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Abstract

The edge-bandwidth problem is an analog of the classical bandwidth problem, in which one has to label

the edges of a graph by distinct integers such that the maximum difference of labels of any two incident

edges is minimized. We prove tight bounds on the edge-bandwidth of hypercube and butterfly graphs

and complete k-ary trees which extend and improve on previous known results. We also provide an

improvement on the upper bound for the bandwidth of butterfly.

1 Introduction

Let G = (V, E) be a simple graph with |V | = n and |E| = m. Let f be a bijection from V to the set
{1, 2, 3, ..., n}, called a labelling of vertices of G. The bandwidth of G is defined to be

B(G) = min
f

max
(u,v)∈E

|f(u) − f(v)|

where the minimum is taken over all possible labellings f of G. There are several motivations for studying the
bandwidth problem: sparse matrix computations, representing data structures by linear arrays, VLSI layouts
and mutual simulations of interconnection networks, see surveys [3, 4, 17]. The problem is NP-hard and is
inapproximable by any multiplicative constant even for the class of caterpillar graphs [19], unless P = NP .
Bandwidths are known only for a few infinite families of graphs including hypercubes [9], complete trees [10]
and various mesh-like graphs, see [3, 10, 11, 14, 16]. Lower bound techniques are surveyed in [20].

The edge-bandwidth problem goes back to the work of Hwang and Lagarias [12]. It is defined as an analog
of the bandwidth problem where instead of vertices one labels the edges. More formally, let g be a bijection
from E to the set {1, 2, 3, ..., m}, called a labelling of edges of G. The edge-bandwidth of G is

B′(G) = min
g

max{|g(a) − g(b)| : a, b ∈ E, a, b are incident},

where the minimum is taken over all possible labellings g of edges of G. Grünwald and Weber [7, 8]
determined edge-bandwidths for complete binary trees, complete and complete bipartite graphs. Bezrukov
et al. [2] considered the edge-bandwidth of the n-dimensional hypercube graph Qn and showed estimations:

2n−1 + 2n−2 ≤ B′(Qn) ≤ 2
⌈n

2

⌉

(

n

⌊n
2 ⌋

)

− 1 (1)

Recently, Tao Jiang el al. [13] rediscovered the edge-bandwidth for Kn, Kn,n and found an exact result for
caterpillars. In a subsequent paper Eichhorn et al. [5] computed edge-bandwidths of all theta graphs. Let
L(G) denote the line graph of G i.e. the graph whose vertices are edges of G and two vertices are adjacent
if and only if the edges were incident in G. Then by the above definition

B′(G) = B(L(G)). (2)
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The aim of this paper is to prove several new results on the edge-bandwidth for typical graphs. Section 2
contains usefull upper and lower bounds on bandwidths. In Section 3 we essentially improve the lower bound
in (1). Tight bounds on the edge-bandwidth for butterfly graphs and complete k-ary trees are in Sections
4 and 5, respectively. The tecnique used to achieve the upper bound on the edge-bandwidth for butterflies
is used also to improve the previously known results on the bandwidth of butterflies. In the last section we
discuss a possible further research.

2 General Bounds

First we mention two powerful lower bound methods for estimating the bandwidth and then prove a new
relation between the edge-bandwidth and bandwidth.

Let G = (V, E) be a graph. For S ⊆ V , let

∂(S) = {v ∈ V − S| (u, v) ∈ E, u ∈ S}.

Harper [9] in his seminal work on the bandwidth of the hypercube graph implicitely proved:

Theorem 1 For any k, 0 ≤ k ≤ |V |/2

B(G) ≥ min
S

|S|=k

max{|∂(S)|, |∂(V − S)|}.

Another useful estimation is, see e.g. [20]:

Lemma 1 Let H be a graph on p vertices of diameter diam(H) > 0. Then

B(H) ≥

⌈

p − 1

diam(H)

⌉

. (3)

Jiang et al. [13] proved that
B′(G) ≤ 2tB(G) + t − 1,

where t denotes the arboricity of G. Let ∆ denote the maximum degree of G. As t ≤ ∆ we immediately
have

B′(G) ≤ 2∆B(G) + ∆ − 1,

We improve on this estimation by proving the following:

Theorem 2

B′(G) ≤ ∆(B(G) + 1).

Proof: Consider an optimal labelling of G with respect to the bandwidth measure. Identify the vertices
with their labels. Let di be the degree of the vertex i.
Label edges incident to 1 by 1, 2, ..., d1.
Label unlabelled edges incident to 2 by d1 + 1, d1 + 2, ..., d1 + x2, where x2 ≤ d2.
Label unlabelled edges incident to i ≤ n− 1 by d1 + x2 + x3 + ... + xi−1 + 1, ..., d1 + x2 + x3 + ... + xi, where
xi ≤ di.

Now we check the labelling. Let (i, j) and (j, k) be any pair of incident edges of G. Assume that i <
j < k. Clearly the label of (i, j) is at least d1 + x2 + x3 + ... + xi−1 + 1 and the label of jk is at most
d1 + x2 + x3 + ... + xi−1 + xi + ... + xj . Hence the difference of labels of edges (i, j) and (j, k) is at most

xi + ... + xj − 1 ≤ (j − i + 1)∆ − 1 ≤ (B(G) + 1)∆ − 1.

Assume now i, k < j. The proof is similar.
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3 The Hypercube Graph

In this section we essentially improve the lower bound from [2] for the edge-bandwidth of the hypercube
graph. In a n-dimensional hypercube Qn, the vertices are all binary strings of length n, and two vertices are
adjacent if and only if they differ in exactly one position.

Theorem 3 The edge-bandwidth of the n-dimensional hypercube satisfies

B′(Qn) ≥
n

4

(

n

⌈n
2 ⌉

)

.

Proof: Consider the graph L(Qn). It has n2n−1 vertices. We prove that for any n2n−2-vertex set S ⊂ V

max{|∂(S)|, |∂(V − S)|} ≥
n

4

(

n

⌈n
2 ⌉

)

,

which - in combination with Theorem 1 - will imply the lower bound.
Color the vertices of S by red and the vertices of V − S by white. Note that L(Qn) is a union of 2n

n-cliques, where the edge set of L(Qn) is a disjoint union of the edges of the cliques. Let R, W and M be
the set of all red, white and mixed cliques, respectively. Clearly, |R| + |W | + |M | = 2n. For a mixed clique
c ∈ M , let xc denote the number of its red vertices, 1 ≤ xc ≤ n − 1. Since each node is shared by exactly
two n-cliques, it is straightforward to observe that

|∂(S)| ≥
1

2

∑

c∈M

(n − xc) (4)

and similarly

|∂(V − S)| ≥
1

2

∑

c∈M

xc (5)

Then

max{|∂(S)|, |∂(V − S)|} ≥
1

2
(|∂(S)| + |∂(V − S)|) ≥

1

4
|M |n.

Distinguish two cases.

1. If |M | ≥
(

n
⌈n

2
⌉

)

then we are done.

2. Assume |M | <
(

n
⌈n

2
⌉

)

. We show that this case is impossible.

Summing up the numbers of red vertices in red cliques and mixed cliques one has

|R|n +
∑

c∈M

xc = n2n−1, (6)

as every red vertex was counted twice. Similarly for the number of white vertices

|W |n +
∑

c∈M

(n − xc) = n2n−1.

We can assume that
∑

c∈M

xc ≤
|M |n

2
, (7)

otherwise we change the role of the red and white vertices. By combining (7) and (6) we get

2n−1 −
1

2

(

n

⌈n
2 ⌉

)

< |R| < 2n−1. (8)

Now consider again the original hypercube Qn. Clearly, there is a one-to-one correspondence between n-
cliques in L(Qn) and vertices in Qn, according to the line graph operation. In other words, a vertex v in Qn

corresponds to a clique in L(Qn), created on the edges of Qn incident to v. Let R′ be the set of all vertices
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in Qn which correspond to cliques in R. Define similarly the sets W ′ and M ′. Then |R′| = |R|, |W ′| = |W |
and |M ′| = |M |. Observe that ∂(R′) ⊆ M ′ and hence

|∂(R′)| ≤ |M ′| = |M | <

(

n

⌈n
2 ⌉

)

. (9)

Frankl [6] proved the following usefull estimation: Let A be a subset of the vertices of Qn. If

|A| =

(

n

n

)

+

(

n

n − 1

)

+ ... +

(

n

r + 1

)

+

(

y

r

)

,

for an integer r and a real y, then

|∂(A)| ≥

(

n

r

)

+

(

y

r − 1

)

−

(

y

r

)

.

Because (8) implies

2n−1 −
1

2

(

n

⌈n
2 ⌉

)

< |R′| < 2n−1

we have

|R′| =

(

n

n

)

+

(

n

n − 1

)

+ ... +

(

n

⌈n
2 ⌉ + 1

)

+

(

y

⌈n
2 ⌉

)

,

for some real y, ⌈n/2⌉ ≤ y < n. By applying the Frankl’s result we get

|∂(R′)| ≥

(

n

⌈n
2 ⌉

)

+

(

n

⌈n
2 ⌉ − 1

)

−

(

y

⌈n
2 ⌉

)

≥

(

n

⌈n
2 ⌉

)

,

which contradicts to (9).

4 The Butterfly Graph

In this section section we present upper and lower bounds on the edge-bandwidth for butterflies. Using
the same technique, we improve also the previously known result on the upper bound for the bandwidth of
butterflies. The n-dimensional butterfly graph Bn has vertices [i, w], where w is a binary string of length
n and i is an integer in the range from 0 to n. The vertex [i, w] is adjacent to [i + 1, w′] if and only
if either w = w′ or w = β1, β2, ..., βi−1, βi, βi+1, ..., βn−1 and w′ = β1, β2, ..., βi−1, βi, βi+1, ..., βn−1. The
n-dimensional butterfly has 2n(n + 1) vertices and 2n+1n edges. Its diameter is 2n. The butterfly graph
represents the standard interconnection network of parallel computers [15], especially suitable for sorting
and the Fast Fourier Transform, and it is usually graphically represented as in Figure 1.a. However, it is
possible to highlight the simmetry of butterfly graphs with respect to its last level, as depicted in Figure
1.b. In the following, we will use just this representation.

Before proving the bound on the edge-bandwidth of the butterfly, we need to do some preliminary obser-
vations.

First note that the n-dimensional butterfly network Bn can be covered by 2n+1 edge-disjoint complete
binary trees as follows:
− two trees Tn+1 having n + 1 levels, sharing their leaves;
− for any i = 3, . . . , n, 2n+1−i trees Ti having i levels, sharing their leaves with internal vertices of some

tree Tj, j > i, (and their internal vertices with some Tk, k < i).
Since we use the butterfly representation of Figure 1.b, in the following we consider only half of all these
trees, since the other half is symmetrical (see Fig. 3.a).

In view of the previous decomposition in trees, we need to describe the line graph of a complete binary tree
to construct L(Bn). Let Tn be the complete binary tree of depth n. The graph L(Tn) is constructed from
two binary trees of type Tn−1 in the following way: in every non-leaf vertex of each Tn−1 join its children
and finally join the roots of both trees. See Fig. 2 where T4 and L(T4) are depicted.

The graph L(Tn) has 2n+1 − 2 vertices and diameter 2n− 1. The vertices of L(Tn) are divided into levels
1, 2, 3, ..., n, starting from the top.
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a b

Figure 1: Two different representations of B3.

Figure 2: T4 and L(T4).
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Observe that L(Tn) consists of two equal subgraphs, GL and GR, connected by one horizontal edge.
Although GL (GR) is not a tree, in the following we will use anyway the notation of trees; e.g. we call
”leaves” the vertices on the last level, ”parent” of a vertex v the vertex connected to v and lying on the
previous level, and so on.

Now we are ready to prove the following theorem:

Theorem 4 The edge-bandwidth of the n-dimensional butterfly satisfies

2n ≤ B′(Bn) ≤
5

4
2n.

Proof: Lower bound. The lower bound follows from (3) by noting that L(Bn) has 2n+1n vertices and the
diameter of 2n.
Upper bound. We prove the upper bound by giving a feasible labeling for the line graph of the n-dimensional
butterfly network L(Bn).

We construct a graphical representation of L(Bn) (in fact, of half of it) with vertices with integer coordinates
exploiting the line graph of the complete binary tree. This representation induces an ordering on the vertices
of each level and we can follow this order to label the vertices of L(Bn). The representation of L(Bn) in the
plane is constructed in the following way (for an intuition, see Figure 3.b), putting the origin of the axes on
the top left corner with the x-axis being directed to the right and the y-axis being directed down:
− put on the plane vertices of the line graph of the biggest tree in Bn in the following way:

• put the root of GL at coordinates (0, 0);

• put the root of GR at coordinates (2n−1, 0);

• given an already placed vertex with coordinates (x, i − 1), i = 1, . . . , n − 1, put its left child at
coordinates (x, i);

• given an already placed vertex with coordinates (x, i − 1), i = 1, . . . , n − 1, put its right child at
coordinates (x + 2n−1−i, i).

− While all the trees in Bn have been considered:
Consider the biggest tree T in Bn not considered yet; let h be the height of T ; observe that the leaves
of the line graph of T have already been put on the plane, since they correspond to vertices shared with
higher trees;
put on the plane vertices of the line graph of T in the following way:

• for each vertex of L(T ) at level h − 1:
let v1 and v2 be the children of v in L(T ) already drawn;
if v1 and v2 have coordinates (x1, h) and (x2, h), respectively, x1 < x2, then let (x2, h − 1) be the
coordinates of v;

• for all levels j from h − 2 downto 1:
for all vertices v of L(T ) at level j: let v1 and v2 be the children of v in L(T ) at level j + 1; if v1

and v2 have coordinates (x1, j + 1) and (x2, j + 1), respectively, x1 < x2, then let (x1, j) be the
coordinates of v.

Once all vertices in L(Bn) have been laid out, we can easily add all its edges (see Figure 3.b) and do the
following observations:

Observation 1 Edges connecting vertices on the same level j are incident to vertices whose x-coordinates

differ by 2n−1−j.

Observation 2 The graphical representation of the set of edges connecting vertices at level j with vertices

at level j + 1 is as the usual butterfly-like set of edges between levels n − 1 − j and n − 2 − j and its cross

width is 2n−j−2.

Now we consecutively label in increasing fashion all vertices of L(Bn) from left to right, from level 0 to
level n − 1, and we prove that the bandwidth of this labeling is 5

42n.
Observe that each level contains exactly 2n vertices of L(Bn). Consider now the general edge e = (v, w)

in L(Bn). Then: either v and w are on the same level, or v is on level j and w is on level j + 1 (the inverse
is symmetrical). If v and w are on the same level, then their labels differ by at most 2n−1 as it follows from
Obs. 1, applied with j = 0. On the other hand, if v and w lie on consecutive levels – exploiting Obs. 2 –
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Figure 3: a. Half of B4, where the tree covering is highlighted. b. A graphical representation of half of
L(B4).

then it is easy to see that the biggest difference between their labels happens when the x-coordinate of v is
smaller than the x-coordinate of w and j = 0; in such a case the labels differ by the size of a whole level
plus the maximum cross width, i.e. by 2n + 2n−2 = 5

42n.

Concerning the vertex bandwidth of Bn, Barth et al. [1] proved the following bounds for the bandwidth
of the n-dimensional butterfly graph:

2n−1 ≤ B(Bn) ≤ 3 · 2n−1.

By exploiting the same technique of labeling row by row a layout of the network, we improve the upper
bound:

Theorem 5 The bandwidth of the n-dimensional butterfly satisfies

B(Bn) ≤ 2n.

Proof: Consider the drawing of Bn from the Figure 1.b Label the vertices by 1, 2, 3, ..., 2n(n +1) in the row
by row manner starting from the left top vertex. One can easily see that the maximum difference is 2n.

We conjecture equality in the above bounds.

5 Complete k-Ary Trees

In this section we give an asymptotically optimal estimation for the edge-bandwidth of the complete k-ary
tree, k ≥ 3. Let T k,n denote the complete k-ary tree of the depth n. Define Gk,n = L(T k,n). The graph
Gk,n has (kn+1 − k)/(k − 1) vertices and diameter 2n − 1.

Theorem 6 The edge-bandwidth of the complete k-tree of depth n satisfies

kn+1 − 2k + 1

(2n − 1)(k − 1)
≤ B′(T k,n) ≤ k

⌈

k(kn−1 − 1)

(2n − 2)(k − 1)

⌉

+ k − 1. (10)
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Proof: Lower bound. A lower bound is given immediately by the inequality (3)

B′(T k,n) ≥
kn+1 − 2k + 1

(2n − 1)(k − 1)
. (11)

Upper bound. Note that every k incident edges on the same edge level in T k,n induce a k-clique in Gk,n. By
shrinking every such clique into a single vertex and by removing multiple edges we get T k,n−1. According
to [18]

B(T k,n−1) =

⌈

k(kn−1 − 1)

(2n − 2)(k − 1)

⌉

.

Now multiply every label by k and expand T k,n−1 back to Gk,n. Label the vertices of a clique by lk, lk −
1, lk− 2, ..., lk− k +1 if the corresponding vertex in T k,n−1 was labelled by l. Finally, take any two adjacent
vertices in Gk,n. Let the vertices belong to cliques which correspond to vertices labelled by l and l′ in Tk,n−1,
where l ≥ l′. Then

B(Gk,n) = B′(T k,n) ≤ lk − (l′k − k + 1) ≤ k(l − l′) + k − 1 ≤ k

⌈

k(kn−1 − 1)

(2n − 2)(k − 1)

⌉

+ k − 1. (12)

By combining the bounds in (11) and (12) we get the result.

6 Conclusion

We essentially improved a lower bound for the edge-bandwidth of the hypercube graph and gave tight
estimations for the butterfly graph and the complete k-ary trees, k ≥ 3. Determining the exact values
remains an open problem. Another intersting open question is the edge-bandwidth of the m × n grid. We
conjecture that the optimal value is 2n − 1, for m ≥ n.
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