, located in proximity of some vacant
positions (i.e. VP(p) # 0), terminates the snap activity
when no more sensors are available in L(p). To give start to
the pull activity, sensor p verifies if there is the possibility to
attract sensors from its snapped neighbors. To this purpose,
sensor p checks the validity of the Moving Condition with
respect to all its snapped neighbors.

If p can not receive any sensor from its snapped neighbors,
it starts the pull activity. To this purpose sensor p sets its

‘ h=0

‘ my_ord =0
‘ send: hole_info(h,my_ord,timeout,hole_coord)

wait(timeout)

No

Figure 4: Behavior of a sensor detecting a hole

ord value to zero, and advertises this change by broadcast-
ing a HoleInfo message containing its ID, a hop counter h,
its updated ord value, the vacant position coordinates, and
a timeout toy which depends on the value of h (notice that
this information is introduced to increase the algorithm ef-
ficiency). By modifying its ord value, sensor p alters the
current situation with respect to the Moving Condition, en-
abling a new push activity from neighbor hexagons.

The hop counter h represents the forwarding horizon of
the HoleInfo message, that is the distance to be traversed
by this message, expressed in number of hexagons. Ini-
tially h is set to zero, thus the snapped sensors receiving
a HoleInfo message only update their information about
the sender ord value and do not forward this message. If no
new slave reaches Hex(p) within the given timeout tout, sen-
sor p increases h and broadcasts a new HoleInfo message.
The timeout t.. is calculated as the time necessary for a
sensor located (h + 1) hops apart to reach Hez(p), that is
towr = (h+1) - 2Rs/v, where v is the sensor speed.

Figure 4 illustrates the pull action performed by sensor p
as described above.

6.2 Behavior of trigger forwarder sensors

When a sensor p receives a HoleInfo message and has
not any slave to push toward the coverage hole, it partici-
pates in the pull activity by forwarding this message when
necessary. In particular, it discards HoleInfo messages re-
lated to holes whose presence was already triggered by a
snapped sensor ¢, unless they contribute additional infor-
mation. Indeed sensor p evaluates new messages regarding
a coverage hole previously advertised by sensor g only if they
come from: 1) snapped sensors with ord value lower than
ord(q), or 2) snapped sensors with the same ord as ¢ and
hop counter h which is higher than the forwarding horizon
issued by sensor q.

Case 1) happens when a new snapped sensor r detects
the same coverage hole advertised by ¢, but the distance
between p and r is lower than the distance between p and
g. Case 2) happens when sensor ¢ issues a new hole trigger
demanding a forwarding horizon extension.

When processing HoleInfo messages, sensor p sets its or-
der value equal to the adjacent sender order value increased
by 1 and forwards the trigger to its adjacent snapped sensors
only if h > 0. Such forwarded trigger message contains the
updated status information of p and a hop counter decreased
by 1. If sensor p receives several HoleInfo messages concur-
rently, it inserts them in a pre-emptive priority queue, where
each message is treated with a priority that is inversely pro-

portional to the distance from the coverage hole. As soon
as the timeout of the HoleInfo message expires, sensor p se-
lects the next element in the priority queue. Once the queue
is empty it sets back its ord to the original value. This is
necessary to stop the pull action after the coverage of the
detected hole.

6.3 Sensors pushing redundant slaves

When a sensor p receives a HoleInfo message and finds an
available slave to push towards the coverage hole, it updates
the local information regarding its neighborhood. Thanks to
the sequence of order value alteration, p finds a valid Moving
Condition with respect to the direction of the coverage hole
and properly starts a push activity.

6.4 An example

Figure 5 shows a typical scenario of the pull activity. The
snapped sensor p detects a coverage hole in an adjacent po-
sition. Since p has no slaves in its hexagon and the Mov-
ing Condition with respect to its neighbors is unsatisfied,
it starts the pull activity by setting its ord value to zero
and broadcasting a HoleInfo message with null hop counter.
Since sensor ¢ does not have any slave to push toward p, at
the expiration of the timeout, sensor p broadcasts another
HoleInfo message increasing the previous hop counter. Sen-
sor g evaluates the hop counter of the HoleInfo message it
received from p and sets its own ord value to 1. Sensor ¢
then forwards the trigger by broadcasting a HoleInfo mes-
sage with decreased hop counter. Once again the timeout
set by p expires because even sensor z has no slave to push,
thus the procedure is repeated until the trigger, represented
by the HoleInfo message, reaches sensor r which has an
available slave s to push. Figure 1 shows the interleaved
execution of the pull activity with the other algorithm ac-
tivities. In particular, Figures 1 (e) and (f) show that node
7 starts the pull activity, as it detects a coverage hole and
does not have any slaves to snap. To this end, it temporarily
advertises a change of its ord function, which assumes the
value of 0. In agreement with the pull activity, some nodes
move towards the hole, as shown in Figure 1 (g). Figure 1
(h) shows that the node that started the pull activity has re-
ceived a slave, so it sets back its ord function, and snaps the
newly available slave. Figure 1 (i) illustrates several push
actions (involving nodes 6, 9, and 4). The snapped nodes 10
and 12, that do not have any slaves, start their pull activity
setting their ord function to 0. The pull activity going on in
the left grid portion attracts some slaves towards the hole,
as in Figure 1 (j).

7. P&P: MERGE ACTIVITY

The fact that many sensors act as starters implies the gen-
eration of several tiling portions with different orientations.
The aim of the PusH & PuULL algorithm is to cover the Aol
with a unique regular tiling thus minimizing overlaps of the
sensing disks and enabling a complete and uniform cover-
age. Hence, the algorithm provides a merge mechanism to
be executed whenever a sensor p receives a neighbor dis-
covery message (IAS) from a snapped sensor ¢ belonging to
another tiling portion.

In this case, sensor p chooses to join the oldest grid portion
(it discriminates this situation by evaluating the timestamp
of the starter action, attached to any IAS message).

Notice that the detection of the sole neighbor discovery

Slave Snapped Snapped Snapped Snapped
Sensor s Sensor r Sensor z Sensor q Sensor p

\nfo
my_ord = 1 4%: "\ my_ord =0

timeout
h=

0 N
y
timeout
h= 1\

Holelnfo

my_ord =2

h 170 piolelnfo

S|, oo %
Holeinto

Ho\e\mo

MoveTo
traveling to
Hex(z)
InfoA| rived

MoveTo
-~ |
traveling to

(z
Hex(a) timeout
)

% timeout timeout

| wewlo

- |
traveling to
Hex(p,

i | InfoArriveq
\

Figure 5: A typical scenario of the pull activity

messages is sufficient to ignite the tiling merge activity be-
cause such messages are sent after any tiling expansion and,
if two tiling portions come in radio proximity to each other,
at least one of them is increasing its extension.

In order to explain the grid merge activity, we refer again
to figure 1. Figure 1 (j) shows the presence of two grid por-
tions in radio proximity with each other. As a consequence
of this reciprocal detection, the two grid portions start the
tiling merge activity as shown in Figure 1 (k). In Figure 1
(1) the tiling merge activity is concluded and a unique grid
is built.

In the following we give the details on the protocol im-

plementation of the grid merge activity. We call Goiq and
Ghew the tiling portions with lower and higher timestamp,
respectively. We distinguish three possible cases.
1) Sensor p belongs to Grew and receives a IAS message from
q belonging to Go14. If sensor p is a slave, it switches its state
to free or to slave of the sensor ¢ depending on their mutual
distance. Sensor p proactively communicates its new state
to its neighborhood by sending either an InfoFree or an
InfoSlave message. From now on p honors only messages
from Goq and ignores those from Gpey.

This proactive communication of the new state of p is
needed to advertise the presence of Grey When there is no
message activity within Gpes that is perceivable by the sen-
sors in Go14. This way, the snapped sensor which p belonged
to can properly update its slave set.

If p is instead a snapped sensor, it can not immediately
switch to its new state because of its leading role inside
Ghew (e.g. it leads the slave sensors in S(p) and performs

(a) (b) () (d)

Figure 6: Deployment with random distribution

push and pull activities). Hence p temporarily assumes a
hybrid role: it advertises itself as free/slave to the nodes
of Go1a with an InfoFree/InfoSlave message and, at the
same time, keeps on behaving as snapped node in Gpey until
it receives a movement command (SIP or MoveTo message)
coming from Goiq.

If p received a SIP or a MoveTo command, p moves to
the new snap position electing one of its slave in Gpey as a
substitute with a MoveToSubst message. The selected slave
should reply with a SubstArrival upon arrival to the snap
position, within a given timeout. If this timeout expires be-
fore the reception of such SubstArrival message, p selects
a new slave to snap. The process goes on until no more
slaves are available. In this case p ceases its snapped role in-
side Grew advertising its departure to its neighbors in Ghew,
broadcasting a Retirement message. Upon reception of a
Retirement message the snapped neighbors that were lo-
cated in positions adjacent to the one that p just freed, keep
into account the new vacant position starting new snap ac-
tivities. If otherwise, p receives a SubstArrival on time, it
ceases its snapped role in Gpey and honors the commands
issued by the snapped node in Go1q.

2) Sensor p belongs to Goa and receives a IAS message from
q belonging to Grey: if p is a slave it ignores all messages
from Ghrey. If p is snapped, it performs a neighbor discovery
sending a IAS message, ignores all messages coming from
Ghew, apart from the neighbor discovery replies, and honors
only messages from Go14. Observe that the neighbor discov-
ery is necessary to ignite the merge mechanism and allows
each snapped sensor in Go1q to collect complete information
on nearby sensors that previously belonged to Gpey.

3) Sensor p is free: sensor p honors only messages from Goia
and ignores those from Ghey-

8. SIMULATION RESULTS

In this section we evaluate the performance of the P&P
protocol through simulations. The parameter setting used in
the experimental activity is as follows: Ryy = 11 m, Rs = 5
m, the sensor speed is 1 m/sec, squared Aol with size 80 m
x 80 m.

In Figure 6(a) we show an example of the protocol exe-
cution starting from a random initial distribution of sensors
over the Aol, whereas in Figure 7(a) sensors start from an
initial deployment consisting of an high density region at
the center of the Aol. In the two examples, the deployment
obtained by P&P evolves through the configurations shown
in (b) and (c), reaching the final deployment given in (d).
Figure 8 gives a synthetic representation of how the sensor
deployment evolves under P&P when 150 sensors are sent
from a high density region in an Aol with a complex shape.
In order to evaluate the performance of our protocol, we
run some experiments with starting configuration depicted

Figure 7: Deployment with central distribution

(a) (b) () (d)

Figure 8: Coverage of an irregular Aol

in figure 7(a), by varying the number of sensors. Results are
average values calculated over 30 simulation runs.

Figure 9 represents the number of conflicting snap and
push actions, averaged over the number of snap positions
and of slave sensors involved in a push action, respectively.
A snap conflict occurs whenever the same snap position is
contended by two or more sensors being snapped, whereas a
push conflict happens when a push offer made by one sensor
becomes obsolete in consequence to push actions performed
by other sensors.

The asynchronous behavior of P&P guarantees the reso-
lution of the few snap/push conflicts that arise as a conse-
quence of its distributed execution. Although growing with
the number of available sensors, the average number of snap
conflicts remains significantly smaller than 1, meaning that,
in the considered scenarios, no more than one conflict hap-
pens per snap position. Similarly, when the number of sen-
sors is larger than the minimum to guarantee the coverage
completeness, the average number of push conflicts per slave
sensor becomes almost stable at about 1.2 push conflicts per
slave sensor. Figure 10 shows the coverage and termination
time of the protocol execution. By coordinating distributed
decisions and solving local conflicts, the P&P protocol guar-
antees the termination of the deployment in moderate time.
Notice that after the coverage completion, P&P keeps on
regulating some movements to uniform the redundant sen-
sor density. The termination time evidences the capability
of the P&P protocol to reach a final stable configuration,
where neither movements nor message exchanges are per-
formed.

The next figures detail the performance evaluation of our
protocol in terms of energy consumption. The protocol ac-
tivities having the major impact on the energy consumption
are: movements, starting/braking actions and message ex-
changes.

Figure 11 shows the average moving distance per sensor.
This contribution, although constant under growing number
of sensors, is rather high as a consequence of the starting
deployment that consists of a very dense sensor distribution

at the center of the Aol.

An important contribution to the overall energy consump-
tion is also due to the possible starting/braking actions per-
formed by the moving sensors. Sensor movements indeed
may be frequently interrupted to allow sensors make move-
ment decisions such as changes in directions or role substi-
tutions. Figure 12 shows that this contribution is also quite
stable under an increasing number of sensors, evidencing a
good scalability of the proposed approach.

The last term of the overall energy consumption is the
number of message exchanges, shown in Figure 13. As the
figure shows, this number remains stable even when the
number of sensors increases significantly. It should be noted
that both transmitting and receiving messages are energy
consuming activities. Therefore, although Figure 13 evi-
dences that the number of message exchanges is quite stable
even under an increasing number of available sensors, the en-
ergy consumption related to this term can be also affected
by the sensor density. Indeed, the higher the sensor density
the higher the contribution to the overall energy consump-
tion due to message receiving actions. This trend is made
more evident in the following Figure 14, where we analyze
the overall energy consumption. In this figure we utilize
a unified energy consumption metric obtained as the sum
of the contributions given by movements, starting/braking
actions and communications. The energy spent by sensors
for communications and movements is expressed in energy
units. The reception of one message corresponds to one
energy unit, a single transmission costs the same as 1.125
receptions [1], a 1 meter movement costs the same as 300
transmissions [12] and a starting/braking action costs the
same as 1 meter movement [12].

Although generally moderate, the energy consumption has
a minimum when about 250 sensors are available, showing
that it is possible to optimize the energy consumption by
looking for a trade-off in the number of sensors. On the one
hand, having too few sensors implies that all the available
sensors are strictly necessary to ensure the coverage com-
pleteness, and therefore each of them has to make several
movements to reach its final position. On the other hand,
having too many sensors makes each sensor receive plenty of
messages from its neighborhood, causing an increase in the
contribution to the energy consumption due to the message
receptions. Nevertheless, it should be noted that in order
to evidence the existence of such a minimum point, we had
to significantly enlarge the scale of graph of the energy con-
sumption. The trend of such parameter can be considered
quite stable, especially if the operative setting is such that
the ratio between the message reception and transmission
costs is lower than the one considered in this paper, in which
we study a critical case with respect to the parameter setting
and the initial deployment.

9. CONCLUSIONS

In this paper we introduce P&P, a communication pro-
tocol that permits a correct and efficient coordination of
sensor movements in agreement with the PusH & PULL al-
gorithm. Unlike previous works which introduce deployment
algorithms without formalizing the related protocol, we ad-
dress the realistic applicability of this approach. Indeed we
deeply investigate the possible conflicts that may arise when

1.4 Snap conflicts —+—
Push conflicts &
@ 2 i A
s
H
o 0.8 P
5 o
£ 06
o
g
< 04
0.2

0
100 150 200 250 300 350 400 450 500 550
Number of sensors

Figu415'e 9: Snap and Push conflicts

40 |
E
g 35|
2
5
@ 30
o
2
S 25
o
=
20 |
15 R
100 150 200 250 300 350 400 450 500 550
Number of sensors
Figure 11: Traversed distance
0
o 60|
Q
g W
8 50}
£
5 40}
(5]
2
S 30}
g
S
3 20}
o
< 10}

0
100 150 200 250 300 350 400 450 500
Number of sensors

Figure 13: Exchanged messages

asynchronous local decisions are to be coordinated, and pro-
pose protocol solutions.

Simulation results show the performance of our protocol
under a range of operative settings, including conflict sit-
uations, irregularly shaped target areas, and node failures.
These results evidence the protocol capabilities to fulfil the
algorithm requirements and in particular termination, com-
pleteness and stability of the final coverage.

1[?]' G%%EESBI@%%E,S A. Falchi, E. Gregori, and

A. Passarella. Performance measurements of mote sensor
networks. ACM MSWiM, 2004.

[2] N. Bartolini, T. Calamoneri, E. Fusco, A. Massini, and
S. Silvestri. Push & pull: autonomous deployment of
mobile sensors for a complete coverage. ACM Winet, 2009.

[3] N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, and
S. Silvestri. Snap & spread: a self-deployment algorithm for
mobile sensor networks. IEEE/ACM DCOSS, 2008.

[4] P. Brass. Bounds on coverage and target detection
capabilities for models of networks of mobile sensors. ACM
Trans. Sensor Networks, 2007.

[5] J. Chen, S. Li, and Y. Sun. Novel deployment schemes for
mobile sensor networks. Sensors, 7, 2007.

[6] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and
E. Leonardi. A distributed sensor relocation scheme for
environmental control. ACM/IEEE MASS, 2007.

[7] N. Heo and P. Varshney. Energy-efficient deployment of
intelligent mobile sensor networks. IEEE Trans. Systems,
Man and Cybernetics, 2005.

500

Coverage Time —+——
Termination Time - VR

400 | %

300

Time (sec)

200

100

0
100 150 200 250 300 350 400 450 500
Number of sensors

Figure 10: Termination and coverage time

\\._._._,,—.—+

Avg starting/braking

100 150 200 250 300 350 400 450 500 550
Number of sensors

Figure 12: Starting/braking

24000

22000
20000
18000

16000 - \\/

14000

Consumed energy (units)

12000

100!

00
100 150 200 250 300 350 400 450 500 550
Number of sensors

Figure 14: Consumed energy

[8] W. Kerr, D. Spears, W. Spears, and D. Thayer. Two formal
fluid models for multi-agent sweeping and obstacle
avoidance. AAMAS, 2004.

[9] M. R. Pac, A. M. Erkmen, and I. Erkmen. Scalable
self-deployment of mobile sensor networks; a fluid dynamics
approach. Proc. of IEEE/RSJ IROS, 2006.

[10] S. Poduri and G. S. Sukhatme. Constrained coverage for
mobile sensor networks. IEEE ICRA, 2004.

[11] G. Wang, G. Cao, and T. L. Porta. Proxy-based sensor
deployment for mobile sensor networks. IEEE MASS, 2004.

[12] G. Wang, G. Cao, and T. L. Porta. Movement-assisted
sensor deployment. IEEE Trans. Mobile Computing, 2006.

[13] Y. Zou and K. Chakrabarty. Sensor deployment and target
localization based on virtual forces. IEEE INFOCOM,
2003.

