On Three-Dimensional Layout
of Interconnection Networks
(Extended Abstract) *

Tiziana Calamoneri' and Annalisa Massini?
! Dipartimento di Matematica and Dipartimento di Scienze dell’Informazione,
Universita di Roma “La Sapienza”, Italy - calamo@dsi.uniromal.it.
% Dipartimento di Scienze dell’Informazione, Universita di Roma, “La Sapienza”,
Ttaly - massini@dsi.uniromal.it.

Abstract. In this paper we deal with the layout of interconnection net-
works on three-dimensional grids. In particular, in the first part we prove
a general formula for calculating an exact value for the lower bound on
the volume. Then we introduce the new notion of k-3D double channel
routing and we use it to exhibit an optimal three-dimensional layout for
butterfly networks. Finally, we show a method to lay out multigrid and
X-tree networks in optimal volume.

1 Introduction and Preliminaries

Recent hardware advances have allowed three-dimensional circuits to have a cost
low enough to make them commonly available. For this reason three-dimensional
layouts of graphs on rectilinear grids are becoming of wide interest both in the
study of the VLSI layout problem for integrated circuits and in the study of
algorithms for drawing graphs. Indeed, the tie between VLSI layout studies and
theoretical graph drawing is very strong since to lay out a network on a grid is
equivalent to orthogonally draw the underlying graph.

To the best of our knowledge, not many papers have been written about
three-dimensional grid drawing of graphs [2-6,10] and all of them show results
that are valid for very general graphs and therefore they do not work efficiently
for structured and regular graphs such as the most commonly used interconnec-
tion networks. On the other hand, the importance of representing interconnection
networks in three dimensions has already been stated in the 80’s by Rosenberg
[12]: the most relevant aims are to shorten wires and to save in material.

By virtue of the equivalence between layout of networks and drawing of
graphs in the following we will prefer the network terminology instead of the
graph theory one; therefore we will use the word ‘node’ instead of ‘vertex’ and
‘layout’ instead of ‘drawing’, while we will interchangeably use the terms ‘graph’
and ‘network’, ‘edge’ and ‘wire’.

In this paper we focus our attention on three-dimensional grid layout of an
interconnection network G, that is a mapping of G in the three-dimensional grid
such that nodes are mapped in grid-nodes and edges are mapped in independent
grid-paths satisfying the following conditions:
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— distinct grid-paths are edge-disjoint (then at most three paths can cross at a
grid-node);

— grid-paths that share an intermediate grid-node must cross at that node (that
is ‘knock-knee’ paths [9] are not allowed);

— a grid-path may touch no mapped node, except at its endpoints.

If the layout of a graph G can be enclosed in a h x w x [ three-dimensional grid,

we say layout volume of G the product h x w x [.

In this work we give some results about lower and upper bounds on the
layout volume of some interconnection networks. Namely, in the first part we
prove a general formula for calculating an exact value for the lower bound on
the three-dimensional layout volume. Then we introduce the new notion of k-3D
double channel routing and we use it to exhibit an optimal three-dimensional
layout for butterfly networks. Finally, we show a method to lay out multi-grid
and X-tree networks in optimal volume.

2 Lower bound

In this section we prove a general formula giving an exact value for the lower
bound on the layout volume of interconnection networks.

We obtain our result by generalizing to three dimensions the classical lower
bound strategy for two dimensions invented in [13], and modified in [1]. In [12]
the order of magnitude of the result obtained in Lemma 2 is given for reticulated
graphs and extended to more general graphs. Before proving the general formula
for the lower bound, we give some definitions and prove some preliminary results.

Definition 1. An embedding of graph G into graph H (which has at least as
many nodes as G) comprises a one-to-one association « of the nodes of G with
nodes of H, plus a routing p which associates each edge {u,v} of G with a path
in H that connects nodes a(u) and a(v). The congestion of embedding (., p) is
the mazimum, over all edges e in H, of the number of edges in G whose p-routing
paths contain edge e.

Definition 2. Let G be a graph having a designated set of 2c > 0 nodes, called
special nodes. The minimum special bisection width of a graph G, MSBW(G),
is the smallest number of edges whose removal partitions G into two disjoint
subgraphs, each containing half of G’s special nodes.

Lemma 1. [8] Let € be an embedding of graph G into graph H that has conges-
tion C, then MSBW (M) > £ MSBW(G).

Now we prove a general formula to get a lower bound on the layout volume
of a network, given its MSBW.

Lemma 2. For any graph H, the volume of the smallest three-dimensional lay-
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Sketch of proof. We consider an arbitrary layout of H in the grid of dimension
hxwx1. A surface S with a single jog J (see Fig. 1) can be positioned on the grid
in such a way that it cuts the layout of H into two subgraphs, each containing

half of H’s special nodes. S
N
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Fig. 1. Surface S with the jog J.

Removing the grid-edges crossed by S yields a bisection of 7. By definition,
at least M SBW (H) edges of H must cross surface S. By construction, at most
hl +1+1 < 2hl + 1 edges of the grid cross surface S. It follows that 2hl +
1> MSBW (H). On the other hand, without loss of generality, we can choose
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As a consequence of Lemmas 2 and 1, if MSBW (#) is not known, a lower
bound on the layout volume of a network H can be computed through an embed-
ding € into H of a graph G if MSBW (G) and the congestion C of € are known.
In this way, we have that a lower bound on the layout volume of H is no less

than (MSBMQ(H)A 3/2 S (%MSB;V(Q)—l 3/2‘

Since another lower bound on the layout volume of a graph is trivially given
by the number of nodes of the graph, the following theorem derives:

Theorem 1. Given a graph H with n nodes, a lower bound on its layout volume

(MSBVI;(H)—1 ) 3/2

is given by max {n, } Alternatively, when an embedding of

congestion C for an auziliary graph G into H and MSBW (G) are known, a
(%MSBW(Q)—1)3/2}
e I .

lower bound on the layout volume of G is max {n,

3 Upper bound of some Interconnection Networks

In this section we first give the definitions of all networks we are going to manage,
then we exhibit a method to lay out each of them in a three-dimensional grid.

Definition 3. The butterfly network having N inputs By, where N = 2™, has
nodes corresponding to pairs (w,l) where 1 is the level (1 <1 <logN + 1) and
w is a log N -bit binary number that denotes the column of the node. Two nodes
(w,1) and (w',I') are linked by an edge if and only if ' =1+ 1 and either:



1. w and w' are identical (straight-edge), or
2. w and w' differ in precisely the [-th bit (cross-edge).

Lemma 3. [7] The subgraph of By induced by the nodes of levels 1, ..., h is the
disjoint sum of 2"°8 N ="+ copies of Bon—1 and the subgraph of By induced by the
nodes of levels h, ... ,log N + 1 is the disjoint sum of 2"~ copies of Botog n—n+1.

Definition 4. The N x N multigrid network My, where N = 2™, consists of
log N + 1 bidimensional arrays, each one of size N/2F x N/2* for 0 < k < log N.
The arrays are interconnected so that node (i, j) on the 28 x 2% array is connected
to node (2i,25) on the 2¥+1 x 281 array for 1 <i,7 < 2% and 0 < k < logN.

Definition 5. The N-leaf X-tree T n, where N = 2" is a complete N -leaf
binary tree with edges added to connect consecutive nodes on the same level of
the tree.

We can utilize Theorem 1 to compute, in particular, a lower bound on the
layout volume of the interconnection networks just defined:

— a lower bound on the layout volume of a butterfly network By is (851)3/2
and can be obtained by considering the embedding described in [1].

— the number of nodes of a multigrid My constitutes a lower bound on its
layout volume, that is 4N3£. Indeed, the formula involving M SBW (My) =
©(N) produces a worse value.

— similar considerations hold for an N-leaf X-tree 7, whose M SBW is ©(log N),

and therefore a lower bound on its layout volume is 2N — 1.

For what concerns the upper bound on the layout volume we divide the next
part into three subsections, one for each network.

3.1 Butterfly Network

It is easy to obtain an optimal three-dimensional layout of a butterfly network
by using the forerunner intuition of Wise [14] used to better visualize a butterfly
network in the space. This idea is based on opportunely putting and connecting
in the space O(v/N) copies of any bidimensional optimal layout of a butterfly
with O(v/N) inputs (possible in view of Lemma 3). A drawback of such a nice
layout is that the maximum wire length is O(v/N), and most of the wires reach
this upper bound.

In the following we will describe a method to lay out a By in the three-
dimensional grid so that all its wires have maximum length O(N'/4) but one
(additive) edge-level characterized by having maximum wire length O(vV/N).

From now on, we will assume that log IV is even; when log N is odd it is easy
to adjust the details, that we omit for the sake of brevity.

In view of Lemma 3 we can ‘cut’ By along its median node-level and get v N
copies of B, (O-group) whose output nodes must be re-connected to the input

nodes of other vV copies of B, 5 (I-group) through an additive edge-level.
Hence, our layout consists of two main operations:



— three-dimensional layout of each copy of B /;

— re-connection of the two groups of v/N copies of B v~ through an additive
edge-level.

Three-dimensional layout of each copy of B /&
In order to explain how to manage this operation, we need to mark the following
observation:

Observation 1 An N-input butterfly network By can be covered by N edge-

disjoint complete binary trees as follows:

— forany i =2,...,log N, there are 2'°6N~% trees T; having i levels, sharing
their leaves with some tree Tj,j > i, and their internal nodes with some
Ti, k <1

— there are two trees Tiog N+1 having (log N +1) levels, sharing their leaves each
other, and their internal nodes with some Ty, k < log N + 1.

An example of this «

‘*’,,,,

Fig. 2. Tree-covering of Bis (different trees are represented by different line types).

Consider an H-tree representation of Tlog VW41, call it Hlog v Call H; a
plane representation of T; obtained from Tlog VN41 Dy eliminating superfluous

log /N + 1 — i levels. Then Tj is represented according to an H-tree scheme
wasting some area. Observe that if the leaves of a tree T} coincide with some
internal nodes of a tree Tj,7 > j, it is possible to lay out T; and T} in the three-
dimensional grid by considering H; and H; on two parallel planes, such that the
orthogonal projection of H; on the plane containing H; coincides, level by level,
with H; itself. To correctly connect H; and H; we have to connect duplicate
nodes by a segment orthogonal to both planes and to eliminate the leaves of H;,
substituting them with bends (see Fig. 3).

In view of Observation 1, it remains to detail in which order the planes con-
taining the v/N binary trees must be arranged. The following recursive pseudo-
code allows one to assign a z-coordinate to each plane containing 7} (z < T} for
short). The first call of the procedure is PUT(T} /5, ,,0)-

PROCEDURE PUT(T}, VAR z);
BEGIN



Z Tj;
z + 1 < (T sharing its leaves with level 2 of T});

1:=3;
WHILE (i < j) DO
BEGIN
PUT(T; sharing its leaves with level ¢ of T}, z + 2);
ii=i+1;
END;
END. P =
— ® =/'
/ Py /
e//v d =//'

Fig. 3. Layout of two trees sharing some nodes.

After the procedure is terminated, half of B /5 has been lain out. The remain-
ing part can be symmetrically laid out in such a way that the planes containing
trees T}, /x4 are consecutive.

As far as the procedure is concerned, vertical lines are guaranteed:

— not to cross tree-nodes of intermediate planes; indeed, the procedure puts the
trees connected to a certain tree T} such that as smaller they are as closer to

T; they are positioned,;

— not to coincide with other vertical lines; indeed, no more than two trees can
share the same nodes.

In view of the construction of the three-dimensional layout of B 4, of Ob-
servation 1 and of the area of an H-tree, each butterfly B 4 belonging both
to the O-group and to the I-group take a (2N'/* — 1) x (2N'/* — 1) x (N'/?)
volume.

Re-connection between the two groups of /N copies of B &

Let us consider the two groups of VN copies of B v~ Each group is positioned
in the space to form a square with N'/% copies on each side, such that the
correspondent, trees of each copy lie on the same plane. The two groups are then
positioned one in front of the other. Now we have to connect the duplicated
nodes through an additive edge-level.

Before detailing this operation, we need to remind some known results. A
k-channel routing involves a bidimensional grid and two sets S and S’ each
consisting of k nodes to be connected by a 1-1 function. S and S’ are arranged
on two opposite sides of the grid.

Lemma 4. [11] The grid involved in any k-channel routing is not greater than
(k+1)x (2k+2) and S and S’ lie on the shorter sides.

Coming back to the butterfly problem, observe that all the output nodes
of the O-group and all the input nodes of the I-group can be provided of an
outgoing link towards the opposite group and their extremes can be leaded to
two parallel planes, having empty intersection with the layouts of each copy. If



we number in the same way —from left to right, row by row— both the output
nodes of any butterfly of the O-group and the input nodes of any butterfly of
the I-group and the butterflies themselves of O- and I-groups, then each edge
must connect the i-th output node of the j-th butterfly in the O-group to the
j-th input node of the i-th butterfly in the I-group. Furthermore, it is easy to
see that each row of output nodes in the O-group is routed to a row of input
nodes in the I-group.

In order to solve this problem we define a new three-dimensional constrained
routing, called k-3D double channel routing, to which we reduce the previous
problem.

Definition 6. A k-3D double channel routing involves a three-dimensional grid
(the channel) and two sets S and S', both of k nodes, to be connected by a 1-1
function f. S and S’ are arranged on two opposite sides of the three-dimensional
grid, on the nodes of a vk x Vk grid. Function f associates to a node (z,y) of
S a node (z',y") of S" such that ' = g(x) and y' = h(y), where functions g and
h are two-dimensional \/k-channel routings.

Theorem 2. A three-dimensional grid of size (Vk+1) x (Vk+1) x (3vVk +2)
1s enough to realize a k-3D double channel routing.

9(x)
Fig. 4. Three-dimensional double channel routing.

Proof. Project the three-dimensional grid of the £-3D double channel routing
on plane zz. It is easy to see that function g mapping rows of S in rows of S’
can be considered as a two-dimensional channel routing on plane zz. Therefore,
a (Vk+1) x (2/k +2) two-dimensional grid is enough to realize such a channel
routing (Lemma 4). When coming back to three dimensions, lines laid out to
represent function g become (bent) planes. Each of such planes has on opposite
horizontal sides a row z of S and its corresponding row g(z) of S’ and it is
at least %\/E + 2 long (see Fig. 4). Therefore, on each plane we can realize
a two-dimensional channel routing given by function h, simply by adding an
extra-plane, parallel to plane zz.

We use this theorem to lay out the additive edge-level between the O-group
and the I-group in at most 2v/N + 2 height.



Recombining all the arguments about the volume needed by the two opera-
tions of laying out each copy of B 5 and re-connecting the two groups of v N
copies of B_ /5, we can state the following theorem:

Theorem 3. There exists a three-dimensional grid layout of a butterfly network
with N inputs and N outputs By with volume (2N*/2 — NY/* 4 1) x (2N/2 —
N4 4 1) x (%N1/2+2) and all edges have mazimum wire length O(N'/*), except
N edges having mazimum wire length O(N'/?).

3.2 Multi-Grid Network

In this subsection we will show how to lay out an N x N multigrid My in a
three-dimensional grid of size O(N) x O(N) x O(1) and maximum edge length
O(N). It remains an open problem to find an equal sided three-dimensional
layout such that the maximum wire length is shortened.

First, we describe how to lay out all the bidimensional arrays (shortly arrays,
where no confusion arises), then we show how to connect adjacent arrays.

All nodes and edges of all the arrays can be positioned on a unique plane 7
in the following way (see §i

TN
s wad

@ 8x8array @ 4x4 array
@ 2x2array O 1xl array

Fig. 5. How to lay out all the bidimensional arrays in a Msg.

— put all nodes of the NV x N array at even coordinates, and connect them in
the oblivious way;

— let vj, be the generic node on the N/2* x N/2* array. Put it at coordinates
(z+2F=1 y+2F=1) where (x,y) are the coordinates of node vj_; to which vy,
is connected. Finally, lay out the edges of the current array in the oblivious
way.

Edges connecting different arrays can be lain out as follows:

— from any node v,0 < k < log N — 1 that is endpoint of an edge towards a
Vg+1, draw a unit length segment orthogonal to 7 going to an upper plane 7’
(u-lines);



— from any node vg,1 < k <log N that is endpoint of an edge towards a vg_1,
draw a broken line composed by: a unit length segment orthogonal to 7 going

to a lower plane 7, a unit length segment along y coordinate on «', and a

segment orthogonal to 7, going from 7" to 7' (I-lines);

— on 7', connect the endpoints of the u- and [-lines corresponding to the same
edge by means of an L-like line.

Observe that, in view of the position of the nodes on 7, both all these edges
never cross any node and no collisions arise on 7.

It is easy to see that the area occupied on 7 by all the arrays is (2N — 1) x
(2N —1) and that the addition of 7" and 7" is enough to lay out all the remaining
edges. Furthermore, the longest wires on 7 are N long (they belong to the 2x 2
array); the longest edge connecting adjacent arrays connects the 2 x 2 and the
1 x 1 arrays and is N + 4 long. All these considerations lead to the following
result:

Theorem 4. There exists a three-dimensional grid layout of an N x N multigrid
My with volume (2N — 1) x (2N — 1) x 3 and all edges have mazimum wire
length O(N)).

3.3 X-tree Network

In this subsection we will show how to lay out an N leaf X-tree 7 n in a three-
dimensional grid having O(v/N) x O(v/N) x O(1) volume, that is optimum. The
authors are going to prove that it is possible to lay out an N leaf X-tree in an
equal sided three-dimensional grid, such that the maximum wire length is N'/3

instead of V/N.

From the definition itself of X-tree, we can distinguish in a 7y an N leaf
complete binary tree and a set of 2N — 2 —log N horizontal non-tree edges. It is
easy to lay out the binary tree, as an H-tree on a bidimensional O(v/N)x O(v/N)
grid. From now on we will call 7 the plane where the H-tree lies.

It is also easy to lay out a part of the set of non-tree edges in view of the
following observation:

Observation 2 Consider the set of N — 1 non-tree edges lying alternately on
each level. Each of them can be visualized on an N leaf complete binary tree as
a couple of edges connecting two siblings, eliminating their father. See Fig. 6.

It is possible to lay out all such N — 1 non-tree edges on a new plane 7';
to this end, lead a unit length connection orthogonal to 7 towards «’ from the
extremes of such edges and lay out on 7’ the required connections. Then, on 7’
there is a kind of H-tree, whose nodes are substituted by knock-knees. We can
eliminate them by using two parallel planes, 7’ and 7", instead of one.

3»5% set1 of the remaining non-tree edges, we use an inductive
a. hon-tree e ges lie on T;

e (ldl on-tre ges lie on 7! g on umque pl ne in, F1 7

o R ERELEGE TR S A DRI B 2t
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way:



Fig. 6. Non-tree edges visualized as couples of tree edges.

The basis of the induction is represented by the three-dimensional layouts of
T4, Ts and T g, all depicted in Fig. 7. T4 and Ty are initial cases, while T ¢ is

the first X-tree following iur clﬁn’ . g

ﬁ%ﬂ e

o A/I‘
P

1
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c

Fig. 7. Three-dimensional layout of 74,7 s and 7 6.

The inductive step consists in considering that each 7 y is constituted by two
copies of T n/y connected by a newly introduced root and log N new non-tree
horizontal edges (see Fig. 8). Our inductive hypothesis is that N/4 edges lie on
7, N/2—1lie on 7' and 7" and the remaining N/4 —log N/2 — 1 lie on a further
plane 7'"". The N leaf complete binary tree inside 7 n can be laid out on 7 as
union of the two N/2 leaf binary trees inside the two copies of 7 n/, and of the
new root.

Let us prove that our claim remains true for 7 y if it is true for 7 n/2:

a.the N/44 N/4 non-tree edges of T n/» lying on 7 constitute all non-tree edges

of 7 that must lie on 7;

b. the non-tree edge connecting the two children of the root of 7 takes part
in the special H-tree of planes 7’ and 7”’; therefore, non-tree edges we put on

T RIS ST R Mo N S0 R o RS 0
tree edg,eﬁ 1y1n on ' we add in the induc lz_tlve hase connect th Lght most
nGd¥s Of a lf%N %)I%Hcreief%‘ %S tont & tgfot %S —tree

l)lsp b a alt
t t1 t
s R s e i jgsn Phat i in el B
remaining non-tree edges we need e V11 extra-lines on 7' with respect to
the area occupied by the H-tree on 7 (see Fig. 9).
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Fig. 8. A Tx as union of two 7T y/»> and non-tree edges.
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Fig. 9. Edges laid out on m and "’ during the inductive step.

Actually, at each inductive step, it is not necessary to add L%J extra-
lines but only one, since we can use the extra-lines introduced in the previous
steps. Possible knock-knees on 7"’ can again be avoided by means of a further
parallel plane.

By following the previous construction, it is possible to express the layout
volume of a 7§ by means of a recursive formula, whose solution is:

— 5 x (LVN —3) x (13V/N — 3) when log N is even;
- 5x(3,/N/2-3) x (33,/N/2 - 3) when log N is odd.

All the previous arguments lead to the following result:

Theorem 5. There exists a three-dimensional grid layout of an N leaf X-tree
T~ with volume O(VN) x O(VN) x O(1) and all edges have mazimum wire
length O(N'/?).

Unfortunately, we did not succeed in applying our inductive method to the
three-dimensional version of the H-tree introduced in [12], without increasing
the volume of a non-constant factor. It would have implied an optimal layout in
an equal sided volume with optimal wire length, that is O(N'/3).
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