
USING THE LCP BASED DECOMPOSITION FOR PERMUTATION
ROUTING ON (2 LOG N − 1) STAGE INTERCONNECTION NETWORKS

Annalisa Massini Maria Teresa Raffa
Dipartimento di Informatica, Sapienza Università di Roma,

via Salaria 113 - 00198 Rome, Italy
massini@di.uniroma1.it

ABSTRACT In this paper we describe a routing algorithm
that routes any permutation on a (2 log N − 1) stage inter-
connection network in O(N log N) time. The proposed al-
gorithm works on any multistage interconnection network,
MIN, belonging to the equivalence class represented by the
concatenation of a Reverse Butterfly and a Butterfly whose
first and second stages are swapped. Both the routing al-
gorithm and the definition of equivalence classes are based
on the decomposition in factors of MINs obtained using
the Layered Cross Product. The interest of this result is
its approach, that is based on the use of only one factor of
the studied MIN. Moreover, the algorithm provides a proof
that all (2 log N − 1) stage MINs obtained concatenating
two log N stage Butterfly equivalent MINs, with N = 8
inputs are rearrangeable.

KEY WORDS Multistage Interconnection Networks, Re-
arrangeability, Routing Algorithm, Layered Cross Product

1 Introduction

Interconnection networks are widely studied for realizing
communication among processors and for distributing in-
formation in telecommunication systems, using both elec-
tronic and optical technologies. Many interconnection net-
work topologies have been considered in the past decades
and, among these, Multistage Interconnection Networks,
MINs, offer a good trade-off between routing time com-
plexity and topological complexity. An important require-
ment on interconnection networks is the realizability of any
permutations of data between inputs and outputs. An N
input MIN is called a rearrangeable network if it realizes
every one of the N ! permutations in a single pass. MINs
consisting of log N stages such as Omega, Flip, Baseline
and Reverse Baseline, Butterfly and Reverse Butterfly are
all equivalent networks [4, 5] and have attractive features,
but they are not rearrangeable. For this reason, MINs ob-
tained by concatenating two log N stage MINs with the
center stage overlapped, have been intensively studied. In-
deed, 2 log N − 1 is the theoretically minimum number of
stages required for obtaining rearrangeable multistage in-
terconnection networks [10]. The popular (2 log N − 1)
stage Beneš network [2, 3] is rearrangeable and the Loop-
ing algorithm provides a method and a proof for its rear-
rangeability. Unfortunately the Looping algorithm can be

used only on (2 log N − 1) stage symmetric MINs with
recursive structure such as Baseline-Reverse Baseline and
Butterfly-Reverse Butterfly networks and it does not work
on the Omega-Omega−1 or Double Baseline even if they
are equivalent to the Beneš network [5]. For the Omega-
Omega−1, Lee [11, 12] proposed a routing algorithm that
exploits the network topology configuration (as the Loop-
ing algorithm) and then works only on the networks it is
designed for. Both this algorithm and the Looping algo-
rithm have O(N log N) time complexity. Recently, Das in
[7] has formulated a sufficient condition for checking the
rearrangeability of (2 log N − 1) stage MINs and has pre-
sented a routing algorithm requiring an O(N log N) time
complexity. Note that lower values for the time complex-
ity have been obtained only for special class of permuta-
tions. In [6] an algorithm to route any permutation on any
Beneš equivalent MIN is described. In that work the Lay-
ered Cross Product, LCP, of Even and Litman [8], is ex-
ploited to obtain the decomposition of (2 log N − 1) stage
MINs in factors. The decomposition in factors has been
used in several works [8, 5, 9, 13].

In this work we describe an algorithm that routes any
permutation on a MIN belonging to the equivalence class
represented by the concatenation of a Reverse Butterfly and
a Butterfly whose first and second stages are swapped, ex-
ploiting the decomposition factors of the network. The in-
terest of this result is in the approach used, that is based on
the use of only a factor of the studied MIN, in a way similar
to that presented in [6].

2 Preliminaries

In this section we give some definitions and introduce some
notations used in the rest of the paper.

Definition 2.1. A permutation Π for a MIN is a set of N
different input-output pairs (i, j) with i, j ∈ [1, N] having
neither inputs nor outputs in common. Each pair represents
the connection request between one input and one output.

A MIN satisfies Π if there exists a set of N edge dis-
joint paths from the input to the output of each request in
Π passing through exactly one node in each stage.

Definition 2.2. A MIN is rearrangeable if it can satisfy all
the N ! permutations.

1

The algorithm presented in this work is based on
the partition of (2 log N − 1) stage MINs in equivalence
classes, described in [5]. This partition is obtained by
means of the decomposition in factors of a MIN exploit-
ing the theory of Layered Cross Product (LCP) [8]:
- an l-layered graph, G = (V1, V2, . . . , Vl, E) consists of l
layers of nodes, Vi is the (non-empty) set of nodes in layer
i, where 1 ≤ i ≤ l; E is a set of edges such that every edge
connects nodes of two adjacent layers,
- the Layered Cross Product, G = G′⊗G′′, of two l-layered
graphs G′ = (V ′

1 , V ′
2 , . . . , V ′

l , E′) and G′′ = (V ′′
1 , V ′′

2 , . . . ,
V ′′

l , E′′) is an l-layered graph G = (V1, V2,
. . . , Vl, E) where Vi is the cartesian product of V ′

i and V ′′
i ,

1 ≤ i ≤ l, and an edge 〈(u′, u′′), (v′, v′′)〉 belongs to E if
and only if 〈u′, v′〉 ∈ E′ and 〈u′′, v′′〉 ∈ E′′. G′ and G′′

are called the first and second factor of G, respectively.
A MIN is an example of layered graphs.
The operation of decomposition in factors is the in-

verse operation of the LCP. As described in [5], any
(2 log N − 1) stage MIN can be decomposed into two fac-
tors: the first one consists of two complete binary trees
sharing their roots, call it ∇∆, and it is the same for all
(2 log N − 1) stage MINs; the other factor consists of
two complete binary trees sharing their leaves, be it ∆∇,
and it characterizes each equivalence class according to the
way the leaves are connected. The number of the equiva-
lence classes, that is the number of ∆∇, is (log N)!. In the
case of N = 8, there are only two possible classes, that
are the sub-∆∇ of the first and second ∆∇ in Figure 1, on
the left side. The first class contains the Beneš network
and the Reverse Butterfly-Butterfly, the second class con-
tains the Omega-Omega and the Butterfly-Butterfly (Re-
verse Butterfly-Reverse Butterfly). All (log N)! possible
equivalence classes in the case of N = 16 inputs (outputs)
are shown in Figure 1 by means both of the ∆∇ factor and
the representative MIN, visualized as a Reverse Butterfly
concatenated with a log N stage MIN obtained as any per-
mutation of the Butterfly stages (factor ∇∆ is not shown in
Figure 1).

In [6] an algorithm for setting the switches of a Beneš
equivalent MIN is described. It exploits only the ∆∇ fac-

tor because the paths on the ∇
∆ factor are imposed by the

tree structure. For this reason, the routing algorithm is de-
signed by using only the ∆∇ factor, but the relations among

input or output elements, derived from ∇
∆, are taken into ac-

count to determine the paths. In particular, to avoid edge
conflicts, elements (inputs or outputs) using the same path
on ∇

∆, must be separated on factor ∆∇, that is they must use

different paths of ∆∇. This can be obtained checking the

building of the ∆∇ paths level by level. To clarify this as-
pect we use Figure 2. Let us observe the position of the
inputs of the two factors. The two elements of input pairs
use the same edge on the first level of ∇∆, then they must be

Figure 1. All the possible ∆∇ factors in the case of MINs
with N = 16 inputs (outputs). MINs are represented using
butterfly-like stages.

associated to different edges of ∆∇, namely if we associate
input 1 to the right first level edge, then we must associate
2 to the left one, then if we use the left first level edge for
3, input 4 must use the right level, and so on. Of course,
it is necessary to proceed in the choice of the left or right
edge by taking into account which edges will be used on
the other levels by each element. For the second class of
(2 log N − 1) stage MINs of size N = 8, a general proof
of rearrangeability is not available in literature. A proof
of rearrangeability of a network in this class, that is the
Five-Stage Shuffle/Exchange Network for N = 8, is due to
Raghavendra and Varma [14] and is obtained by means of
an algorithm providing the switch setting by building the
pairs of input arriving to nodes of the middle stage.

3 The Permutation Routing Algorithm

In this section we propose a new permutation routing algo-
rithm for any MIN belonging to the second class of the case
N = 8, working on its ∆∇ factor that in the following we de-

note ∆∇
′
8
. Then we use the rearrangeability of this class of

MINs to prove the rearrangeability of MINs that have ∆∇
′
8

as sub-∆∇ in their ∆∇ decomposition factor.
The aim of the algorithm is to find suitable pairs of

inputs and outputs that can reach the middle stage of ∆∇
′
8

without generating conflicts on edges. These pairs are in-
puts of the switches in the middle stage of the MIN. The
requested permutation is obtained by using the self routing
capability of log N stage MINs.

To this end, we define the following sequences that
we use to check if input or output elements can be coupled
avoiding conflicts generation.

Let Π be the permutation:(
1 2 3 4 5 6 7 8

π(1) π(2) π(3) π(4) π(5) π(6) π(7) π(8)

)
and

let UP and DOWN be the sequences:
UP = [1, 2, 3, 4, 5, 6, 7, 8] and DOWN =

[π(1), π(2), π(5), π(6), π(3), π(4), π(7), π(8)].
Observe that the set DOWN is obtained from the

considered permutation by swapping the pairs (π(3), π(4))
and (π(5), π(6)), due to the structure of ∆∇.

We subdivide both the sequences, UP and DOWN ,
into two subsequences, that are: UPL = [1, 2, 3, 4] and
UPR = [5, 6, 7, 8], DOWNL = [π(1), π(2), π(5), π(6)]
and DOWNR = [π(3), π(4), π(7), π(8)].

In Figure 2 all the above defined sequences are de-
picted. Note that it is not possible to visualize the se-
quences UPL, UPR, DOWNL and DOWNR on ∆∇ be-
cause the position of each element on an edge depends on
the given permutation. A further subdivision of the above

UPL [1 2 3 4] UPR [5 6 7 8]

DOWN L

[p(1)p(2)p(5)p(6)]
DOWN R

[p(3)p(4)p(7)p(8)]

L L

L L

R R

R R

 8] UP[1 4 2 3 5 6 7UP [1 4 2 3 5 6 7 8]

DOWN [p(1) p(4)p(2) p(3)p(5) p(6) p(7)p(8)] [p(1) p(4)p(2) p(3)p(5)p(6) p(7)p(8)]DOWN

Figure 2. Factors of a MIN of size N = 8 where sequences
UP , DOWN , UPL, UPR, DOWNL and DOWNR are
highlighted.

sequences provides the following input pairs, pUP , and out-
put pairs, pDOWN :
- (1, 2) and (3, 4) which form the sequence UPL

- (5, 6) and (7, 8) which form the sequence UPR

- (π(1), π(2)) and (π(5), π(6)) which form the sequence
DOWNL

- (π(3), π(4)) and (π(7), π(8)) which form the sequence
DOWNR

Observation 1. Each successive subdivision of sequences
UP and DOWN provides the groups of elements on each
edge level of ∇∆ and allows us to check how to build groups

of elements on ∆∇ edge levels without conflicts. To avoid

conflict generation, elements of the same group in ∇
∆ must

be separated on ∆∇, namely elements on the same edge of ∇∆

must be associated to different edges in ∆∇.

We define the four paths in ∆∇
′
8
, connecting the root of

∆ to the root of ∇, by associating labels L, for left, and
R, for right, to the edges of the two central stages of ∆∇ as
shown in Figure 2. The four paths are defined as follows:
PLL uses the edges labeled L both in ∆ and in ∇
PLR uses the edge labeled L in ∆ and the edge labeled R
in ∇
PRL uses the edge labeled R in ∆ and the edge labeled L
in ∇
PRR uses the edges labeled R both in ∆ and in ∇

We introduce the notation mateU(x) and mateD(x)
to indicate the relation mate of coupling of an element x
with the other element of the pair in sequences UP and
DOWN respectively. It is easy to observe that for se-
quence UP the relation mate is fixed, whereas for the se-
quence DOWN the relation depends on the considered per-
mutation. As shown in the example of Figure 3, the re-
lation mate for element 3 provides: mateU(3) = 4 and
mateD(3) = 1.

To form pairs that can be associated to paths of ∆∇
without generating edge conflicts, we require that for any
pair (x, y) the following Pair Properties hold:
P1 (x ∈ UPL ∧ y ∈ UPR) ∨ (x ∈ UPR ∧ y ∈ UPL)
P2 (x ∈ DOWNL ∧ y ∈ DOWNR) ∨ (x ∈ DOWNR ∧
y ∈ DOWNL)
P3 pair (x, y) can be associated to fixed path Pij , where
i, j ∈ {L,R} if and only if ((mateU(x) /∈ Piz ∧
mateU(y) /∈ Piz) ∧ (mateD(x) /∈ Pzj ∧ mateD(y) /∈
Pzj)), where z ∈ L, R

Observation 2. Pair Properties P1 and P2 avoid edge
conflicts on level 2 and 3 of ∆∇. Pair Property P3 avoids

edge conflicts on level 1 and 4 of ∆∇.

To correctly form pairs satisfying Pair Property P3 for
any permutation, we must avoid to couple elements that,

even satisfying P1 and P2, can not be routed on ∆∇
′
8

without
conflicts, that is elements that can not be both associated to
the same path. This can be obtained by choosing the first
element of the first pair in a suitable way. This is realized

by Step 1 of algorithm ROUTING ON ∆∇
′
8
, given in section

3.2.

3.1 The Algorithm on an example for ∆∇
′
8

Before giving the algorithm, we illustrate how it works by
using the example in Figure 3. We determine the pairs of

elements and the ∆∇
′
8

path each pair is associated.

 6] DOWN

UPL[1 2 3 4] UPR [5 6 7 8]

DOWN L[1 3 5 8] DOWN R [2 7 4 6]

(1,6) (7,3) (8,2) (4,5)

[1 8 3 5 2 7 4

 8] UP[1 4 2 3 5 6 7UP [1 4 2 3 5 6 7 8]

DOWN [1 8 3 5 2 7 4 6]

(1,6) (8,2) (7,3) (4,5)

(1,6) (8,2)

(1,6) (7,3) (4,5) (8,2)

(4,5) (7,3)

Figure 3. The pairs founded by the algorithm for the middle
node stage.

As an example, if permutation(
1 2 3 4 5 6 7 8
1 3 2 7 5 8 4 6

)
is considered, see Fig-

ure 3, the sequence UP is [1, 2, 3, 4, 5, 6, 7, 8], as usual, the

sequence DOWN is [1, 3, 5, 8, 2, 7, 4, 6], where pairs (2, 7)
and (5, 8) are swapped due to the structure of ∆∇.

We obtain the following sequences, where pairs (and
consequently the relation mate) are highlighted by means
of parentheses:
UPL = [(1, 2), (3, 4)] and UPR = [(5, 6), (7, 8)]
DOWNL = [(1, 3), (5, 8)] and DOWNR =
[(2, 7), (4, 6)]
Let us consider an element x1 in the sequence UP as
starting element. Usually, we start considering x1 = 1, but
this is not always possible (Procedure Check Permutation

in the following algorithm ROUTING ON ∆∇
′
8

).
Then, in our example we start with x1 = 1. To satisfy

Pair Property P1, we must couple it with an element be-
longing to UPR. We can not couple it with 5 because pair
(1, 5) does not respect Pair Property P2. We can associate

x1 = 1 with x2 = 6 and put pair (1, 6) on path PLL of ∆∇
′
8
.

To determine a new pair, we consider the element
x3 = mateD(x2), in our example is x3 = 4. This implies
that this new pair will be associated to either path PLR or
PRR because the choice of x3 imposes the use of right edge

on bottom level of ∆∇
′
8
. To minimize edge conflicts, we con-

sider, as second element of the pair, x4 = mateD(x1) and
we check if Pair Properties are respected. In our exam-
ple this choice is in contradiction with property P1. Then
we consider next element in sequence DOWNL, that is
x4 = 5, and we obtain the valid pair (4, 5). We can not
associate (4, 5) to path PLR because a conflict on the upper

level of ∆∇
′
8

would arise, then the path for pair (4, 5) is PRR.
Following the same reasoning we produce the third

pair and, obviously, the fourth is automatically given.
We consider x5 = mateU(x4) = 6, but this element

is already used. Then we consider elements in the UPR

sequence until we find a valid element, that is x5 = 7 in
our example. We associate it with x6 = mateU(x3) = 3.
We obtain the valid pair (7, 3). We can associate it both to
path PLR and to path PRL because no conflict arises. Let
PLR be the chosen path. The last pair is (8, 2) and it must
be put on path PRL.

3.2 Algorithm for routing on ∆
∇
′
8

factor

Given the ∆∇
′
8

factor and a permutation Π, here follows the
algorithm to find the four pairs that will be used as inputs
of the middle stage nodes of the considered MIN.

ROUTING ON ∆∇
′
8

ALGORITHM

Input:
UPL = [(1, 2), (3, 4)], UPR = [(5, 6), (7, 8)] fixed se-
quences
DOWNL = [(π(1), π(2))(π(5), π(6))], DOWNR =
[(π(3), π(4)) (π(7), π(8))] permutation sequences
Output:
for each input, one of the paths PLL PLR PRL PRR

Step 1: Choice of the starting element
- if UPL∩DOWNL consists only of one element, then let
it be the starting element x1

- if UPL ∩ DOWNL consists of three elements, then let
the lacking element of UPL be the starting element x1

- if UPL ∩DOWNL consists of two elements and UP ∩
DOWN consists of one and only one pair p′ then
Procedure Check Permutation:
if p′ ∈ UPi with i ∈ L,R, then let x1 be the element such
that (x1 ∈ UPi) ∧ (x1 /∈ p′)
- if previous cases are not verified then let x1 = 1 be the
starting element
Step 2: Determining the four pairs
associate x1 with an element x2 ∈ UP such that pair
(x1, x2) respects properties P1 and P2; if x1 has been
obtained by Procedure Check Permutation then must be
x2 6= mateU(mateD(x1))
consider element x3 = mateD(x2) in sequence DOWN
and element x4 = mateD(x1) in sequence DOWN ,
check if pair (x3, x4) respects Pair Properties P1 and P2;
if not, find an element x4 in the same sequence DOWNi,
i ∈ L,R, containing mateD(x1), such that (x3, x4) satis-
fies Pair Properties P1 and P2
consider element x5 = mateU(x4) in sequence UP , if it
has been already put in a pair, find an element in sequence
UP not considered yet; consider x6 = mateU(x3) as sec-
ond element if possible, otherwise find an element in se-
quence UP not considered yet, such that pair (x5, x6) sat-
isfies Pair Property P1
form the last pair by using the two elements not considered
yet
Step 3: Association of pairs to paths
associate pair (x1, x2) to path PLL

associate pair (x3, x4) to path PLR, if an edge conflict on
first level of ∆∇ arises, then associate (x3, x4) to path PRR

choose the path for (x5, x6) in the following way:
- if in previous step PLR has been used, associate pair
(x5, x6) to path PRL, if an edge conflict on fourth level
of ∆∇ arises, then use path PRR

- if in previous step PRR has been used, associate pair
(x5, x6) to path PLR, if an edge conflict either on first or
fourth level of ∆∇ arises, then use path PRL

if path PLR has not already been used in a previous step,
then associate pair (x7, x8) to path PLR, otherwise asso-
ciate pair (x7, x8) to path PRL

3.3 On rearrangeability of MIN equivalence classes

In this section we prove the correctness of algorithm ROUT-

ING ON ∆∇
′
8

and the rearrangeability of equivalence classes

of MINs that present the ∆∇
′
8

structure in their ∆∇ decompo-
sition factor.

Lemma 1. Given a permutation of N = 2n elements, it is
always possible to find N/2 pairs satisfying Pair Properties
P1 and P2.

Proof. Let us consider UPi and DOWNj , where i, j ∈
L, R such that UPi ∩ DOWNj 6= 0. Let x be an ele-
ment belonging to UPi ∩DOWNj . To satisfy Pair Prop-
erties P1 and P2, x cannot be coupled neither with one of
the other N/2 − 1 elements in UPi, nor with one of the
other N/2 − 1 elements in DOWNj . In the worst case,
UPi ∪DOWNj = N − 1, then there exists an element y
belonging to UP − (UPi ∪DOWNj) such that pair (x, y)
satisfies P1 and P2. We can repeat this reasoning, after
eliminating x and y from UP and DOWN .

Lemma 2. Given a permutation of N = 8 elements, it is
always possible to find a partition in pairs satisfying Pair
Properties P1, P2 and P3.

Proof. We show that after the choice of the first two pairs
(x, y) and (w, z) satisfying P1, P2 and P3, we can always
associate the remaining elements in pairs, still satisfying
P1, P2 and P3. Usually, this initial choice can be arbi-
trary, but there are few cases in which it must be imposed
to properly selected elements.

Let us consider UPL, UPR, DOWNL and
DOWNR sequences as composed by Mate Pairs, MP ,
where a Mate Pair is an UP or DOWN pair for which
the element order is eliminated. In Figure 4 Mate Pairs
are represented by means of circles. Let (x, y) be a pair
satisfying properties P1 and P2, which existence is guar-
anteed by Lemma 1. Let (w, z) the pair obtained by taking
w = mateD(y) as first element, and choosing mateD(x)
or another element in the same DOWNi, i ∈ L,R, as sec-
ond element z. Lemma 1 guarantees that it is possible to
determine an element z such that (w, z) satisfies proper-
ties P1 and P2. By construction, y and w belong to the
same MP in DOWN . According to the arrangement of
the four elements x, y, w, z with respect to the MPs in UP
and DOWN sequences, we have several different cases.
Namely, we have three cases for the MPs in UP (see Fig-
ure 4):
case 1 UP: x, y, w, z belong to 2 different MPs
case 2 UP: x, y, w, z belong to 3 different MPs
case 3 UP: x, y, w, z belong to 4 different MPs
and two cases for the MPs in DOWN (see Figure 4):
case a DOWN: x, y, w, z belong to 2 different MPs
case b DOWN: x, y, w, z belong to 3 different MPs
All the possible relations are obtained by combining an UP
and a DOWN case together.

To prove the lemma, we must show that it is always
possible to build the other two remaining pairs satisfying
P1 and P2, and to associate the four pairs to the four paths
PLL, PLR, PRL, PRR in such a way P3 is satisfied.

Because of the choice of the first two pairs, DOWN
sequences must assume one of the following configura-
tions:
case a: DOWNL((w, y), (v, s)), DOWNR((x, z), (u, t)
case b: DOWNL((w, y), (v, s)), DOWNR((x, u), (z, t))

These configurations are not restrictive, because we
are interested in the relationships among MPs in UP and

Case 1 UP

UPL UPR

Case 2 UP

UPL UPR

Case 3 UP

UPL UPR

DOWN L DOWN R

Case a DOWN

Case b DOWN

DOWN L DOWN R

Figure 4. The possible relations among elements of the
two pairs are shown for the three UP cases and for the two
DOWN cases, on left and right side respectively. Mate
Pairs are represented as circles

DOWN sequences.
Let us start to examine the possible cases:

Case 1 UP pairs (x, y) and (w, z) must be separated both
on the first level and on the fourth, then the paths associ-
ated are PLL and PRR, respectively, see Figure 4; we dis-
tinguish two situations:
case a DOWN the remaining elements can be coupled in
pairs, satisfying P1 and P2, that can be routed on PLR and
PRL without conflicts, indifferently;
case b DOWN the remaining elements can be coupled in
the two pairs (u, v) and (s, t), satisfying P1 e P2; in order
to respect Pair Property P3, it suffices to associate (u, v) to
path PLR and (s, t) to PRL to guarantee that the elements
in the same MP are separated on the fourth level (the two
pairs can be routed indifferently on paths of the first level).
Case 2 UP this case imposes that the two pairs (x, y) and
(w, z) chosen are associated to paths PLL and PRR, re-
spectively, see Figure 4;
case a DOWN this case is similar to case1.b, where the
first and fourth level are swapped, then we can resolve it in
the same way, considering, wlog, x, t and z, u as the MP
in UPL;
case b DOWN this is the worst case. In fact, the partic-
ular configuration of elements can generate conflicts, then
we need additional controls to avoid of building pairs sat-
isfying P1 and P2, but not P3. To understand how to
choose (x, y) and (w, z) in a correct way, observe that this
configuration implies that two elements are in the same
MP both in UP and in DOWN sequences. We can dis-
tinguish the following cases, obtained by using the num-
ber of elements in UPL ∩ DOWNL (that is the same of
|UPR ∩DOWNR|):
- |UPL ∩ DOWNL| = |UPR ∩ DOWNR| = 1 or
|UPL ∩DOWNL| = |UPR ∩DOWNR| = 3
In this case, there is an obligated pair: we build the first
pair by using the only element in the two intersections (if
intersection is 1), or the remaining element with respect to
the two intersections (if intersection is 3); the second pair
is built as usual. This case is treated as case 2.a.

- |UPL ∩DOWNL| = |UPR ∩DOWNR| = 2 Let NMP

be the number of MPs in DOWN sequences that are
equal to MP in UP sequences. By construction we have
two cases:

• NMP = 1 Choosing (x, y) and associating it to path
PLL, it comes out that w, z and t = mateD(x) =
mateU(y) must be associated to path PRR, generat-
ing a conflict. Note that y = mateU(mateD(x)).
In this case, we must enforce that an element y 6=
mateU(mateD(x)) is chosen. Then we can build the
three remaining pairs without conflicts.

• NMP = 0 The assumptions imply that only one con-
figuration is possible, namely UPL = ((x,w), (s, t)),
UPR = ((y, v), (z, u)), DOWNL = ((w, y), (v, s))
and DOWNR = ((x, u), (z, t)), where u, s, t, v are
not fixed. An ad-hoc solution for this situation is to as-
sociate pair (s, u) to path PLR, and pair (t, v) to path
PRL.

- |UPL∩DOWNL| = 0 = |UPR∩DOWNR| or |UPL∩
DOWNL| = 4 = |UPR ∩ DOWNR| This case is not
possible, due to definition of case 2.b. Case 3 UP we can
associate pair (x, y) to path PLL and pair (w, z) to path
PLR, respecting property P3;
case a DOWN the four remaining elements can be coupled
into two pairs, respecting properties P1 and P2, and can
be associated to PRL and to PRR, respecting property P3;
case b DOWN the remaining elements can be coupled in
the two pairs (u, v) and (s, t), satisfying P1 and P2; in
order to respect P3 property, it suffices to associate (u, v)
to path PRR and (s,t) to PRL.

We have shown that there exists an assignment of
pairs to paths satisfying P3 in all the possible cases.

The correctness of the algorithm derives from Lemma
1 and Lemma 2 and it is stated by the following:

Theorem 3. Algorithm ROUTING ON ∆∇
′
8

produces pairs
satisfying the three Pair properties P1, P2 and P3.

Due to space limitation we do not provide the proofs
of the following theorems.

Theorem 4. All MINs in the class represented by the con-
catenation Butterfly-Butterfly, with N = 8 inputs, that is

MINs having the ∆∇
′
8

factor, are rearrangeable.

Corollary 5. All (2 log N − 1) stage MINs obtained by
concatenating two logN stage MINs with N = 8 inputs
are rearrangeable.

Theorem 6. All MINs obtained by the concatenation of a
Reverse Butterfly and a Butterfly whose first and second
stages are swapped are rearrangeable and the permutation
routing algorithm requires O(N log N) time.

4 Conclusions and Future Work

In this paper we have provided an algorithm to realize any
permutation Π on MINs belonging to the complementary
equivalence class of Beneš network with N = 8 inputs,
with respect to the decomposition as ∇∆⊗ ∆∇. By means of
this algorithm, we give a constructive proof of rearrange-
ability for the equivalence class of networks with N inputs,
represented by the concatenation of a Reverse Butterfly and
a Butterfly, whose first and second stages are reversed; for
this class the rearrangeability was not known. The time
complexity is O(N log N) which is the same as the well-
known Looping algorithm for the Beneš network. Notice
that lower values for the time complexity have been ob-
tained only for special class of permutations. The inter-
est of the LCP based decomposition approach is that: i) it
is possible to study the routing exploiting only the ∆∇ fac-
tor, that is a simpler structure than the considered MIN,
ii) proving the rearrangeability of specific network by us-
ing its ∆∇ factor immediately implies the rearrangeability of
the whole equivalence class, iii) more general algorithms
are obtained by means of decomposition, since they are not
tied to the network topology. Finally, a deep understanding
of the features of a MIN, provided by the utilization of its
LCP based factors, can lead to the proof of rearrangeability
of other interesting classes of networks, e.g. the class con-
taining the Omega-Omega, that is an open problem since a
long time.

References
[1] H. Bao, F. K. Hwang and Q .Li, Rearrangeability of bit permutation networks,

Theoretical Computer Science, 352, 197–214, 2006.
[2] V. E. Beneš, On Rearrangeable Three-Stage Connecting Networks, Bell Syst.

Tech. J., XLI, 1481-1492, 1962.
[3] V. E. Beneš, Permutation Groups, Complexes, and Rearrangeable Connecting

Networks, Bell Syst. Tech. J., 43, 1619-1640, 1964.
[4] J. C. Bermond, J. M. Fourneau and A. Jean-Marie, “Equivalence of Multistage

Interconnection Networks” Inform. Proc. Letters, 26, 45-50, 1987.
[5] T. Calamoneri and A. Massini, Efficiently Checking the Equivalence of Multi-

stage Interconnection Networks, Journal of Parallel and Distributed Comput-
ing, 64, 135-150, 2004.

[6] T. Calamoneri and A. Massini, A new approach to the rearrangeability of
2logN − 1 stage MINs, Proc. IASTED Internat. Symp. Applied Informatics
(AI 2001), 365-370, 2001.

[7] N. Das, More on Rearrangeability of Combined (2n − 1)-stage Networks,
Journal of Systems Architecture, 207-222, 2005.

[8] S. Even and A. Litman, Layered Cross Product - A technique to construct
interconnection networks. 4th ACM SPAA, 60-69, 1992.

[9] N. Golbandi and A. Litman, Characterizations of Generalized Butterfly Net-
works, Technical Report CS 2004-10, Technion Computer Science Depart-
ment, 2004.

[10] Q. Hu, X. Shen and J. Yang, Topologies of Combined (2 log N − 1)-stage
Interconnection Networks, IEEE Trans. Comput., 118-124, 1997.

[11] K. Y. Lee, On the Rearrangeability of (2 log N − 1)-Stage Permutation Net-
works, IEEE Trans. Comput., 46(1), C34, 412-425, 1985.

[12] K. Y. Lee, A New Beneš Networks Control Algorithm, IEEE Trans. Comput.,
C36, 768-772, 1987.

[13] A. Paz, A Theory of Decomposition into Prime Factors of Layered Intercon-
nection Networks, Technical Report CS 2001-20, Technion Computer Science
Department, 2001.

[14] C. S. Raghavendra and A. Varma, Rearrangeability of The Five-Stage Shuf-
fle/Exchange Network for N = 8, IEEE Trans. Commun., COM-356, 808-
812, 1987.

[15] A. Varma and C. S. Raghavendra, Rearrangeability of Multistage Shuf-
fle/Exchange Networks, IEEE Trans. Comput., 36(10), 1138-1143, 1988.

