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t. In this paper we deal with the layout of inter
onne
tion net-works on three-dimensional grids. In parti
ular, in the �rst part we provea general formula for 
al
ulating an exa
t value for the lower bound onthe volume. Then we introdu
e the new notion of k-3D double 
hannelrouting and we use it to exhibit an optimal three-dimensional layout forbutter
y networks. Finally, we show a method to lay out multigrid andX-tree networks in optimal volume.1 Introdu
tion and PreliminariesRe
ent hardware advan
es have allowed three-dimensional 
ir
uits to have a 
ostlow enough to make them 
ommonly available. For this reason three-dimensionallayouts of graphs on re
tilinear grids are be
oming of wide interest both in thestudy of the VLSI layout problem for integrated 
ir
uits and in the study ofalgorithms for drawing graphs. Indeed, the tie between VLSI layout studies andtheoreti
al graph drawing is very strong sin
e to lay out a network on a grid isequivalent to orthogonally draw the underlying graph.To the best of our knowledge, not many papers have been written aboutthree-dimensional grid drawing of graphs [2{6, 10℄ and all of them show resultsthat are valid for very general graphs and therefore they do not work eÆ
ientlyfor stru
tured and regular graphs su
h as the most 
ommonly used inter
onne
-tion networks. On the other hand, the importan
e of representing inter
onne
tionnetworks in three dimensions has already been stated in the 80's by Rosenberg[12℄: the most relevant aims are to shorten wires and to save in material.By virtue of the equivalen
e between layout of networks and drawing ofgraphs in the following we will prefer the network terminology instead of thegraph theory one; therefore we will use the word `node' instead of `vertex' and`layout' instead of `drawing', while we will inter
hangeably use the terms `graph'and `network', `edge' and `wire'.In this paper we fo
us our attention on three-dimensional grid layout of aninter
onne
tion network G, that is a mapping of G in the three-dimensional gridsu
h that nodes are mapped in grid-nodes and edges are mapped in independentgrid-paths satisfying the following 
onditions:? The �rst author has been supported by Italian National Resear
h Coun
il.



� distin
t grid-paths are edge-disjoint (then at most three paths 
an 
ross at agrid-node);� grid-paths that share an intermediate grid-node must 
ross at that node (thatis `kno
k-knee' paths [9℄ are not allowed);� a grid-path may tou
h no mapped node, ex
ept at its endpoints.If the layout of a graph G 
an be en
losed in a h�w� l three-dimensional grid,we say layout volume of G the produ
t h� w � l.In this work we give some results about lower and upper bounds on thelayout volume of some inter
onne
tion networks. Namely, in the �rst part weprove a general formula for 
al
ulating an exa
t value for the lower bound onthe three-dimensional layout volume. Then we introdu
e the new notion of k-3Ddouble 
hannel routing and we use it to exhibit an optimal three-dimensionallayout for butter
y networks. Finally, we show a method to lay out multi-gridand X-tree networks in optimal volume.2 Lower boundIn this se
tion we prove a general formula giving an exa
t value for the lowerbound on the layout volume of inter
onne
tion networks.We obtain our result by generalizing to three dimensions the 
lassi
al lowerbound strategy for two dimensions invented in [13℄, and modi�ed in [1℄. In [12℄the order of magnitude of the result obtained in Lemma 2 is given for reti
ulatedgraphs and extended to more general graphs. Before proving the general formulafor the lower bound, we give some de�nitions and prove some preliminary results.De�nition 1. An embedding of graph G into graph H (whi
h has at least asmany nodes as G) 
omprises a one-to-one asso
iation � of the nodes of G withnodes of H, plus a routing � whi
h asso
iates ea
h edge fu; vg of G with a pathin H that 
onne
ts nodes �(u) and �(v). The 
ongestion of embedding h�; �i isthe maximum, over all edges e in H, of the number of edges in G whose �-routingpaths 
ontain edge e.De�nition 2. Let G be a graph having a designated set of 2
 > 0 nodes, 
alledspe
ial nodes. The minimum spe
ial bise
tion width of a graph G, MSBW(G),is the smallest number of edges whose removal partitions G into two disjointsubgraphs, ea
h 
ontaining half of G's spe
ial nodes.Lemma 1. [8℄ Let � be an embedding of graph G into graph H that has 
onges-tion C, then MSBW (H) � 1CMSBW (G):Now we prove a general formula to get a lower bound on the layout volumeof a network, given its MSBW.Lemma 2. For any graph H, the volume of the smallest three-dimensional lay-out of H is at least �MSBW (H)�12 �3=2.



Sket
h of proof. We 
onsider an arbitrary layout ofH in the grid of dimensionh�w�l. A surfa
e S with a single jog J (see Fig. 1) 
an be positioned on the gridin su
h a way that it 
uts the layout of H into two subgraphs, ea
h 
ontaininghalf of H's spe
ial nodes.
J J'

S

πFig. 1. Surfa
e S with the jog J .Removing the grid-edges 
rossed by S yields a bise
tion of H. By de�nition,at least MSBW (H) edges of H must 
ross surfa
e S. By 
onstru
tion, at mosthl + l + 1 � 2hl + 1 edges of the grid 
ross surfa
e S. It follows that 2hl +1 � MSBW (H). On the other hand, without loss of generality, we 
an 
hoosew � h � l. Hen
e h� w � l � �MSBW (H)�12 �3=2.As a 
onsequen
e of Lemmas 2 and 1, if MSBW (H) is not known, a lowerbound on the layout volume of a networkH 
an be 
omputed through an embed-ding � into H of a graph G if MSBW (G) and the 
ongestion C of � are known.In this way, we have that a lower bound on the layout volume of H is no lessthan �MSBW (H)�12 �3=2 � � 1CMSBW (G)�12 �3=2 :Sin
e another lower bound on the layout volume of a graph is trivially givenby the number of nodes of the graph, the following theorem derives:Theorem 1. Given a graph H with n nodes, a lower bound on its layout volumeis given by max �n;�MSBW (H)�12 �3=2�. Alternatively, when an embedding of
ongestion C for an auxiliary graph G into H and MSBW (G) are known, alower bound on the layout volume of G is max �n;� 1CMSBW (G)�12 �3=2�.3 Upper bound of some Inter
onne
tion NetworksIn this se
tion we �rst give the de�nitions of all networks we are going to manage,then we exhibit a method to lay out ea
h of them in a three-dimensional grid.De�nition 3. The butter
y network having N inputs BN , where N = 2n, hasnodes 
orresponding to pairs hw; li where l is the level (1 � l � logN + 1) andw is a logN-bit binary number that denotes the 
olumn of the node. Two nodeshw; li and hw0; l0i are linked by an edge if and only if l0 = l + 1 and either:



1. w and w0 are identi
al (straight-edge), or2. w and w0 di�er in pre
isely the l-th bit (
ross-edge).Lemma 3. [7℄ The subgraph of BN indu
ed by the nodes of levels 1; : : : ; h is thedisjoint sum of 2logN�h+1 
opies of B2h�1 and the subgraph of BN indu
ed by thenodes of levels h; : : : ; logN +1 is the disjoint sum of 2h�1 
opies of B2logN�h+1.De�nition 4. The N �N multigrid network MN , where N = 2n, 
onsists oflogN+1 bidimensional arrays, ea
h one of size N=2k�N=2k for 0 � k � logN .The arrays are inter
onne
ted so that node (i; j) on the 2k�2k array is 
onne
tedto node (2i; 2j) on the 2k+1 � 2k+1 array for 1 � i; j � 2k, and 0 � k < logN .De�nition 5. The N-leaf X-tree T N , where N = 2n, is a 
omplete N-leafbinary tree with edges added to 
onne
t 
onse
utive nodes on the same level ofthe tree.We 
an utilize Theorem 1 to 
ompute, in parti
ular, a lower bound on thelayout volume of the inter
onne
tion networks just de�ned:� a lower bound on the layout volume of a butter
y network BN is (N�12 )3=2and 
an be obtained by 
onsidering the embedding des
ribed in [1℄.� the number of nodes of a multigrid MN 
onstitutes a lower bound on itslayout volume, that is 4N2�13 . Indeed, the formula involvingMSBW (MN ) =�(N) produ
es a worse value.� similar 
onsiderations hold for anN -leaf X-tree T N , whoseMSBW is�(logN),and therefore a lower bound on its layout volume is 2N � 1.For what 
on
erns the upper bound on the layout volume we divide the nextpart into three subse
tions, one for ea
h network.3.1 Butter
y NetworkIt is easy to obtain an optimal three-dimensional layout of a butter
y networkby using the forerunner intuition of Wise [14℄ used to better visualize a butter
ynetwork in the spa
e. This idea is based on opportunely putting and 
onne
tingin the spa
e O(pN) 
opies of any bidimensional optimal layout of a butter
ywith O(pN) inputs (possible in view of Lemma 3). A drawba
k of su
h a ni
elayout is that the maximum wire length is O(pN), and most of the wires rea
hthis upper bound.In the following we will des
ribe a method to lay out a BN in the three-dimensional grid so that all its wires have maximum length O(N1=4) but one(additive) edge-level 
hara
terized by having maximum wire length O(pN).From now on, we will assume that logN is even; when logN is odd it is easyto adjust the details, that we omit for the sake of brevity.In view of Lemma 3 we 
an `
ut' BN along its median node-level and get pN
opies of BpN (O-group) whose output nodes must be re-
onne
ted to the inputnodes of other pN 
opies of BpN (I-group) through an additive edge-level.Hen
e, our layout 
onsists of two main operations:



� three-dimensional layout of ea
h 
opy of BpN ;� re-
onne
tion of the two groups of pN 
opies of BpN through an additiveedge-level.Three-dimensional layout of ea
h 
opy of BpNIn order to explain how to manage this operation, we need to mark the followingobservation:Observation 1 An N-input butter
y network BN 
an be 
overed by N edge-disjoint 
omplete binary trees as follows:� for any i = 2; : : : ; logN , there are 2logN�i trees Ti having i levels, sharingtheir leaves with some tree Tj ; j > i, and their internal nodes with someTk; k < i;� there are two trees TlogN+1 having (logN+1) levels, sharing their leaves ea
hother, and their internal nodes with some Tk; k < logN + 1.An example of this 
overing for B16 is depi
ted in Fig. 2.

Fig. 2. Tree-
overing of B16 (di�erent trees are represented by di�erent line types).Consider an H-tree representation of TlogpN+1, 
all it HlogpN+1. Call Hi aplane representation of Ti obtained from TlogpN+1 by eliminating super
uouslogpN + 1 � i levels. Then Ti is represented a

ording to an H-tree s
hemewasting some area. Observe that if the leaves of a tree Tj 
oin
ide with someinternal nodes of a tree Ti; i > j, it is possible to lay out Ti and Tj in the three-dimensional grid by 
onsidering Hi and Hj on two parallel planes, su
h that theorthogonal proje
tion of Hj on the plane 
ontaining Hi 
oin
ides, level by level,with Hi itself. To 
orre
tly 
onne
t Hi and Hj we have to 
onne
t dupli
atenodes by a segment orthogonal to both planes and to eliminate the leaves of Hj ,substituting them with bends (see Fig. 3).In view of Observation 1, it remains to detail in whi
h order the planes 
on-taining the pN binary trees must be arranged. The following re
ursive pseudo-
ode allows one to assign a z-
oordinate to ea
h plane 
ontaining Tj (z  Tj forshort). The �rst 
all of the pro
edure is PUT(TlogpN+1; 0).PROCEDURE PUT(Tj , VAR z);BEGIN



z  Tj ;z + 1 (T2 sharing its leaves with level 2 of Tj);i := 3;WHILE (i < j) DOBEGINPUT(Ti sharing its leaves with level i of Tj ; z + 2);i:=i+1;END;END.
Fig. 3. Layout of two trees sharing some nodes.After the pro
edure is terminated, half of BpN has been lain out. The remain-ing part 
an be symmetri
ally laid out in su
h a way that the planes 
ontainingtrees TlogpN+1 are 
onse
utive.As far as the pro
edure is 
on
erned, verti
al lines are guaranteed:� not to 
ross tree-nodes of intermediate planes; indeed, the pro
edure puts thetrees 
onne
ted to a 
ertain tree Tj su
h that as smaller they are as 
loser toTj they are positioned;� not to 
oin
ide with other verti
al lines; indeed, no more than two trees 
anshare the same nodes.In view of the 
onstru
tion of the three-dimensional layout of BpN , of Ob-servation 1 and of the area of an H-tree, ea
h butter
y BpN belonging bothto the O-group and to the I-group take a (2N1=4 � 1) � (2N1=4 � 1) � (N1=2)volume.Re-
onne
tion between the two groups of pN 
opies of BpNLet us 
onsider the two groups of pN 
opies of BpN . Ea
h group is positionedin the spa
e to form a square with N1=4 
opies on ea
h side, su
h that the
orrespondent trees of ea
h 
opy lie on the same plane. The two groups are thenpositioned one in front of the other. Now we have to 
onne
t the dupli
atednodes through an additive edge-level.Before detailing this operation, we need to remind some known results. Ak-
hannel routing involves a bidimensional grid and two sets S and S0 ea
h
onsisting of k nodes to be 
onne
ted by a 1-1 fun
tion. S and S0 are arrangedon two opposite sides of the grid.Lemma 4. [11℄ The grid involved in any k-
hannel routing is not greater than(k + 1)� ( 32k + 2) and S and S0 lie on the shorter sides.Coming ba
k to the butter
y problem, observe that all the output nodesof the O-group and all the input nodes of the I-group 
an be provided of anoutgoing link towards the opposite group and their extremes 
an be leaded totwo parallel planes, having empty interse
tion with the layouts of ea
h 
opy. If



we number in the same way {from left to right, row by row{ both the outputnodes of any butter
y of the O-group and the input nodes of any butter
y ofthe I-group and the butter
ies themselves of O- and I-groups, then ea
h edgemust 
onne
t the i-th output node of the j-th butter
y in the O-group to thej-th input node of the i-th butter
y in the I-group. Furthermore, it is easy tosee that ea
h row of output nodes in the O-group is routed to a row of inputnodes in the I-group.In order to solve this problem we de�ne a new three-dimensional 
onstrainedrouting, 
alled k-3D double 
hannel routing, to whi
h we redu
e the previousproblem.De�nition 6. A k-3D double 
hannel routing involves a three-dimensional grid(the 
hannel) and two sets S and S0, both of k nodes, to be 
onne
ted by a 1-1fun
tion f . S and S0 are arranged on two opposite sides of the three-dimensionalgrid, on the nodes of a pk �pk grid. Fun
tion f asso
iates to a node (x; y) ofS a node (x0; y0) of S0 su
h that x0 = g(x) and y0 = h(y), where fun
tions g andh are two-dimensional pk-
hannel routings.Theorem 2. A three-dimensional grid of size (pk+1)� (pk+1)� ( 32pk+2)is enough to realize a k-3D double 
hannel routing.
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S'Fig. 4. Three-dimensional double 
hannel routing.Proof. Proje
t the three-dimensional grid of the k-3D double 
hannel routingon plane xz. It is easy to see that fun
tion g mapping rows of S in rows of S0
an be 
onsidered as a two-dimensional 
hannel routing on plane xz. Therefore,a (pk+1)� ( 32pk+2) two-dimensional grid is enough to realize su
h a 
hannelrouting (Lemma 4). When 
oming ba
k to three dimensions, lines laid out torepresent fun
tion g be
ome (bent) planes. Ea
h of su
h planes has on oppositehorizontal sides a row x of S and its 
orresponding row g(x) of S0 and it isat least 32pk + 2 long (see Fig. 4). Therefore, on ea
h plane we 
an realizea two-dimensional 
hannel routing given by fun
tion h, simply by adding anextra-plane, parallel to plane xz.We use this theorem to lay out the additive edge-level between the O-groupand the I-group in at most 32pN + 2 height.



Re
ombining all the arguments about the volume needed by the two opera-tions of laying out ea
h 
opy of BpN and re-
onne
ting the two groups of pN
opies of BpN , we 
an state the following theorem:Theorem 3. There exists a three-dimensional grid layout of a butter
y networkwith N inputs and N outputs BN with volume (2N1=2 �N1=4 + 1)� (2N1=2 �N1=4+1)�( 72N1=2+2) and all edges have maximum wire length O(N1=4), ex
eptN edges having maximum wire length O(N1=2).3.2 Multi-Grid NetworkIn this subse
tion we will show how to lay out an N � N multigrid MN in athree-dimensional grid of size O(N) �O(N) �O(1) and maximum edge lengthO(N). It remains an open problem to �nd an equal sided three-dimensionallayout su
h that the maximum wire length is shortened.First, we des
ribe how to lay out all the bidimensional arrays (shortly arrays,where no 
onfusion arises), then we show how to 
onne
t adja
ent arrays.All nodes and edges of all the arrays 
an be positioned on a unique plane �in the following way (see Fig. 5):
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8x8 array 4x4 array
2x2 array 1x1 arrayFig. 5. How to lay out all the bidimensional arrays in aM8.� put all nodes of the N �N array at even 
oordinates, and 
onne
t them inthe oblivious way;� let vk be the generi
 node on the N=2k �N=2k array. Put it at 
oordinates(x+2k�1; y+2k�1), where (x; y) are the 
oordinates of node vk�1 to whi
h vkis 
onne
ted. Finally, lay out the edges of the 
urrent array in the obliviousway.Edges 
onne
ting di�erent arrays 
an be lain out as follows:� from any node vk; 0 � k � logN � 1 that is endpoint of an edge towards avk+1, draw a unit length segment orthogonal to � going to an upper plane �0(u-lines);



� from any node vk; 1 � k � logN that is endpoint of an edge towards a vk�1,draw a broken line 
omposed by: a unit length segment orthogonal to � goingto a lower plane �00, a unit length segment along y 
oordinate on �00, and asegment orthogonal to �, going from �00 to �0 (l-lines);� on �0, 
onne
t the endpoints of the u- and l-lines 
orresponding to the sameedge by means of an L-like line.Observe that, in view of the position of the nodes on �, both all these edgesnever 
ross any node and no 
ollisions arise on �00.It is easy to see that the area o

upied on � by all the arrays is (2N � 1)�(2N�1) and that the addition of �0 and �00 is enough to lay out all the remainingedges. Furthermore, the longest wires on � are N long (they belong to the 2� 2array); the longest edge 
onne
ting adja
ent arrays 
onne
ts the 2 � 2 and the1 � 1 arrays and is N + 4 long. All these 
onsiderations lead to the followingresult:Theorem 4. There exists a three-dimensional grid layout of an N�N multigridMN with volume (2N � 1) � (2N � 1) � 3 and all edges have maximum wirelength O(N).3.3 X-tree NetworkIn this subse
tion we will show how to lay out an N leaf X-tree T N in a three-dimensional grid having O(pN)�O(pN)�O(1) volume, that is optimum. Theauthors are going to prove that it is possible to lay out an N leaf X-tree in anequal sided three-dimensional grid, su
h that the maximum wire length is N1=3instead of pN .From the de�nition itself of X-tree, we 
an distinguish in a T N an N leaf
omplete binary tree and a set of 2N � 2� logN horizontal non-tree edges. It iseasy to lay out the binary tree, as an H-tree on a bidimensional O(pN)�O(pN)grid. From now on we will 
all � the plane where the H-tree lies.It is also easy to lay out a part of the set of non-tree edges in view of thefollowing observation:Observation 2 Consider the set of N � 1 non-tree edges lying alternately onea
h level. Ea
h of them 
an be visualized on an N leaf 
omplete binary tree asa 
ouple of edges 
onne
ting two siblings, eliminating their father. See Fig. 6.It is possible to lay out all su
h N � 1 non-tree edges on a new plane �0;to this end, lead a unit length 
onne
tion orthogonal to � towards �0 from theextremes of su
h edges and lay out on �0 the required 
onne
tions. Then, on �0there is a kind of H-tree, whose nodes are substituted by kno
k-knees. We 
aneliminate them by using two parallel planes, �0 and �00, instead of one.To manage the set of the remaining non-tree edges, we use an indu
tivemethod.Our 
laim is that given any T k; k � 4 and k power of two, its 2k � 2� log knon-tree edges 
an be positioned on the three-dimensional grid in the followingway:a. k=2 non-tree edges lie on �;b. k � 1 non-tree edges lie on �0 and �00 (on a unique plane in Fig. 7);
. the remaining k=2� log k � 1 non-tree edges lie on a further plane �000.



Fig. 6. Non-tree edges visualized as 
ouples of tree edges.The basis of the indu
tion is represented by the three-dimensional layouts ofT 4; T 8 and T 16, all depi
ted in Fig. 7. T 4 and T 8 are initial 
ases, while T 16 isthe �rst X-tree following our 
laim.
a

b

cFig. 7. Three-dimensional layout of T 4; T 8 and T 16.The indu
tive step 
onsists in 
onsidering that ea
h T N is 
onstituted by two
opies of T N=2 
onne
ted by a newly introdu
ed root and logN new non-treehorizontal edges (see Fig. 8). Our indu
tive hypothesis is that N=4 edges lie on�, N=2�1 lie on �0 and �00 and the remaining N=4� logN=2�1 lie on a furtherplane �000. The N leaf 
omplete binary tree inside T N 
an be laid out on � asunion of the two N=2 leaf binary trees inside the two 
opies of T N=2 and of thenew root.Let us prove that our 
laim remains true for T N if it is true for T N=2:a. the N=4+N=4 non-tree edges of T N=2 lying on � 
onstitute all non-tree edgesof T N that must lie on �;b. the non-tree edge 
onne
ting the two 
hildren of the root of T N takes partin the spe
ial H-tree of planes �0 and �00; therefore, non-tree edges we put onsu
h planes are (N=2� 1) + (N=2� 1) from the two T N=2 plus one, that isN � 1;
. on �000 lie all non-tree edges of the two T N=2 lying on it plus all logN � 1non-tree edges 
onne
ting the two 
opies of T N=2 and not laid yet, that is2(N=4� logN=2� 1) + logN � 1 = N=2� logN � 1.It remains to detail how non-tree edges on �000 are settled. Observe that non-tree edges lying on �000 we add in the indu
tive phase 
onne
t the right-mostnodes of a T N=2 to the left-most nodes of the other T N=2. As far as the H-treeis 
on
erned, we 
an lay out on �000 dire
tly only d logN�12 e of su
h edges; for theremaining non-tree edges we need b logN�12 
 extra-lines on �000 with respe
t tothe area o

upied by the H-tree on � (see Fig. 9).



Fig. 8. A T N as union of two T N=2 and non-tree edges.
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tr

a-
lin

esFig. 9. Edges laid out on � and �000 during the indu
tive step.A
tually, at ea
h indu
tive step, it is not ne
essary to add b logN�12 
 extra-lines but only one, sin
e we 
an use the extra-lines introdu
ed in the previoussteps. Possible kno
k-knees on �000 
an again be avoided by means of a furtherparallel plane.By following the previous 
onstru
tion, it is possible to express the layoutvolume of a T N by means of a re
ursive formula, whose solution is:� 5� ( 114 pN � 3)� ( 1916pN � 3) when logN is even;� 5� ( 2316pN=2� 3)� ( 3516pN=2� 3) when logN is odd.All the previous arguments lead to the following result:Theorem 5. There exists a three-dimensional grid layout of an N leaf X-treeT N with volume O(pN) � O(pN) � O(1) and all edges have maximum wirelength O(N1=2).Unfortunately, we did not su

eed in applying our indu
tive method to thethree-dimensional version of the H-tree introdu
ed in [12℄, without in
reasingthe volume of a non-
onstant fa
tor. It would have implied an optimal layout inan equal sided volume with optimal wire length, that is O(N1=3).



Referen
es1. AVIOR,A. {CALAMONERI,T. {EVEN, S. { LITMAN,A. { ROSENBERG,A.L.:A Tight Layout of the Butter
y Network. Pro
. ACM SPAA `96, ACM Press Ed.,1996, pp 170{175.2. BIEDL,T.: New Lower Bounds for Orthogonal Graph Drawings. Pro
.GD `95,LNCS 1027, Springer-Verlag, 1995, pp 28{39.3. CALAMONERI,T. { STERBINI,A.: Drawing 2-, 3- and 4-
olorable Graphs inO(n2) volume. Pro
. GD `96, LNCS 1190, Springer-Verlag, 1996, pp 53{62.4. COHEN,R.F. {EADES,P. { LIN,T. { RUSKEY,F.: Three-dimen-sional graph drawing. Pro
. GD `94, LNCS 894, Springer-Verlag, 1994, pp 1-11.Also in Algorithmi
a17(2), pp 199{208, 1997.5. EADES,P. { FENG,Q.W.: Multilevel Visualization of Clustered Graphs. Pro
. GD`96, LNCS 1190, Springer-Verlag, 1996, pp 101-112.6. EADES,P. { SYMVONIS,A. {WHITESIDES, S.: Two Algorithms for Three Di-mensional Orthogonal Graph Drawing. Pro
. GD `96, LNCS 1190, Springer-Verlag,1996, pp 139-154.7. EVEN,S. { LITMAN,A.: Layered Cross Produ
t { A Te
hnique to Constru
t In-ter
onne
tion Networks. ACM SPAA `92, ACM Press Ed., 60-69, 1992.8. LEIGHTON,F.T.: Complexity Issues in VLSI: Optimal Layouts for the Shu�e-Ex
hange Graph and Other Networks. MIT Press, Cambridge, Mass, 1983.9. MEHLORN,K. {PREPARATA,F.P. { SARRAFZADEH,M.: Channel routing inkno
k-knee mode: simpli�ed algorithms and proofs. Algorithmi
a 1, 213-221, 1986.10. PACH, J. {T�OTH,G.: Three-dimensional grid drawings of graphs, These Pro
eed-ings, 1997.11. PINTER,R.Y.: On routing two-point nets a
ross a 
hannel. 19th ACM-IEEE De-sign Automation Conf., 894-902, 1982.12. ROSENBERG,A.L.: Three-Dimensional VLSI: A Case Study. Journal of the ACM,30(3), 1983, pp 397{416.13. THOMPSON,C.D.: A 
omplexity theory for VLSI. Ph.D. thesis, Carnegie-MellonUniv. Pittsburgh, 1980.14. WISE,D.S.: Compa
t layouts of banyan/FFT networks. VLSI Systems and Com-putations (H.T. Kung, B. Sproull, G. Steele, eds.) Computer S
ien
e Press,Ro
kville, Md., 1981, pp 186-195.


