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Abstract

In this paper we study the topological equivalence problem of multistage interconnection
networks (MINs). We prove a new characterization of topologically equivalent MINs by means
of a novel approach. Applying this characterization to log N stage MINs we completely de-
scribe the equivalence class which the Reverse Baseline belongs to. Most important, we apply
the characterization to (2 log N − 1) stage MINs obtained as concatenation of two log N stage
Reverse Baseline equivalent MINs: in this way, we deduce an O(N log N) time algorithm
testing the equivalence of two such MINs. This result substantially improves the time com-
plexity of the previously known algorithms (O(N4 log N)). Finally, we determine the number
of different equivalence classes of (2 log N − 1) stage MINs and we characterize each of them.

Keywords: Multistage Interconnection Networks, Topological Equivalence, Layered Cross

Product, Layered Graphs.

1 Introduction

Experience with the design and use of parallel computers indicates that the efficiency of a paral-

lel computer (among other things) is largely dependent on the properties of the interconnection

network, i.e. the device devoted to the information exchange between processors and memories.

Namely, the interconnection network not only affects the hardware architecture but also the na-

ture of the system software (such as the network operating system). Several topologies have been

proposed to realize interconnection networks; in particular, Multistage Interconnection Networks

(MINs) have been widely studied by researchers (for a survey, see [8, 19]) and implemented in
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some practical systems for the efficient communication schemes they provide. Usually MINs with

N inputs andN outputs, N = 2n, and stages with N
2

switching elements of size 2×2 are considered.

MINs consisting of logN stages such as Omega [17], Flip [2], Indirect Binary Cube [21], Modified

Data Manipulator [11], Baseline and Reverse Baseline [22], Butterfly and Reverse Butterfly [19]

networks, have the same underlying graph and present attractive advantages: efficient routing

algorithms, partitionability, small number of switching elements. Unfortunately, these networks

are blocking.

For this reason, (2 logN − 1) stage MINs have been intensively studied. They are obtained

by concatenating two logN stage MINs with the center stage overlapped; Beneš network [3] is an

example of this class of MINs and it is usually represented as the concatenation of a Baseline and

a Reverse Baseline.

In the past two decades the binary relation of topological equivalence between two different MINs

have been widely investigated because, although many MINs appear completely different (in the

sense that their usual graphical representations are not the same and it is not trivial to find a 1-1

function identifying the networks as N grows), they are intrinsically the same, i.e. the underlying

graph is the same; hence, the understanding of this equivalence relation makes it possible to apply

the routing scheme designed for a MIN to an equivalent one and to develop more general routing

algorithms useful for all MINs in the same equivalence class, independently from their aspect.

It is well known that the general problem of deciding whether two graphs are isomorphic is easily

in NP, but it is not known to be in P and it is not known to be NP-complete [13, 15]. Nevertheless,

the question restricted to particular graphs is easier. Namely, let us look at MINs: for what

concerns logN stage MINs, Wu and Feng [22] present the first formal definition of topological

equivalence and prove that the six most common logN stage MINs (those mentioned above) are
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topologically equivalent: they exhibit isomorphisms between all pairs of networks, but do not give

any characterization of the equivalence class. Another approach is considered by Agrawal [1], but

unfortunately it is correct only for logN stage MINs of small dimension. A revised version is

proposed by Bermond, Fourneau and Jean-Marie [4]: they give more general properties to check

the topological equivalence. Hu, Shen and Yang [14] present a simplified checking equivalence

algorithm based on a marking scheme of nodes whose time complexity is O(N logN), that is

optimal.

A lot of efforts have been expended also in studying topological equivalence of (2 logN − 1)

stage MINs. Wu and Feng [23] extend their equivalence properties for logN stage MINs to prove

that two-passes of a Reverse Baseline network has the same routing capability and is equivalent

to the Beneš network. Lee [18] proves that an Omega network concatenated with its reverse is

equivalent to the Beneš network. Yeh and Feng [24] propose a coding scheme to check whether a

given (2 logN − 1) stage MIN is topologically equivalent to the Beneš network, but this scheme

leaves many cases uncovered. Feng, Kim and Seo [12] study 36 common topologies obtained as

concatenation of two logN stage MINs and classify them into two equivalence classes. Hu, Shen

and Yang [14] investigate whether a (2 logN − 1) stage MIN is the concatenation of two logN

stage MINs and give an algorithm to determine whether two given (2 logN − 1) stage MINs are

topologically equivalent in O(N4 logN) time.

In almost all the cited papers, the studied MINs are considered as strictly dependent from

their more usual graphical representation. In this work we approach the topological equivalence

problem from a novel point of view: by means of the Layered Cross Product [10], we do not deal

with the appearance of the considered MINs but we consider the underlying graph to extract the

structural properties useful for the equivalence. This different approach allows us to propose a
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new characterization for the topological equivalence of MINs that is independent from the partic-

ular appearance of each MIN. This very general characterization achieves interesting results when

applied to (2 logN − 1) stage MINs.

Namely, we deal with MINs obtained as concatenation of two Reverse Baseline equivalent MINs;

first, we provide an optimal algorithm (i.e. running in O(N logN) time) testing the equivalence of

two such MINs. This algorithm improves of a factor O(N3) the time complexity of the previously

known one [14]. Then, we determine the number of different equivalence classes and we characterize

each of them. These results definitely close the topological equivalence problem on this kind of

(2 logN − 1) stage MINs.

The rest of this paper is organized as follows. In Section 2 we give some preliminary definitions.

Section 3 is devoted to the new characterization of topological equivalence of MINs. In Section

4 we specialize this characterization to logN stage MINs and we provide an O(N logN) time

algorithm, checking the equivalence of a MIN with the Reverse Baseline. Although this result does

not improve the time complexity of the previously known one [14], its interest lies in the originality

of the approach, and we detail it since it is preliminary to the algorithm concerning (2 logN − 1)

stage MINs. In Section 5 we give anO(N logN) time algorithm to check the topological equivalence

of two MINs obtained as concatenation of two Baseline equivalent MINs and we characterize the

equivalence classes. Finally, Section 6 is devoted to some final considerations and open problems.

2 Preliminary Definitions

In this section we give some basic definitions and preliminary results, useful for the comprehension

of the rest of this paper.

Definition 2.1 An l-layered graph, G = (V1, V2, . . . , Vl, E) consists of l layers of nodes; Vi is the

(non-empty) set of nodes in layer i, where 1 ≤ i ≤ l; E is a set of edges: every edge connects nodes
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of two adjacent layers.

Observe that a rooted tree T of height h is a particular case of h-layered graph, where layer i is

defined either as the set of nodes having distance i− 1 from the root or as the set of nodes having

distance h − i from the root. From now on, we shall call a complete binary tree T by means of

∆ or ∇ according to whether the first or the second way of defining layers is chosen (the notation

comes from the usual graphic representation of such trees – see Fig. 1.a and 1.b).
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8 9 10 11 12 13 14 15

15
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a b

layer 1

layer 2

layer 3

layer 4

Figure 1: A ∆ and a ∇, both of height h = 4.

The N ×N multistage interconnection network (N -MIN) is another particular l-layered graph,

where layers coincide with stages, |Vi| = N
2

and any node in Vi, representing a switching element

of size 2 × 2, is adjacent to exactly two nodes in Vi−1 and Vi+1, 2 ≤ i ≤ l − 1, and the edge set is

partitioned into l − 1 subsets, called edge-stages, E1, E2, . . . , El−1 such that Ei contains N edges,

that is all edges between Vi−1 and Vi. Each node of the first stage is also connected to a pair of

inputs and each node of the last stage is also connected to a pair of outputs. Then an N -MIN

contains N inputs and N outputs.

Definition 2.2 [10] Let G′ = (V ′
1 , V

′
2 , . . . , V

′
l , E

′) and G′′ = (V ′′
1 , V

′′
2 , . . . , V

′′
l , E

′′) be two l-layered

graphs. Their Layered Cross Product (LCP for short), G′⊗G′′ is a l-layered graph G = (V1, V2, . . . , Vl, E)

where a node is a pair, since Vi is the cartesian product of V ′
i and V ′′

i , 1 ≤ i ≤ l, and an edge

〈(u′, u′′), (v′, v′′)〉 belongs to E if and only if 〈u′, v′〉 ∈ E′ and 〈u′′, v′′〉 ∈ E′′. G′ and G′′ are called
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the first and the second factor of G, respectively. An example is depicted in Fig. 2.
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Figure 2: The LCP of two graphs.

We will call decomposition in factors the inverse operation of the LCP.

In [10] Even and Litman introduce the LCP technique to show that it enables the representation

of several well known MINs as a layered cross product of simple networks. They also show that

this decomposed representation considerably simplifies some proofs of properties of such MINs and

may be useful in the analysis and in the synthesis of the decomposed MINs. Successively, LCP has

been used to investigate on some problems such as grid embedding [9] and interval routing [5, 16].

In this paper we extend the use of LCP to investigate on the topological equivalence problem of

MINs.

Fact 1 Simple path is the neutral element of LCP operation.

Lemma 2 Given two l-layered graphs, having c1 and c2 connected components, respectively, their

LCP has c1 · c2 connected components.

Proof It immediately follows from the definition of LCP. Q.E.D.

Given any two layers i and j, i < j, we say that a l-layered graph G has a simple cycle from i

to j if the shortest cycle passing through any node at layer i and any node at layer j is 2(j − i)
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long; in other words, G has a simple cycle from i to j if there exists a cycle passing through all

layers from i to j and does not pass through layers i− 1 and j + 1; furthermore, it does not exist

a layer j′(i′), i < j′(i′) < j such that G has a simple cycle from i to j′ (from i′ to j).

Lemma 3 Given two l-layered graphs G1 and G2, if G1 (G2) has a simple cycle from i to j for

some i and j, i < j, and G2 (G1) has a simple cycle from i to j′ ≥ j, then also the LCP of G1 and

G2 has a simple cycle from i to j.

Proof It is easy to see that if G1 (G2) has a simple cycle from i to j and G2(G1) has a

longer cycle in correspondence of the same interval of layers, then also G1 ⊗G2 has a cycle passing

through all layers from i to j and 2(j− i) long. From the definition of LCP it follows that it cannot

exixst in G1 ⊗G2 a shortest cycle from i to a layer j′ < j. Q.E.D.

Lemma 4 [10] The LCP of a ∆ and a ∇, both of them with N
2

leaves, outputs an N input Butterfly

network.

In [20] Paz provides a theory of decomposition into prime factors (i.e. not further decomposable

graphs) of MINs, based on matrix notation. We now recall the following three graphs (see Fig. 3)

belonging to the set of prime graphs described in [20]:

• the l-layered graph Λi, 1 ≤ i ≤ l− 1, has a simple path from layer 1 to layer i (null if i = 1),

a fork between layers i and i + 1 and two parallel simple paths from layer i + 1 to layer l

(null if i = l − 1);

• the l-layered graph Vi, 1 ≤ i ≤ l − 1, has two parallel simple paths from layer 1 to layer i

(null if i = 1), a junction between layers i and i + 1 and a simple path from layer i + 1 to

layer l (null if i = l − 1);
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• the l-layered graph Φij , 1 ≤ i < j ≤ l − 1, has a simple path from layer 1 to layer i (null if

i = 1), a fork between layers i and i+ 1, two parallel simple paths from layer i+ 1 to layer j

(null if j = i+ 1), a junction between layers j and j + 1 and a simple path from layer j + 1

to layer l (null if j = l − 1).

1

i

i+1

j

j+1

l

Λ ΦVi i i,j

Figure 3: Three prime graphs.

Prime graphs Λi and Vi can be used to decompose in factors binary trees; namely, a ∆ of

height h can be decomposed as Λ1 ⊗ Λ2 ⊗ . . .Λh−1 and a ∇ of height h can be decomposed as

V1 ⊗ V2 ⊗ . . . Vh−1.

Now, consider graph Xi,j , 1 ≤ i ≤ l − 1, l ≤ j ≤ 2l − 2, defined as the (2l − 1)-layered graph

having a pair of parallel simple paths from layer 1 to layer 2l − 1, and two pairs of edges crossing

between layers i and i+ 1 and between layers j and j + 1 (see Fig.4).

It is straightforward to see that Xi,j = Vi ⊗ Λj ⊗ Φij (see Fig. 4).

The aim of this paper is to exploit the concept of LCP to study the topological equivalence

problem of MINs. Hence, we recall here the definition.

Definition 2.3 Any two s stage N -MINs G′ and G′′ are topologically equivalent (or simply equiv-

alent) if and only if there is an isomorphic mapping ψ such that:
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Figure 4: Xi,j as LCP of Vi,Λj and Φij .
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Figure 5: A Baseline network obtained as LCP of a ∆ and a ∇, with inputs and outputs.

- for any stage i (i = 1, . . . , s) if v ∈ Vi(G
′) then ψ(v) ∈ Vi(G

′′),

- for any edge-stage j (j = 1, . . . , s− 1) if 〈u, v〉 ∈ Ej(G
′) then 〈ψ(u), ψ(v)〉 ∈ Ej(G

′′).

Observation 1 The concept of topological equivalence is different from functional equivalence.

In fact two N -MINs are functionally equivalent if they have the capability of always performing

the same set of assignments [7]. Hence, all rearrangeable N -MINs are functionally equivalent

though not necessarily topologically equivalent; on the contrary, not rearrangeable N -MINs could

be topologically equivalent but not functionally equivalent.

Observation 2 Two N -MINs topologically equivalent are isomorphic.
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The LCP is commutative, therefore from now on, when we speak about topological equivalence

between the first and the second factors of two N -MINs G′ = G′
1 ⊗ G′

2 and G′′ = G′′
1 ⊗ G′′

2 we

mean that G′
1 and G′

2 are equivalent either to G′′
1 and G′′

2 , or to G′′
2 and G′′

1 , respectively.

In the rest of the paper we point out our attention on N -MINs that are decomposable as LCP

of two graphs; therefore, when we speak about LCP, we implicitly assume that the result is an

N -MIN. Observe that the inputs and outputs of N -MINs are not involved in the LCP, but it is

not restrictive to add them at the end of the computation of the LCP (see Fig. 5).

We conclude these preliminaries by recalling some definitions that will be useful in Section 3.

Definition 2.4 An N -MIN has the Banyan property if and only if for any input and any output

there exists a unique path connecting them, passing through each stage once.

Lemma 5 [10] The LCP operation yields a Banyan graph if and only if each of its factors is

Banyan.

3 A New Characterization for the Equivalence of N-MINs

Based on LCP

In this section we propose a new general characterization of N -MINs’ topological equivalence.

Then, we will exploit this result to design efficient algorithms for studying the topological equiva-

lence of N -MINs.

Although the following characterization theorem can be stated for general layered graphs, we

restrict it to N -MINs.

Theorem 6 Let G′ and G′′ be two s stage N -MINs, and let G′ decomposable as G′
1 ⊗G′

2. Then

G′′ is topologically equivalent to G′ if and only if G′′ can be decomposed as G′
1 ⊗G′

2.
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Proof (⇐) If G′′ can be decomposed as G′
1 ⊗G′

2, then G′ and G′′ are equivalent in view of

the definition of LCP (see Def. 2.2).

(⇒) If G′ and G′′ are topologically equivalent, then they are isomorphic (see Obs. 2) and hence

they can be decomposed into the same factors. Q.E.D.

Corollary 7 Given two N -MINs G′ = G′
1⊗G

′
2 and G′′ = G′′

1⊗G
′′
2 , they are topologically equivalent

if their factors are topologically equivalent.

Since, in general, the decomposition in factors is not unique, we have to conveniently decom-

pose the N -MINs to check their equivalence by checking the equivalence of their factors. This

decomposition operation is helpful since the factors of an N -MIN G are simpler graphs than G

itself, and therefore checking the equivalence between factors may be much easier than checking

the equivalence between N -MINs.

The next two sections illustrate how this very general characterization can be applied to logN

and (2 logN − 1) stage MINs.

4 On the Equivalence of log N Stage N-MINs

In this section we deal with logN stage N -MINs, therefore –where no confusion arises– whenever

we speak about N -MINs we mean logN stage N -MINs.

Bermond, Fourneau and Jean-Marie [4] give an interesting characterization of N -MINs topo-

logically equivalent to the Reverse Baseline network. It is based on the Banyan property (cf. Def.

2.4) and on the P (∗, ∗) property, that we briefly remind here.

Property P(i,j) An N -MIN has property P (i, j) for 1 ≤ i ≤ j ≤ logN if the subgraph Gi,j

induced by the nodes of the stage from i to j has exactly 2log N−1−j+i connected components.
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Property P(*,*) An N -MIN has property P (∗, ∗) if and only if it satisfies P (i, j) for every

ordered pair i, j such that 1 ≤ i ≤ j ≤ logN .

Theorem 8 [4] All the N -MINs satisfying the Banyan Property and P (∗, ∗) are topologically equiv-

alent to the Reverse Baseline.

Checking the topological equivalence of an N -MIN to the Reverse Baseline using the character-

ization of Bermond, Fourneau and Jean-Marie requires O(N2 logN) time, since the Banyan and

P (∗, ∗) properties can be checked in O(N2 logN) and O(N log2
N) time, respectively. This time

complexity has been improved by Hu, Shen and Yang [14], who presented a simplified checking

equivalence algorithm based on a marking scheme of nodes requiring O(N logN) time, that is

optimal, since it is the same order of magnitude as the number of nodes in the N -MIN.

In this section, first we provide an alternative characterization for the equivalence class which

the Reverse Baseline belongs to, then we describe an algorithm exploiting the characterization,

checking the equivalence in O(N logN) time. Although the time complexity is not better than the

previously known one, we detail this result for several reasons: first, it uses a different technique

(i.e. LCP), second, it is much easier than the marking scheme in [14], finally it is preliminary to

the algorithm described in the next section, where (2 logN − 1) stage N -MINs are considered.

Lemma 9 An N -MIN G satisfies the Banyan and P (∗, ∗) properties if and only if it can be de-

composed as ∆ ⊗∇.

Proof (⇐) If G can be decomposed as ∆⊗∇ then G satisfies the Banyan property, in view

of Lemma 5. G satisfies also P (∗, ∗); indeed, for any i, j such that 1 ≤ i ≤ j ≤ logN , the subgraph

of ∆ induced by the nodes of the layers from i to j has exactly 2i−1 connected components and

the subgraph of ∇ induced by the nodes of the layers from i to j has exactly 2log N−j connected
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components. From Lemma 2, the subgraph of G induced by the nodes of the stages from i to j

has exactly 2log N−j+i−1 connected components, i.e. G satisfies P (i, j) for any i, j and therefore G

satisfies P (∗, ∗).

(⇒) If G satisfies the Banyan and P (∗, ∗) properties, then – in view of Theorem 8 – G is

topologically equivalent to the Reverse Baseline. It is well known that the Reverse Baseline is

topologically equivalent to the Butterfly network [19], which can be decomposed as LCP of ∆⊗∇,

as stated in Lemma 4. Theorem 6 ensures that also the Reverse Baseline can be decomposed as

LCP of ∆ ⊗∇ and, consequently G is the LCP of the same factors. Q.E.D.

Theorem 10 An N -MIN G is decomposable as ∆⊗∇ if and only if G is topologically equivalent

to the Reverse Baseline.

Proof (⇒) From the if part of Lemma 9 and Th. 8, the statement follows.

(⇐) As the Reverse Baseline satisfies the Banyan and the P (∗, ∗) properties, from the only if

part of Lemma 9, the Reverse Baseline can be decomposed as ∆⊗∇, and from the if part of Thm.

6, the statement follows. Q.E.D.

Remark 1 As a consequence of this theorem and of the known equivalence of Butterfly, Omega,

Flip, Reverse Baseline, etc. we deduce that these networks can all be decomposed as ∆ ⊗ ∇, as

shown in Fig. 6. Furthermore, since (i) the LCP is commutative, (ii) the reverse operator is

distributive, and (iii) the reverse of a ∆ is a ∇ (and vice versa), it follows that each N -MIN

decomposable as ∆ ⊗∇ is equivalent to its reverse.

In the following we describe the algorithm for the decomposition of a logN stage MIN G as

∆⊗∇; the algorithm assigns a label to nodes of G: the label of node v is a pair (v′, v′′), where v′

and v′′ represent the factors of v according to its decomposition.
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Figure 6: a. a ∆; b. a ∇; c. an Omega network; d. a Flip network; e. a Butterfly network; f. a
Reverse Baseline Network. All networks from c. to f. are the LCP of ∆ and ∇, as highlighted by
the labels, and are all topologically equivalent.
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The algorithm consists of two phases: the first one assigns the first elements of the labels,

corresponding to labels of factor ∆, the second phase assigns the second elements of the labels

corresponding to labels of factor ∇. If the algorithm succeeds in completing the labeling, then it

provides the decomposition as ∆⊗∇; if, during the execution, two different labels are assigned to

the same node, then the algorithm returns an error message and the N -MIN cannot be decomposed

as ∆ ⊗∇, i.e. it is not topologically equivalent to the Reverse Baseline.

Let d1, d2, . . . , dN−1 and n1, n2, . . . , nN−1 be the names of the nodes in ∆ and ∇, respectively.

As usual, let nodes d2i (n2i) and d2i+1 (n2i+1) be the children of di (ni) – see Figs. 6.a and 6.b.

Algorithm ∆ ⊗∇-Decomposition

Input: a logN Stage N -MIN G;

Output: a labeling of nodes of G representing the decomposition as ∆ ⊗∇, if it exists; an error

message otherwise.

a. Assignment of the first element of the labels

1. Consider any node v at the first stage of G and assign d1 to it, corresponding to the root of ∆.

2. Recursively consider a node already labeled with di and assign labels d2i and d2i+1 to its (not

labeled) adjacent nodes at next stage, until the last stage of the N -MIN is reached. If there

exists a node receiving a label more than once, exit and return an error message – see Fig. 7.a.

3. For each stage s from logN to 2 do

Repeat

− Consider each node v at stage s labeled di, and assign the same label d⌊i/2⌋ to its adjacent

nodes at stage s− 1.
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a b

Figure 7: Examples showing how Algorithm ∆ ⊗∇-Decomposition fails during step a.2 and a.3,
respectively. White nodes are still unlabeled.

− Exit and return an error message if at least one of them is labeled:

either differently by d⌊i/2⌋

or with d⌊i/2⌋ and the sibling of v is not labeled di+1 (di−1) if i is even (odd) – see Fig. 7.b.

Until all nodes at stage s are labeled or the algorithm returns an error.

b. Assignment of the second element of the labels

Assign the second elements of the labels, corresponding to labels of factor ∇, proceeding exactly

as in phase a, but reversing the order of stages; namely, start from the last stage at Step 1, go

up to the first one running Step 2, and down again by means of Step 3. The role of di is now

done by ni.

Consider the assignment of the first element of the labels (for the second element similar

considerations hold): Steps a.1 and a.2 of Algorithm ∆ ⊗ ∇-Decomposition assign the labels to

a set of nodes inducing a complete binary tree and, in particular, label all nodes at the last stage

of G. If this is not true, then G cannot be decomposable as ∆ ⊗ ∇, since it neither contains a

complete binary tree rooted at the first considered node (see Fig. 7.a). Step a.3 starts from the

last stage and goes up labeling all other unlabeled nodes. If the labeling is computed without
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Figure 8: An example showing how Algorithm ∆ ⊗∇-Decomposition works.

inconsistencies, a decomposition in factors is provided, otherwise the algorithm exits returning an

error message. Note that a correct labeling requires that, during Step a.3, either node v labeled di

labels unlabeled nodes, or it visits nodes already labeled d⌊i/2⌋; in both cases it checks if v’ sibling

is labeled di+1 when i even and di−1 when i odd (see Fig. 7.b).

Example. Fig. 8 shows how Algorithm ∆⊗∇-Decompositionworks on a MIN decomposable

as ∆ ⊗∇. Namely, in Fig. 8.a the first element of the labels of a complete binary tree, obtained

running Steps a.1 and a.2, are shown. Fig. 8.b highlights a single iteration of Step a.3: let v be

labeled d5; it assigns label d⌊5/2⌋ = d2 to unlabeled node w and finds node u already labeled with

the same label; v’ sibling is correctly labeled d4. Finally, Fig. 8.c illustrates the output of the

algorithm.

The following theorem proves the correctness of Algorithm ∆⊗∇-Decompositionand computes

its time complexity.

Theorem 11 The topological equivalence between a given N -MIN G and the Reverse Baseline

network is checkable in O(N logN) time.

Proof In view of Thm. 10, it is enough to prove the correctness of Algorithm ∆⊗∇-Decomposition,

and to compute its time complexity.
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Correctness. To multiply ∆ and ∇ by means of LCP is equivalent to multiply ∆ and a set of

N
2

simple paths going from each leaf to the root, whose union is ∇. In view of Fact 1, in G we have

to individuate N
2

different complete binary trees, each one having a different root at the first stage

and all sharing the leaves at the last stage. All these trees, images of factor ∆, must be connected

each other analogously to their second factors, that are two logN long simple paths. Phase a of the

algorithm looks for all N
2

images of ∆ in G. It is not difficult to see that the conditions leading to

return an error in Algorithm ∆⊗∇-Decomposition are necessary and sufficient for the existence

of such trees. Similar considerations hold for Phase b.

Time complexity. The algorithm processes each node a constant number of times, and therefore

the running time is linear in the number of nodes ofG, i.e. O(N logN). Furthermore, the conditions

to return an error are easily checkable in constant time by comparing some labels. Q.E.D.

5 On the Equivalence of (2 log N − 1) Stage Networks

A (2 logN − 1) stage N -MIN is classically obtained as concatenation of two N -MINs with logN

stages each, by merging the last stage of the first one with the first stage of the second one. It

is typical to concatenate all the combinations of pairs of networks among Butterfly, Omega, Flip,

Baseline, their reverses, etc. to obtain a new N -MIN. In the following we call N -MIN2 a network

G with (2 logN − 1) stages obtained concatenating two logN stage N -MINs, both equivalent to

the Reverse Baseline.

In this section we deal with the equivalence problem for N -MIN2s. In [14] Hu, Shen and Yang

provide an algorithm to check the equivalence of two N -MIN2s in O(N4 logN) time. We improve

this result by solving the same problem in O(N logN) time, that is optimal.

In view of the considerations done in the previous section, both the logN stage N -MINs
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constituting a given N -MIN2 can be decomposed as LCP of ∆ ⊗∇. As a consequence, we obtain

that the factors of G are the concatenation of a ∆ and a ∇ (roots merging) and of a ∇ and a ∆

(leaves merging), respectively. It is obvious how to merge the last layer of a ∇ with the first layer

of a ∆, but there are many ways of merging the last layer of a ∆ and the first layer of a ∇. In

fact, from non equivalent MIN2s different ways of connecting the leaves of the two trees derive, as

highlighted in Figs. 9 and 10.

In the following, we indicate by ∇
∆ the concatenation of a ∇ and a ∆; we indicate by ∆

∇ any

concatenation of a ∆ and a ∇; among all the possible ∆
∇s we distinguish the ordered concatenation

(Fig. 9.b) by calling it obvious ∆
∇.

Remark 2 All N -MIN2s, obtained as concatenation of any logN stage N -MIN topologically equiv-

alent to the Reverse Baseline and its reverse, are topologically equivalent and their ∆
∇ factor is an

obvious ∆
∇.

Intuitively, the previous statement follows from the fact that the N -MIN2 obtained by the

concatenation of a network and its reverse is symmetric with respect to the line passing through

the conjunction stage, then the concatenation is obtained by identifying nodes with the same labels

(see Fig. 9). This allows one to characterize the equivalence class of all N -MIN2s obtained by any

Reverse Baseline equivalent N -MIN and its reverse: it contains exactly all N -MIN2s decomposed

as the LCP of a ∇
∆ and an obvious ∆

∇.

Now we describe a new efficient algorithm that, given in input two N -MIN2s, verifies whether

they are topologically equivalent or not.

The algorithm is divided into two parts: the first one consists in decomposing each N -MIN2

into a ∇
∆ and a ∆

∇; the second one decomposes ∆
∇ factors into prime factors and then compare them

pairwise: if they are topologically equivalent, then the N -MIN2s are, too in view of Theorem 6.
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Figure 9: a. a ∇
∆; b. a ∆

∇; c. the concatenation of a reverse Butterfly and a Butterfly; d. the

concatenation of a Flip and an Omega. The networks in c. and d. are equivalent.
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Figure 10: a. a ∇
∆; b. a ∆

∇; c. the concatenation of two reverse Butterflies; d. the concatenation of

two Omega networks. The networks in c. and d. are equivalent.
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For clarity of explanation, we will deal with the two parts separately.

Decomposing G as ∇
∆⊗ ∆

∇

Consider an N -MIN2 G. For the previous reasonings , G is always decomposable as ∇
∆⊗ ∆

∇.

The aim of the following algorithm is twofold: first, it discloses this decomposition by labeling

each node v of G with a pair (v′, v′′), where v′ and v′′ represent the factors of v according to its

decomposition; second, it completely defines the second factor ∆
∇, i.e. the way of connecting nodes

at stage logN and at stage logN + 1 of ∆
∇. The algorithm is divided into three different phases.

The first one decomposes the first logN stages of the N -MIN2 using algorithm ∆⊗∇-Decom-

position.

The second phase decomposes the last logN − 1 stages. To this end, observe that – since G

has the P (∗, ∗) property – the last logN -1 stages of G induce two connected components, whose

factors are a subgraph ∇′ of ∆
∇ and a pair ∆′

1 and ∆′
2, subgraphs of ∇

∆. This second phase labels

one of the two connected components by means of algorithm ∆⊗∇-Decomposition, starting from

an arbitrary node. In order to guarantee the consistency in the labeling, it is not possible to start

from an arbitrary node to label the second connected component: each unlabeled node at stage

logN + 1 of G receives the same second element of the label (deriving from ∇′) as its labeled

sibling (with respect to their father at stage logN) in the first connected component. Once nodes

at stage logN + 1 have been labeled, we can run algorithm ∆ ⊗ ∇-Decomposition, in order to

label the second component.

At the end of these two phases all nodes of G have been labeled, and hence decomposed as LCP.

Also all edges, but the edges between stages logN and logN + 1, are decomposed as LCP. The

third phase adds the edges between layers logN and logN + 1 of ∆
∇. In fact, the decomposition

of stages logN and logN + 1 of G is completely specified by means of labels. Exploiting the
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edge-stage of G in between and the labels assigned during the previous phases, the corresponding

edge-stage in ∆
∇ is built. Namely, an edge in ∆

∇ is added between nodes u and v if an edge in the

N -MIN exists between nodes having as second element of their label u and v, respectively. It is

always possible to perform this third phase, in view of the definition of G as concatenation of two

logN Reverse Baseline equivalent MINs.

The pseudo-code of th just described algorithm follows.

Algorithm ∇
∆⊗ ∆

∇-Decomposition

Input: a (2 logN − 1) Stage N -MIN2 G;

Output: a specific ∆̃
∇, and a labeling of nodes of G representing the decomposition G = ∇

∆⊗∆̃
∇.

a. Decomposition of the first logN stages of the N-MIN2

Run Algorithm ∆⊗∇-Decomposition on the first logN stages of the N -MIN2 and produce a

label for each node of these stages.

b. Decomposition of the last logN − 1 stages

1. Label one of the two connected components by running Algorithm ∆⊗∇-Decomposition,

starting from an arbitrary node.

2. Consider the second element of the label. Label each unlabeled node at stage logN + 1 of

G with the same label as its labeled sibling (with respect to their father at stage logN).

3. Run Algorithm ∆ ⊗∇-Decomposition on the last logN − 1 stages of the N -MIN2, taking

into account the labels assigned at stage logN + 1.

c. Decomposition of the set of edges between stages logN and logN + 1

For each edge e = (u, v) connecting node u – labeled (u′, u′′) – at stage logN and node v –

labeled (v′, v′′) – at stage logN + 1 of G do
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add edge (u′′, v′′) in ∆
∇ between node u′′ at stage logN and node v′′ at stage logN + 1.

Before presenting an example showing how Algorithm ∇
∆⊗ ∆

∇-Decomposition works, for the

sake of clearness we add some details omitted in the pseudocode. First observe that Phase a.

must decompose the first logN stages of G as LCP of a ∇ (first factor) and a ∆ (second factor);

hence, the output of Algorithm ∆⊗∇-Decomposition executed during this phase must be slightly

modified: actually, the pairs of labels must be inverted.

Notice also that nodes of ∇
∆ and ∆

∇ not always follow the rule that node i has children 2i and

2i+ 1, as required by Algorithm ∆⊗∇-Decomposition, but it is sufficient to slightly modify the

code in order to allow it to be run on opportune portions of ∇
∆ and ∆

∇.

Example. Consider Fig. 11.a: it shows an N -MIN2 and a decomposition in factors of the

first logN stages performed by Algorithm ∆ ⊗ ∇-Decomposition (with the modifications just

mentioned). In Fig. 11.b the last logN−1 stages are factorized, and the two connected components

are highlighted. Observe that first one of the components is completely labeled (e.g. the dotted

one), then the labels of nodes at stage logN − 1 of the second component are set according to the

labels of the first component and of edge-stage between stages logN and logN + 1. Finally, Fig.

11.c shows the ∆
∇ factor after phase c. has been executed.

Theorem 12 Given an N -MIN2 G, O(N logN) time is sufficient to compute the specific ∆
∇deriving

from the decomposition of G as ∇
∆⊗ ∆

∇.

Proof The statement is proved if we show that algorithm ∇
∆⊗ ∆

∇-Decomposition is correct

and that its time complexity is O(N logN). To this aim, we consider the algorithm phase by phase.

Correctness. In view of the definition of the N -MIN2, Phase a. of the algorithm never fails and

always returns a labeling.
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Figure 11: An example showing how Algorithm ∇
∆⊗ ∆

∇-Decomposition works.
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Also Phase b. always succeeds, and the consistency of the labels is guaranteed from the fact

that the starting labels of the second connected component are not arbitrary, but are led by the

labeling of the first component.

At the end of these two phases all nodes of G have been labeled, and hence decomposed as

LCP. During Phase c. the only edge-stage characterizing each ∆
∇ (and hence each N -MIN2) is built,

exploiting the labels representing the decomposition in factors.

From the proof of Theorem 11, from the definition of G and from the definition of LCP, the

correctness of the algorithm follows.

Time complexity. The first two phases run in O(N logN) time (cf. Theorem 11); the third

phase considers all edges between stages logN and logN+1 of G once, and therefore runs in O(N)

time. Q.E.D.

Decomposing ∆
∇ into prime factors

In view of Theorem 6, checking the equivalence of two N -MIN2s can be reduced to the simpler

problem of checking the equivalence of their factors, if they have been opportunely constructed.

To this aim, we further decompose the ∆
∇s into their prime factors and then we compare them

pairwise.

In Section 2, we have shown the decomposition of ∆ and ∇ in terms of prime factors, i.e.

∆ = Λ1 ⊗ Λ2⊗ . . .⊗ Λlog N−1 and ∇ = V1 ⊗ V2⊗ . . .⊗ Vlog N−1 (see Λi and Vi in Fig. 3).

We can decompose any ∆
∇ as the LCP of logN − 1 Φi,j (see Φi,j in Fig. 3), where the values of

i and j depend on the specific ∆
∇, and i and j must have the following properties:

• 1 ≤ i ≤ logN − 1 and logN ≤ j ≤ 2 logN − 2;

• for any pair of factors Φi,j and Φi′,j′ , it must be i 6= i′ and j 6= j′, i.e. each fixed value of

i(j) appears exactly once.
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Figure 12: Two ∆
∇s with N = 8 decomposed into prime factors.

Two examples of decomposition of ∆
∇s into prime factors are shown in Fig. 12 in the caseN = 8.

A possible way to efficiently determine Φi,j facors of ∆
∇ consists in exploiting simple cycles from

i to j inside ∆
∇. More precisely, starting from any node v of the upper part of ∆

∇ at layer i, it is

easy to look for the value ̃ such that there exists a simple cycle from i to ̃ passing trough v. In

view of Lemma 3, this implies that Φi,̃ is a factor of ∆
∇. This operation takes O(N) time as we

have to search possibly the whole ∆
∇.

All Φi,j factors can be found repeating the previous search once for each i = 1, . . . , logN − 1.

Indeed, the simplicity of Φi,j factors implies that if Φi,̃ is a factor of ∆
∇, then each node at layer i

in ∆
∇ belongs to a simple cycle from i to ̃.

It follows that the whole decomposition of ∆
∇ into prime factors can be done in O(N logN)

time.

Now, we are ready to detail the whole algorithm checking the equivalence of two N -MIN2s.

Algorithm Compare-N-MIN2s

Input: two (2 logN − 1) layer N -MIN2s G′ and G′′ ;

Output: 1 if the N -MIN2s are topologically equivalent; 0 otherwise.

a. Decomposing N-MIN2s
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Run algorithm ∆
∇⊗

∇
∆-Decomposition on G′ and produce ∆

∇
′;

Run algorithm ∆
∇⊗

∇
∆-Decomposition on G′′ and produce ∆

∇
′′;

b. Decomposing ∆
∇s into prime factors

Run procedure decomposing ∆
∇s into Φi,j factors both on ∆

∇
′ and on ∆

∇
′′;

c. Comparing Φi,j factors

Sort Φi,j factors of ∆
∇

′ according to increasing index i producing the ordered list 〈j′1, j
′
2, . . . , j

′
log N−1〉;

Do the same for ∆
∇

′′ producing 〈j′′1 , j
′′
2 , . . . , j

′′
log N−1〉;

For i = 1 to logN − 1 do

if (j′i 6= j′′i )

then return 0;

return 1.

Example. Consider the two ∆
∇s depicted in Fig. 13.b as outputs of Phase a. of Algorithm

Compare N-MIN2s. Phase b. looks for simple cycles from each i to some j (see Fig. 13.b)

decomposing both ∆
∇s into their prime factors, depicted in Fig. 13.c. From them, Phase c. deduces

that the input N -MIN2s are topologically equialent.

Theorem 13 Given two N -MIN2s, O(N logN) time is sufficient to check their topological equiv-

alence.

Proof We prove the assertion by showing that algorithm Compare-N-MIN2s is correct and

it runs in O(N logN) time.
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Figure 13: a. Two equivalent ∆
∇s, with dn-labels and labels on their layers; b. Performing the

algorithm looking for the simple cycles and hance Φi,j factors; c. Φi,j factors of the given ∆
∇s.
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Correctness. It directly descends from Thm. 6, from the associativity of LCP, and from all

previous correctness proofs.

Time complexity. It is O(N logN) since both Phases a. and b. take O(N logN) time, and

Phase c. takes time proportional to the length of the sequences, i.e. O(logN). Q.E.D.

We conclude this section providing a characterization of equivalence classes ofN -MIN2s in terms

of prime factors and Butterfly-like stages, and we compute the number of equivalence classes. We

observe that ∇
∆= V1⊗ . . .⊗Vlog N−1 ⊗Λlog N⊗ . . .⊗Λ2 log N−2 (see Fig. 14 in the case N = 8). Re-

minding the decomposition into prime factors of ∆
∇, it follows that any N -MIN2 G is decomposable

into prime factors as LCP of V1 ⊗V2⊗ . . .⊗Vlog N−1 ⊗ΛlogN ⊗ΛlogN+1⊗ . . .⊗Λ2 log N−2 ⊗Φi1,j1⊗

. . .⊗ ΦilogN−1,jlogN−1
, where values of indices of Φi,j factors depend on the specific N -MIN2, that

is on the specific ∆
∇.

Since the LCP is commutative and associative, we can re-sort the prime factors according to

their indices and group them into triples Φi,j ⊗ Vi ⊗ Λj = Xi,j (see Fig. 4).

The following theorem holds:

Theorem 14 Each N -MIN2 is the LCP of exactly (logN − 1) Xi,js, where the indices of each

Xi,j have the following properties:

a. for each fixed ı̃, 1 ≤ ı̃ ≤ logN − 1, there exists exactly one Xı̃,j;

b. for each fixed ̃, logN ≤ ̃ ≤ 2 logN − 2, there exists exactly one Xi,̃.

From the previous reasonings we are able to decompose any N -MIN2 into its Xi,j factors in

O(N logN) time. Now we specify how each Xi,j factor contributes on the representation of the

resulting G, in terms of Butterfly-like edge-stages.

We can consider the set of Xi,js ordered with respect to their first index: Xlog N−1,jlog N−1
⊗

Xlog N−2,jlog N−2
⊗ . . .⊗X2,j2 ⊗X1,j1 . In this order, the general Xi,j is the (logN− i)-th factor and,
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V1 V2 Λ3 Λ4

Figure 14: A ∇
∆ with N = 8 decomposed into prime factors.

in correspondence of edge-stages i and j, it produces two i-th Butterfly-like edge-stages, i.e. the

edge-stages with crosses of width 2i − 1 (see Fig. 15). In other words, after ordinately multiplying

these factors, we get a N -MIN2 equivalent to G with the property that the upper Reverse Baseline

equivalent network is a Reverse Butterfly, while the lower one is any permutation of all the possible

Butterfly-like edge-stages. It is easy to see that different sequences of j indexes in the list of Xi,j

factors lead to non equivalent N -MIN2s; hence, we can choose these special N -MIN2s as particular

representatives of each equivalence class. Furthermore, since the number of possible permutations

of the lower (logN − 1) edge-stages is (logN − 1)! we can also state the following theorem:

Theorem 15 The number of distinct equivalence classes of N -MIN2s is (logN − 1)!

It follows that also the number of different ∆
∇s must be (logN − 1)!, as highlighted in Fig. 16.

It is straightforward to notice that, for each fixed N , the number of equivalence classes is

different. This implies that any two N -MIN2s belonging to different classes for a certain N can

fall in the same class for a smaller N .
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Figure 15: All the possible ways of multiplying Xi,js and the representative of the corresponding
equivalence class obtained by using only Butterfly-like stages, for N = 16.

6 Conclusions and Open Problems

In this paper we have proposed a new general characterization of topological equivalence of N -

MINs based on the LCP. Then, we have applied this characterization to logN and (2 logN − 1)

stage N -MINs.

Namely, we have designed an algorithm to determine if a given logN stage N -MIN is topolog-

ically equivalent to the Reverse Baseline. This algorithm is optimal, as other well known ones in

the literature, but its interest lies in the novel approach to the problem.

About (2 logN − 1) stage N -MINs (N -MIN2s), we have provided an optimal algorithm testing
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Figure 16: All the possible ∆
∇s related to N = 16 and a representative of the corresponding

equivalence class.

the equivalence of two N -MIN2s. This result improves of a factor N3 the previously known one

and definitely closes the equivalence problem on N -MIN2s.

Observe that the results for logN and (2 logN − 1) stage N -MINs are different, since the first

one checks the belonging to the equivalence class whose the Reverse Baseline is a representative,

while the second one checks the equivalence of any two N -MIN2s. Nevertheless, it does not seem

easy to cover this gap using the LCP, since it is not clear how to specify the properties of the

complement of the equivalence class which the Reverse Baseline belongs to.

The technique used to check the equivalence of two N -MIN2s has led also to determine the

number of different equivalence classes and to characterize them. Namely, we have characterized

each equivalence class by means of Xi,j factors. Furthermore, we have proved that a representative
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of each equivalence class can be visualized as an N -input Reverse Butterfly concatenated with a

logN stage N -MIN obtained as any permutation of the Butterfly-like edge-stages. This is the first

result giving body to the equivalence classes not containing the most popular and studied N -MIN2s

and contributes to approach problems on N -MIN2s independently from the graphical appearance

of the specific network.

Finally, the characterization of the equivalence classes of N -MIN2s allows one to do some

considerations about the rearrangeability; this is the subject of a further paper [6].
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