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Abstract. In this paper we consider the three-dimensional layout of
hypercube networks. Namely, we study the problem of laying hypercube
networks out on the three-dimensional grid with the properties that all
nodes are represented as rectangular slices and lie on two opposite sides
of the bounding box of the layout volume. We present both a lower bound
and a layout method providing an upper bound on the layout volume
and the maximum wire-length of the hypercube network.
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1 Introduction

The layout of interconnection networks has important cost and performance

implications for multiprocessors and parallel and distributed systems based on

components. Thus, there is currently renewed interest in finding efficient VLSI

layouts for various interconnection networks (see for instance [3, 5, 11, 16–19]).

Recent hardware advances have allowed three-dimensional circuits to have

a cost low enough to make them commonly available. For this reason three-

dimensional layouts of interconnection topologies on rectilinear grids are becom-

ing of wide interest. The importance of efficiently representing interconnection

networks in three dimensions has already been stated in the 80’s by Rosenberg
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[14], and the most relevant aims are to shorten wires and to save in material (i.e.

to minimize volume).

The three-dimensional layout problem is related both to the study of the

VLSI layout problem for integrated circuits and to the study of algorithms for

drawing graphs. Indeed, the tie between VLSI layout studies and theoretical

graph drawing is very strong since laying out a network on a grid is equivalent

to orthogonally drawing the underlying graph, except for the fact that wire

crossings are allowed. Nevertheless, almost all the results known in the literature

about three-dimensional grid drawing of graphs are valid for very general graphs

(see, the proceedings of the past editions of the Graph Drawing Symposia and,

for instance, [1, 6, 15]) and therefore they do not work efficiently for structured

and regular graphs such as the most commonly used interconnection topologies.

In particular, either the produced volume is too large (in order of magnitude or

in the multiplicative constant), or the length of each wire is not kept of the same

order of magnitude and sufficiently small, or the shape of nodes is not feasible to

represent a processor, a switch, etc. Hence, usually, lower and upper bounds on

the layout volume of specific interconnection topologies must be established and

the layout technique is the more preferred the more these bounds are closer; of

course, the layout method should try to highlight all the interesting properties

of the network and to make as fast as possible the flow through it by shortening

the maximum wire length.

The hypercube network has been widely considered as a network for parallel

computing because of its desirable parameters, e.g. regularity, logarithmic di-

ameter, fault tolerance. A further parameter distinguishing ‘good’ networks is

whether they can be laid out compactly in the orthogonal grid. This issue has

widely been studied in two dimensions [2, 7, 8, 12].
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In this paper we study the three-dimensional layout of hypercube networks

with the property that nodes lie on two planes, corresponding to opposite sides

of the bounding box, partitioned into two equally sized sets, and they are repre-

sented as rectangular slices. The model of keeping all nodes on the surface of the

bounding box is motivated by two main reasons: (i) it decreases the problems

due to power consumption and resulting heat generation and (ii) it makes easier

the connection of the topologies to other part of the architecture, as the wires

are necessarily connected to nodes. We present upper and lower bounds for the

layout volume of hypercube networks that are very close, although not coincid-

ing (in fact they differ by a factor of log1/2 N). The maximum wire-length of the

presented layout is O(log N
√

N).

The rest of this paper is organized as follows. In Section 2 we give some pre-

liminary definitions and recall some useful previous results. Section 3 is the core

of the work and we present both a lower bound and a layout method provid-

ing an upper bound on the layout volume of the hypercube network. Finally, in

Section 4 we address some conclusions and list some interesting open problems.

2 Preliminaries

In this section we recall some useful definitions and state some preliminary re-

sults.

A hypercube Qn of dimension n is an interconnection network with N = 2n

nodes, each labeled with an n-bit binary string. Two nodes are connected by an

edge if their labels differ in exactly one bit.

It is easy to see that a Qn can be constructed by considering two copies of

Qn−1, adding an edge for each pair of equally labeled nodes and completing the

labels of nodes by adding one bit to the left of the string (0 in the first copy

and 1 in the second copy of Qn−1). In the following we will call homonym nodes

3



in Qn two nodes connected by this inductive step, i.e. two nodes whose labels

differ only in the leftmost bit.

By iterating this recursive construction, we deduce that Qn can be con-

structed starting from 2n−4 copies of Q4, adding some edges and completing

the labels. In the following we will extensively use this observation and we will

clarify the reason why Q4 is chosen.

Another interesting property of Qn we will exploit in the following is its

bipartiteness; a feasible partition of the nodes can be obtained by dividing nodes

having an even number of 0s in their label from nodes having an odd number of

0s in their label. The bipartiteness property is particularly evident when Qn is

visualized as a lattice (see Fig. 2).

Finally, observe that the hypercube Qn is a regular graph of degree n, and

when we want to lay the hypercube out on a three-dimensional grid we can not

represent the nodes with dots if the degree n is greater than 6, so we must use

an alternative representation.

Given a certain shape (e.g. box, prism, cube, rectangle, segment, dot, etc.), a

three-dimensional grid shape-layout of an interconnection network G is a mapping

of G to the three-dimensional grid such that nodes are mapped to portions of

the grid of the given shape and edges are mapped to independent grid-paths

satisfying the following conditions:

− distinct grid-paths are edge-disjoint (then at most three paths can cross at a

grid-node);

− grid-paths that share an intermediate grid-node must cross at that node (that

is ‘knock-knee’ paths [10] are not allowed);

− a grid-path may touch no mapped node, except at its end-points.

If the layout can be enclosed in a H ×W ×L three-dimensional box, its volume

is the product H×W ×L. Observe that not all layout models avoid knock-knees
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(e.g. they are allowed in [16].) We decide to forbid them in order to obtain a

more realistic physical model.

In this paper we will consider the rectangular shape. In particular, we repre-

sent nodes as rectangular slices with area proportional to their degree (dimension

1× degree). Furthermore we impose that all nodes lie on two planes, correspond-

ing to opposite sides of the bounding box, partitioned into two equally sized sets

A k-channel routing is introduced in [13] to describe the way of connecting

two sets of nodes of a graph:

Definition 1. A k-channel routing involves a bidimensional grid and two sets

S and S′ each consisting of k nodes to be connected by a 1-1 function. S and S′

are arranged onto opposite sides of the grid.

The grid involved in any k-channel routing is not greater than (k +1)× (3

2
k +2)

and S and S′ lie on the shortest sides [13]. See Fig. 1 for an example.
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Fig. 1. A channel routing with k = 6 requiring a grid of maximum area, i.e. (k + 1) ×
(3/2k + 2).

We define the a× b-3D double channel routing as a slight modification of the

notion of k-3D channel routing introduced in [4], that is the three-dimensional

version of the k-channel routing.
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Fig. 2. Q5 represented as a lattice.

Definition 2. An a× b-3D double channel routing involves a three-dimensional

grid (the channel) and two sets S and S′, each containing a · b nodes, arranged

on the grid nodes of opposite faces of dimension a × b, to be connected by a 1-1

function f . Function f associates to a node (x, y) of S a node (x′, y′) of S′ such

that x′ = g(x) and y′ = h(y), where functions g and h are two-dimensional a−

and b−channel routings, respectively.

In the following, for the sake of brevity, when no confusion arises, we refer

to the a × b-3D double channel routing as 3D channel routing.

The following theorem states the necessary volume for any 3D channel rout-

ing.

Theorem 1. A three-dimensional grid of size (a + 1) × (b + 1) × max{ 3

2
a +

2, 3

2
b + 2} is enough to realize a 3D channel routing.

Proof. This proof is very similar to the proof of Theorem 14 of [4], but we detail

it here for the sake of completeness.

Project the three-dimensional grid of the 3D channel routing on plane xz (see

Fig. 3). It is easy to see that function g maps rows of S in rows of S′ and it can
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be considered as a two-dimensional a-channel routing on plane xz. Therefore, a

(a+1)×(3

2
a+2) two-dimensional grid is enough to realize such a channel routing.

Lines drawn on plane xz to represent the channel routing relative to function g

become (bent) planes in three dimensions (see Fig. 3). Each of such planes has

on opposite horizontal sides a length b row x of S and its corresponding row

g(x) of S′. On each such plane we have to realize a two-dimensional b-channel

routing given by function h, and this requires a length of the plane of at least

3

2
b + 2. It follows that the size of a three-dimensional grid containing the 3D

channel routing has dimensions at most (a + 1)× (b + 1)×max{ 3

2
a + 2, 3

2
b + 2}.
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Fig. 3. A 3D channel routing.

3 Three Dimensional Layout of Hypercube Network

In this section we discuss the problem of laying the hypercube network out; in

particular, we determine lower and upper bounds for the volume.

3.1 Lower Bound

In order to compute a lower bound on the layout volume of the hypercube

network, we can use the general formula provided in [4]:
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lower bound on the layout volume of H ≥ (
√

BW (H) − 1)3

where H is a general network and BW (H) is its bisection width (i.e. the smallest

number of edges whose removal partitions H into two disjoint subgraphs, each

containing half of the nodes of H).

It is well known that the bisection width of Qn is N
2

[9], so a lower bound

for the layout volume for Qn is Ω(N
3

2 ). This lower bound does not take into

account the fact that, when n > 6, nodes cannot be represented as dots (i.e. with

null area), but it is necessary to use a space (either area or volume) proportional

to the degree for each of them. Furthermore, the previous formula assumes that

the nodes can be distributed anywhere inside the volume of the layout. On the

contrary, our aim is to find a three-dimensional layout of Qn with some special

properties; under these assumptions, we can better specify the value of the lower

bound on the volume by exploiting a proof technique presented in [14] for one-

active-level layouts: we obtain the value Ω(N3/2 log1/2 N) as follows.

Theorem 2. A lower bound for a 3D grid layout of Qn is Ω(N3/2 log1/2 N), if

the layout has the following properties:

– all nodes are represented as rectangular slices with area proportional to their

degree,

– all nodes lie on two planes, corresponding to opposite sides of the bounding

box,

– nodes are partitioned into two equally sized sets.

Proof. Let W, L and H be the dimensions of the bounding box of any three-di-

mensional layout of Qn with nodes partitioned into two equally sized sets and

laid out on two opposite sides. Without loss of generality, assume the nodes lie

on the sides of dimension W × L of the bounding box and that W ≥ L. Since
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each side contains N
2

nodes, each of degree log N , it is straightforward to see

that W × L = Ω(N
2

log N). Two cases can occur, according to whether H ≥ W

or not.

If H ≥ W , then H ≥ (N
2

log N)1/2. It follows that the volume must be

Ω((N
2

)3/2 log3/2 N), which is even greater than we claim.

If H is not the maximum dimension of the bounding box, we can consider

a plane π orthogonal to the sides of the bounding box containing nodes and

parallel to the pair of parallel sides of the bounding box of dimension L × H .

The intersection of the bounding box with plane π has area L×H . We want to

place π in such a way that π cuts the layout into two portions. and partitions

the set of nodes into two equally sized sets leaving N
2

nodes to its left and N
2

nodes to its right. Since the nodes are not represented as dots but are rectangular

slices, π could intersect some nodes. To avoid this, we can stretch the layout,

lengthen dimension W to W ′ ≥ W and include the intersected nodes in one

of the to sides. In this way π partitions the set of nodes into two equally sized

sets (see Fig. 4). Observe that, since nodes are represented by slices having

area proportional to their degree, each dimension of each slice is O(log N). It

follows that W ′ = W + O(log N). In view of this equality, the hypotheses that

W ′ ≥ W ≥ L and that plane π cuts a number of edges at least equal to the

bisection width of Qn, i.e. N
2

, it follows that the area of the portion of π inside

the bounding box is at least N
2

, i.e. H × L ≥ N
2

. Since L ≥ N1/2 log1/2 N we

have that the volume is Ω(N3/2 log1/2 N).

3.2 Layout of Qn

In this subsection we provide a method to lay the hypercube network out for

each n ≥ 4 (indeed, for n = 3 the layout is trivial and the volume is equal to 1).

In our layout we choose to represent nodes as rectangular slices of area 1 ×

⌈n
2
− 1⌉ (see Fig. 5). Each dot at integer coordinates on the slice is a pin where
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Fig. 4. A 3D layout where dimension W is stretched in order to guarantee that plane
π cuts the set of nodes into equally sized sets.

one wire is connected. Observe that when n is odd, the last row of each slice has

only one active pin, whereas when n is even, all pins of the slice are active (see

Fig. 5). In the following we will call columns a and b the two vertical lines of

pins on each slice.

a b
a b

Fig. 5. Slices representing nodes of even and odd degree n; the white dot is not active.

As we highlighted in the previous section, the basic building block of our

result is the layout of Q4, so we show it, before generalizing the construction to

Qn.

Since Q4 has 24 nodes and its degree is 4, we represent each node as a unit

area slice and we arrange these slices in two rectangles of dimension 3 × 7, as
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shown in Fig. 6. Our layout puts nodes onto opposite sides of the bounding

box, and all edges are routed inside. Hence, we exploit the property that Q4 is

bipartite and put on one side (let it be the upper side) all nodes having an even

number of 0s in their label, and on the opposite side (let it be the lower side)

the remaining nodes (see Fig. 6).
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Fig. 6. Placement of Q4’s nodes on a three-dimensional grid.

0001

0010

1101

1110

0101

0110

1001

1010

0100

0111

1000

1011

0000

0011

1100

1111

0000

0011

1100

1111

Fig. 7. Q4 represented as a butterfly-like network. Grey nodes are the same as those
in the leftmost node column.

Furthermore, we want to use a 3D channel routing to arrange all edges on

the grid. To this aim, we need to assign to each node a position in such a way

that the rules of the 3D channel routing (cf. Def. 2) are kept; namely, we have to
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map columns of the upper side to columns of the lower side. In other words, all

nodes of each column i on the upper side must be mapped to nodes of a column

j on the lower side. The way to arrange nodes on the rectangle derives from

the representation of Q4 as a Butterfly-like network, as shown in Fig. 7. More

precisely, we can map the leftmost node column of Fig. 7 to the leftmost slices of

the upper side (see Fig. 6), the second node column in Fig. 7 in the leftmost slices

of the lower side, and so on. This arrangement allows us to use pins in column a

(respectively, b) to connect edges in the odd (respectively even) numbered edge-

stages of the representation in Fig. 7. Such an assignment respects the rules of

a 3D channel routing, and a possible final three-dimensional layout is sketched

in Fig. 8, where the 4-channel routings inside the bent planes are not drawn for

the sake of clarity. The volume of the built layout for Q4 is 8 × 4 × 4.
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Fig. 8. 3D layout of Q4, where the 4-channel routings inside the bent planes are not
drawn.

In order to generalize our layout to each n ≥ 4, we exploit the layout of Q4

and the recursive definition of Qn. Namely, given a hypercube Qn, we will arrange

it on the three-dimensional grid as 2n−4 copies of hypercubes of dimension 4 plus

a set of edges.
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Claim. The set of edges connecting the 2n−4 copies of hypercubes of dimension

4 constituting a Qn is a 3D channel routing.

Proof. We give the construction and the proof of our claim by induction on n.

Our layout of Qn is built as the arrangement of the two copies of the layout of

Qn−1 one beside the other, according to some rules specified in the following.

This implies that all nodes are arranged in rows both on the upper and the lower

side (see Fig. 9).

Base. The claim is trivially true when n = 4.

...

...

......

Fig. 9. Arrangement in rows of nodes, where the lowest pins of each slice are high-
lighted.

Inductive Hypothesis. Qr, 4 ≤ r < n, can be arranged on the grid as 2r−4

copies of Q4s plus a set of edges constituting a 3D channel routing.

Inductive Step. Qn can be obtained by considering two copies of Qn−1 and

connecting with an edge each pair of homonym nodes. In view of the inductive

hypothesis, the claim is true for Qn−1. So, we can represent Qn on the three-

dimensional grid by putting two copies of 3D layouts of Qn−1s one beside the

other. Since the copies of Qn−1s consist of 2n−5 copies of Q4s each, by the

inductive hypothesis, Qn will consist of 2n−4 copies of Q4s. It remains to prove

that the edges connecting homonym pairs plus the existing 3D channel routings

inside the two copies of Qn−1 constitute a new 3D channel routing.

Let us distinguish two different cases according to the parity of n:
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Fig. 10. Construction of Qn starting from two copies of Qn−1s; a. n odd; b. n even.
Double circled nodes represent homonym nodes in the two copies of Qn−1s. Simply
circled nodes are homonym nodes of those in the upper part of the layout at the
previous step, i.e. in the two copies of Qn−2s inside the same copy of Qn−1.

– n odd

Arrange the 3D layouts of Qn−1s one beside the other but vertically flipping

one of them, in such a way that homonym nodes lie on opposite sides of

the bounding box (see Fig. 10a). Observe that the flipping operation can

be performed by simply swapping upper and lower sides, in view of the

butterfly-like structure of the hypercube.

The set of edges connecting the copies of Q4s is a 3D channel routing. Indeed,

it is constituted by a set of edges inside the two copies of Qn−1s and by a set
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of edges connecting homonym nodes of the two copies of Qn−1s. The first

set forms two disjoint 3D channel routings by the inductive hypothesis.

The second set connects homonym nodes located on the upper side of the

left (right) Qn−1 with nodes located on the lower side of the right (left) Qn−1

(for an example, see nodes highlighted in Fig. 10a). Each node has one more

active pin on column a and it corresponds to the edge that must be still

laid out. As all nodes are arranged in rows by construction, the second set

is completely disjoint from the first one and it has even stronger properties

than a 3D channel routing, namely it ordinately connects nodes of the same

pin row with nodes on the same pin row and nodes on the same pin column

with nodes on the same pin column.

From the previous observations it follows that these two 3D channel routings

together form a unique 3D channel routing.

– n even

In this case each node has both columns constituted by the same number of

pins and the lower pin in column b corresponds to the edges to be still laid

out (see Fig. 5). The lower pin in column a corresponds to edges laid out in

the previous step (when connecting two copies of Qn−2s in a Qn−1). Hence,

when we route the edges connecting homonym nodes using the lower pins of

column b, we must take into account the existing 3D channel routing used

by the lower pins of column a. Again, arrange the 3D layouts of Qn−1s one

beside the other, flipping both vertically and horizontally one of them, as

shown in Fig. 10b.

This arrangement guarantees that the rules of the 3D channel routing are

respected by the set of all edges connecting the copies of Q4s. Actually, this

set is constituted by a set of edges inside the two copies of Qn−1s and a set

of edges connecting homonym nodes of the two copies of Qn−1s.
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The first set forms two disjoint 3D channel routings by the inductive hy-

pothesis; inside this set, we want to highlight the subset of edges outgoing

from the lower pin of column a of each node. In view of the 3D channel

routing of the previous step n − 1 (odd), they connect each node in general

position (i, j) of the upper face, left (right) side of each copy of Qn−1 with

its homonym in position (i, j) of the lower face, right (left) side of the same

copy (for an example, see nodes indicated by the arrows in Fig. 10b).

Now consider the second set: it connects each node in general position (i, j)

of the upper face, left (right) side of the first copy, with its homonym in

position (i, j) of the lower face, right (left) side of the second copy by means

of the lower pin of column b (for an example, see double circled nodes in Fig.

10b). So all connections coming out from the lower pins of the slices go to

the same pin column and we have a 3D channel routing.

3.3 Upper Bound

Starting from the construction of the layout of Qn presented in the previous

subsection, we deduce an upper bound on the volume of the layout of Qn.

Theorem 3. There exists a three-dimensional layout of Qn having volume

Θ(N3/2 log N).

Proof. Let Wn, Ln and Hn be the three dimensions of the bounding box of the

layout of Qn presented in the previous subsection. We define some recurrence

equations in order to compute these values for each n ≥ 4.

If n = 4 we have already obtained W4 = 8, L4 = 4 and H4 = 4 (see Fig. 8),

and we use these values as base of the recurrence.

As our layout method is conceived, the equations are different according to

whether n is odd or even.

If n is odd, we have
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Wn: The width of the layout of Qn is the same as the width of Qn−1 (see Fig.

10a), hence Wn = Wn−1.

Ln: Ln = 2Ln−1+
√

N/2 as we use two copies of Qn−1s and we need to lengthen

the slice columns by one. The contribution of
√

N/2 follows from the way

of positioning the slices.

Hn: The height is increased by the 3D channel routing introduced to connect the

two copies. As this 3D channel routing has a = b =
√

N/2, its contribution

to the height is 3

2

√

N/2 + 2, hence Hn = Hn−1 + 3

2

√

N/2 + 2.

If n is even, we have

Wn: Wn = 2Wn−1 as we use two copies of Qn−1s.

Ln: The length of the layout of Qn is the same as the length of Qn−1 (see Fig.

10b), hence Ln = Ln−1. Indeed, the newly inserted edges do not introduce

any new contribution to this dimension.

Hn: Also in this case the height is increased by the 3D channel routing intro-

duced to connect the two copies and a =
√

N and b =
√

N/2. Nevertheless,

the contribution to the height is due only to the connections outgoing from

the lower pins of columns b in the slices. Indeed, the contribution of the other

connections has been already computed in Hn−1. Hence, we have to add only

the difference between the contributions of the two 3D channel routings, i.e.

Hn = Hn−1 + 3

2

√

N/2(
√

2 − 1).

By solving the previous recurrence equations, we get

Wn = Θ(
√

N)

Ln = Θ(
√

N log N)

Hn = Θ(
√

N)

both when n is even and when n is odd.
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It follows that the volume is Θ(N
3

2 log N).

Observe that this upper bound differs from the lower bound only by a

log1/2 N factor.

Lemma 1. The 3D layout of Qn presented in the previous section has maximum

wire length O(
√

N log N).

Proof. In order to compute the maximum wire length, let us consider the worst

case in the 3D channel routing inside the layout.

As highlighted in Fig. 11a, each plane constituting the 3D channel routing

has length at most Hn + 2Ln − 1. Inside this plane (see Fig. 11b), the longest

wire-length is Hn + 2Ln − 1 + 2Wn − 1.

W n

Ln

Hn

Wn

Hn+2Ln-1

a. b.

Fig. 11. a. The longest plane of the 3D channel routing inside the layout of Qn and b.
the longest wire inside the same plane.

From this formula and from the values of Hn, Wn and Ln found in the pre-

vious proof, the claim follows.

Observe that in the two-dimensional layout of Qn, the maximum wire length

is Θ(N) [8], so this 3D layout saves both in material and in wire-length.

We conclude this subsection by summarizing all the results in the following

theorem:
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Theorem 4. The method described in the previous subsection provides a 3D

grid layout of Qn in Ω(N3/2 log N) volume, with O(
√

N log N) maximum wire-

length, if the layout has the following properties:

– all nodes are represented as rectangular slices with area proportional to their

degree,

– all nodes lie on two planes, corresponding to opposite sides of the bounding

box,

– nodes are partitioned into two equally sized sets.

4 Conclusions and Open Problems

In this paper we have considered the three-dimensional layout of hypercube

networks. Namely, we have studied the problem of laying out hypercube networks

on the three-dimensional grid with the properties that all nodes are represented

as rectangular slices and lie on two opposite sides of the bounding box of the

layout volume. We have presented upper and lower bounds on the volume that

are very close, although not coinciding (in fact they differ by a factor of log1/2 N).

The maximum wire-length of the presented layout is O(log N
√

N).

Two open problems arise from this work. The first problem derives from the

differing upper and lower bounds, and consists of understanding which bound

is tight. Secondly, it would be interesting to study the more general 3D layout

problem, i.e. the problem where nodes are not constrained to be on two opposite

sides of the bounding box. In this case, it is possible to consider also other shapes

for nodes (i.e. boxes). Concerning this problem, note that it is quite easy to find

an O(N3/2) volume 3D layout of the CCCn network (i.e. the network obtained

from Qn by substituting each Qn’s node with a cycle of length n) from the

technique used in [4]. We have wondered if it is possible to deduce a 3D layout

of Qn from the layout of CCCn with the same volume exploiting the definition
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of CCCn. This does not seem possible, because the nodes constituting the cycles

are not clustered in the layout.
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