
Overview

Basic Processes

Overview

In OPNET, a network is made up of individual nodes,
and a node is made of modules. The process model
defines the behavior of a module. By understanding
process models, you can build modules and combine
them to build nodes to your exact specifications.

In this lesson, you will

• Create process and node models

• Define variables, macros, and transitions

• Run a simulation

• Analyze simulation results

This lesson shows how to build a module that counts
the packets it receives then writes that number to a
statistic that can be graphed. For each received
packet, the process model increments the value of a
variable and records the variable.
1

Overview

Example Process Model

A process model is a finite state machine (FSM). It
represents the logic and behavior of a module. An FSM
defines the states of the module and the criteria for
changing the states.

OPNET uses the finite state machine (FSM) to
implement the behavior of a module. FSMs use states
and tranistions to determine what actions the module
can take in response to an event.

States and Transitions

transition

transition

link_dn state link_up state
2

Overview

• State—The condition of a module. For example, a
module may be waiting for a link to recover.

• Transition—A change of state in response to an
event.

You can use an FSM to control module behavior
because OPNET lets you attach fragments of C/C++
code to states and transitions.

OPNET allows you to attach fragments of C/C++ code
to each part of an FSM. This code, augmented by
OPNET-specific functions, is called Proto-C.

The three primary places to use Proto-C are as
follows:

• Enter Executive—code that is executed when
the module moves into a state

• Exit Executive—code that is executed when the
module leaves a state

• Transition Executive—code that is executed in
response to a specific event
3

Overview

Enter and Exit Executives of a State

OPNET simulations are made up of events. Process
models respond to events and can schedule new ones.

When an event occurs that affects a module, the
Simulation Kernel passes control to the module’s
process model via an interrupt. The process model
responds to the event, changing state and executing
related code, and then returns control to the
Simulation Kernel (invocation 1).

exit executive

enter executive
4

Overview

The next time OPNET invokes the process model, it
determines the state in which it was left (invocation 2),
responds to the new event, and passes control back to
the Simulation Kernel.

Which State is Active?

When a process model enters a state, it executes the
enter executives and then, if the state is unforced (as
above), the process model stops execution and
returns control to the simulation. We’ll discuss forced
and unforced states in more detail later.

Invocation 1 starts here and
changes to the link_up state

Invocation 2 starts in
the link_up state
5

Designing the Model

Designing the Model

The packet-counting process model you will build
contains three states: an initializing state, an idle state,
and an arrival state.

When a packet arrives at the module containing your
process model, the model must increment a counter
then dispose of the packet.

Therefore, the module has two primary states that

1) Wait for a packet to arrive

2) Process the packet after it arrives

You also need an initialization state that sets the
appropriate variables to zero. The process model will
have the states shown in the following figure.

The Three States Required for the Model

IdleInitialization

Arrival
6

Designing the Model

The packet-counting model contains three transitions:
initialization-to-idle, idle-to-arrival, and arrival-to-idle.

The first time the process model is invoked (in this
case, at the beginning of the simulation), it begins in
the initialization state. After initialization—which sets
the packet-counter variable to zero—the process
model transitions to the idle state and waits for the first
packet to arrive.

The process model is activated again and transitions
to the arrival state when a packet arrives. The arrival
state increments the packet-counter variable and
destroys the packet. Without pausing, the process
model then transitions back to the idle state to wait for
the next packet.

Three Transitions are Required

IdleInitialization

Arrival
7

Implementing the Process Model

Implementing the Process Model

The first step in implementing the process model is to
open the Process Editor and place the model’s three
states in the workspace.

1 Start OPNET if it is not already running.

2 Choose File > New..., then select Process Model
from the pull-down menu. Click OK.

3 Click the Create State action button and place
three states in the workspace as shown.

Placing Three States

Notice that the first state you create is
automatically the initial state; this is indicated by a
heavy arrow.

Create State
action button
8

Implementing the Process Model

Give each state a unique name that describes its
function. You will use the name init for the initialization
state, idle for the idle state, and arrival for the arrival
state.

1 Right-click on the initial state (the one with the
heavy arrow) and select Set Name from the
Object pop-up menu.

2 Name the state init and press Return.

Naming the State

3 Repeat the procedure with the other two states
and name them as follows:

— st_1: idle

— st_2: arrival
9

Implementing the Process Model

An unforced (red) state is one that returns control of the
simulation to the Simulation Kernel after executing its
enter executives. A forced (green) state is one that
does not return control, but instead immediately
executes the exit executives and transitions to another
state.

A newly-created state is, by default, unforced: after
executing its enter executives, the process model
blocks (that is, stops execution and returns control to
the Simulation Kernel). The next time the process
model is invoked, execution begins again from the
state in which it last blocked.

A forced state does not stop after the enter executives.
Execution proceeds to the exit executives and
transitions to the next state.

Forced and Unforced States

Unforced state Forced state
10

Implementing the Process Model

Two states in the process model you are building are
forced states. The init state is forced because it can
proceed directly to the idle state after initializing
variables. The arrival state is forced because the
process model should return to the idle state after
counting and destroying each packet.

1 Change the init state to a forced state by
right-clicking on it and selecting Make State
Forced from the Object pop-up menu.

➥ The init state becomes green.

2 Repeat step 1 for the arrival state so that it is also
a forced state.

Create State Transitions

The next step in building the process models is to
create the transitions between the states. There are
two types of transitions, unconditional and conditional.
When a transition is conditional, the transition must
evaluate to true before control passes from the source
state to the destination state.

1 Click the Create Transition action button.

Create Transition Action Button
11

Implementing the Process Model

2 Draw the transition by first clicking on the init
state and then clicking on the idle state.

➥ The arrow of the transition points from the
source state to the destination state. The
transition appears as a solid line; this indicates
that the transition is unconditional.

3 Draw a curved transition by clicking first on the
idle state, then at a vertex point between the idle
and arrival states, and finally on the arrival state.

Drawing Transitions

4 Right-click to stop drawing transitions.

Click at a vertex point
12

Implementing the Process Model

To create a conditional transition, you place a value in
the condition attribute of the transition. You must
make the transition between idle and arrival
conditional because the process model should
transition to the arrival state only when a packet
arrives and not in response to any other event.

1 Right-click on the transition between the idle and
arrival states and select Edit Attributes from the
pop-up menu.

2 Change the value of the condition attribute to
ARRIVAL (be sure to use all capital letters), press
Return, then click OK.

3 Close the Attributes dialog box.
13

Implementing the Process Model

“condition” Attribute has Value of “arrival”

➥ The transition is now a dashed line and has a
label with the name of the condition. We will
define the ARRIVAL condition macro later to
mean that the transition will be used only when
a packet arrives and the process model is in
the idle state.

There are two more transitions to implement in the
process model. The first is an unconditional transition
from the arrival state to the idle state, and the second
is a conditional transition from the idle state to itself.

1 Click on the Create Transition action button and
draw a transition from arrival to idle.

2 Draw a transition from the idle state back to itself,
as shown in the following diagram.. Hint: click on
two points in the workspace while drawing the
transition before bringing it back to the idle state.
14

Implementing the Process Model

3 Right-click to stop drawing transitions.

4 Right-click on the transition from idle back to itself
to bring up its Attributes dialog box.

5 Change the value of the condition attribute to
default (be sure to use all lower-case letters),
press Return, then click OK.

“condition” Attribute has Value of “default”

The Simulation Kernel operates by maintaining an
event list for the entire simulation. An event that
reaches the top of that list becomes an interrupt and is
delivered to the correct place in the simulation (often to
a specific module).
15

Implementing the Process Model

You may be wondering why you included a transition
from idle back to itself and named that transition
default. As the simulation executes, the Simulation
Kernel manages a list of events to take place. As each
event reaches the top (or head) of that list, it becomes
an interrupt. Interrupts are often delivered to specific
modules, and this occurrence is what activates the
module’s process model.

When the process model that you are building is in the
idle state, it will transition to the arrival state if the
ARRIVAL condition is true. You will shortly define
ARRIVAL to evaluate to true if the interrupt delivered
to the module is a packet arrival interrupt. If it is a
different type of interrupt, however, there must be a
transition that the process model can follow. The
default transition handles these different interrupt
types.

Define Conditions and Variables

In Proto-C, macros often replace more complicated
expressions in transition conditions and executives.
The use of macros saves space and simplifies the task
of interpreting an FSM diagram. You specify macros
with the C preprocessor #define statement and
usually place them in the process model header block.
The header block may also contain #include
16

Implementing the Process Model

statements, struct and typedef definitions, extern
and global variable declarations, function declarations,
and C-style comments.

The next step is to define the ARRIVAL macro.

1 Click the Edit Header Block action button.

Edit Header Block Action Button

➥ An edit pad appears.

2 Enter the following code into the edit pad:

#define ARRIVAL (op_intrpt_type () == OPC_INTRPT_STRM)

3 Choose File > Save from the edit pad menu to
save the changes and close the pad.

The ARRIVAL condition defined above tests if the
current interrupt (which caused the FSM to awaken
and execute) occurred due to an arriving packet. It
compares the value returned by the Kernel Procedure
op_intrpt_type() with the OPNET constant of
OPC_INTRPT_STRM. If the comparison evaluates to
true, this indicates that the interrupt is due to a packet
arriving on an input stream.
17

Implementing the Process Model

You can declare variables in two places. Variables
declared in the temporary variables block do not
retain their values between invocations of the FSM.
Variables declared in the state variables block retain
their values from invocation to invocation.

The next step is to declare two state variables. One will
store the value of the packet count; the other is the
“handle” for the local statistic used to analyze the
count.

1 Click the Edit State Variables action button.

Edit State Variables Action Button

2 Enter the following values into the dialog box:

Values for State Variables Dialog Box

Clicking on the value field for Comments opens
an edit pad. After you type the comment, Choose
File > Save.

Type Name Comments

int pk_count Counts total packets

Stathandle pk_cnt_stathandle Statistic to record
packet count
18

Implementing the Process Model

3 Click the OK button to save the changes and
close the State Variables dialog box.

Statistics save values of interest for later analysis.
When creating a statistic, you must declare that
statistic in the process model that records it. You will
create one statistic for this process.

1 Choose Interfaces > Local Statistics.

2 Enter packet count as the first Stat Name.

➥ The mode is automatically set to Single.

Declare Local Statistics Dialog Box

3 Click on the Desc. for packet count.

➥ An edit pad appears.

4 Enter a short description for the statistic: Number
of packets received.

5 Choose File > Save to save the changes and
close the pad.
19

Implementing the Process Model

6 Close the Declare Local Statistics dialog box by
clicking on the OK button.

Create State Executives

The next step is to create the state executives needed
in the FSM. In the first state, init, the executives set
the packet count to 0 and associate the name of the
local statistic with its statistic handle. Although the
enter executives and exit executives of forced states
are executed without interruption, standard practice is
to place all forced state executives in the enter
executives block.

1 Double-click on the top half of the init state.

Open the Enter Executives of the init State

➥ The Enter Execs edit pad appears.

2 Enter the following code to initialize the state
variable pk_count:

pk_count = 0;
pk_cnt_stathandle = op_stat_reg ("packet count",

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
20

Implementing the Process Model

3 Choose File > Save to close the edit pad.

The second line of the preceding code registers the
packet count statistic and sets up a handle for the
arrival state to use when recording the number of
packets received.

Earlier, the code necessary to implement the desired
behavior was provided for you, along with an
explanation of how the code works (the code is shown
again).

pk_count = 0;
pk_cnt_stathandle = op_stat_reg (“packet count”,

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

The pk_count and pk_cnt_stathandle variables are
state variables you defined, but the op_stat_reg()
function is an OPNET Simulation Kernel Procedure
(KP). OPNET provides hundreds of built-in functions
that you can use for a variety of purposes: anything
from manipulating a queue to creating animations.
21

Implementing the Process Model

Because there are so many functions, it can be difficult
to determine the most appropriate one for a particular
task. However, OPNET provides a summary of the
most frequently-used KPs. You will review this
summary in the next step of this tutorial, when you
write the code for the enter execs in the arrival state.

• Double-click on the top half of the arrival state.

➥ The enter execs edit pad appears.

In the arrival state, you first want to increment the
packet count. Then you need to determine the packet
stream for the current interrupt, then get the pointer to
the packet so that you can destroy it. Finally, you want
to write out the statistic.

How should you implement this?

The first part, incrementing the packet count, is simple
— just increment the pk_count variable using the
following code:

++pk_count;
22

Implementing the Process Model

Determining the packet stream for the current
interrupt, getting the packet’s pointer, and destroying
the packet is a bit more complex, but can be done
using some of the KPs. To determine which ones, look
first at the list of most commonly used KPs, the
Essential Kernel Procedures.

• Choose Help > Essential Kernel Procedures.

➥ A list of the most frequently-used KPs opens in
an Acrobat Reader window.

If the Essential Kernel Procedures document replaces
the tutorial, you can return to the tutorial by choosing
Document > Go To Previous Doc from the Acrobat
menu bar.

The first task, determining the packet stream for the
current interrupt, has to do with processing an
interrupt. Find the section called Interrupt
Processing.

From the description, you determine that
op_intrpt_strm() will return the necessary
information.
23

Implementing the Process Model

The next two tasks, getting the packet’s pointer and
then using that pointer to destroy the packet, both
involve packet manipulation. Look in the Packet
Generation and Processing section. You can use
op_pk_get() to determine the packet’s pointer, and
then use that return value (the pointer) to call
op_pk_destroy() to destroy the packet.

You can type these function calls into the process
model, or copy them from the Acrobat file. In the
following section, we’ll copy these function calls from
the Acrobat file:

1 In the Acrobat menu, click on the Text Select tool
button.

Text Select Tool Button

2 Copy the op_pk_destroy() function call:

2.1 Hold down the Shift key as you select the
op_pk_destroy() function call in the Acrobat
file.
24

Implementing the Process Model

2.2 Copy and paste the function call into the
enter execs section of the arrival state, just
after the line where you incremented the
packet count.

2.3 Enter a semicolon at the end of the function
call, so the line looks like this:

op_pk_destroy (pkptr);

3 Replace the pkptr argument with the following
code

op_pk_get (op_intrpt_strm ())

so that the resulting line of code looks like this:

op_pk_destroy (op_pk_get (op_intrpt_strm ()));

The final task is to write out the value of the statistic.
Refer to the Statistic Recording section for
information on the op_stat_write() KP.

The final code for the enter exec of the arrival state
should look like this:

++pk_count;
op_pk_destroy (op_pk_get (op_intrpt_strm ()));
op_stat_write (pk_cnt_stathandle, pk_count);
25

Implementing the Process Model

Finally, save the enter exec code:

Choose File > Save to close the edit pad.

The Essential Kernel Procedures are those that are
most commonly used. Many additional KPs are
available. You can display a description of any KP by
choosing Help > All Kernel Procedures from the
Process Editor menu.

In both KP help files, each KP name is a hypertext link
to the complete documentation for that KP.

Edit Process Interfaces

To control the attributes visible at the node level, edit
the Process Interfaces. You can set initial attribute
values or hide attributes.

1 Choose Interfaces > Process Interfaces.

➥ The Process Interfaces dialog box appears.

2 Change the Initial Value for the begsim intrpt
attribute to enabled.
26

Implementing the Process Model

3 Verify that the Initial Value for each of the
following attributes is set to disabled: endsim
intrpt, failure intrpts, intrpt interval, recovery
intrpts, and super priority.

4 Verify that the Initial Value of the priority
attribute is 0.

5 For all attributes, change the value of Status to
hidden by left-clicking in the Status column and
selecting hidden.

Changing the Value to “hidden”

6 Click OK to close the Process Interfaces dialog
box.
27

Implementing the Process Model

Compile the Model

All process models must be compiled before they can
be used in a simulation. Compiling a model makes its
object code available to a processor module’s process
model attribute.

To compile a process model:

1 Click the Compile Process Model action button.

Compile Process Model Action Button

2 Save the process model as
<initials>_packet_count.

➥ When the compile is successfully completed,
OPNET beeps once and displays the following
message in the message area:

Process model object file produced.

If you did not save the process model before
compiling it, you will also see this message:

Wrote File: (<file name>).

3 Close the Process Editor.
28

Implementing the Node and Network Models

Implementing the Node and Network Models

The node model in this lesson has two packet
generator modules that send packets to a general
processor module. The processor module uses the
previously defined packet_count process to count
and discard packets and to update an output statistic.
Note that the process model could accept any number
of incoming packet streams because it automatically
determines the correct stream when an interrupt
occurs.

Create the Node Model

First, create a node model that uses the
packet_count process.

1 Choose File > New..., then select Node Model
from the pull-down menu. Click OK.

2 Use the Create Processor action button to create
three processor modules.

3 Use the Create Packet Stream action button to
connect the modules with packet streams as
shown. The model should resemble the one in the
following diagram.
29

Implementing the Node and Network Models

Initial Node Model

Now change the attributes of each module. The first
processor module, p_0, will be a generator module:

1 Right-click on the icon and select Edit Attributes
from the pop-up menu to open the module’s
Attributes dialog box.

2 Change the name attribute to src1.

3 Change the process model attribute to
simple_source.

4 Close the dialog box.

The second processor module, p_1, will count
packets:

1 Open the Attributes dialog box of the module.

2 Change the name attribute to count.
30

Implementing the Node and Network Models

3 Change the process model attribute to
<initials>_packet_count.

4 Close the dialog box.

Set up the third processor module to generate
packets:

1 Open the Attributes dialog box of the module.

2 Change the name attribute to src2.

3 Change the process model attribute to
simple_source.

4 Click on Packet Interarrival Time in the left
column to highlight the Attribute name, then
right-click and select Promote Attribute to
Higher Level from the pop-up menu.

➥ The word promoted appears in the Value cell
of the attribute.

Promoting the Attribute

5 Close the dialog box.
31

Implementing the Node and Network Models

Both generators send packets to count at a mean
interarrival rate of 1 packet/second. The first generator
sends packets at a constant rate and the second
generator sends packets at a variable rate, following a
distribution you will specify.

Sometimes it is convenient or necessary to make a
statistic available at the node level. A statistic
promoted to the node level can be renamed and given
a different description. Before saving the node model,
promote the packet count statistic and rename it.

1 Choose Interfaces > Node Statistics.

2 Click the first field in the Orig. Name column,
select count.packet count from the list that
displays, and click Promote.

3 Change the Prom. Name to node packet count.

4 Change the Desc. field to: Number of packets
received at the node level. Choose File > Save
from the edit pad’s menu to save the text and
close the edit pad.

5 Close the Statistic Promotion dialog box by
clicking the OK button.
32

Implementing the Node and Network Models

6 Choose File > Save and save the node model as
<initials>_packet_count. (The node and
process models can have the same name
because OPNET appends .nd.m to each node
model and .pr.m to each process model.)

7 Close the Node Editor.

Create the Network Model

The network model for this lesson consists of a single
node using the packet_count node model. After
placing the node in the Project Editor workspace, you
can specify statistics and animations to collect.

First, create a new project.

1 Choose File > New... and open a new project.

2 Name the project <initials>_packet_count and
the scenario constant.

3 Choose Quit on the first screen of the Setup
Wizard.

Second, create a custom object palette.
33

Implementing the Node and Network Models

1 Open the object palette by clicking on the object
palette action button.

Object Palette Action Button

2 Click the Configure Palette... button.

3 Click the Clear button in the Configure Palette
dialog box to remove all but the default icons from
the palette. The subnet icon remains. (If you have
the Wireless module, the mobile and satellite
subnet icons remain as well.)

4 Click the Node Models button and change the
value of the <initials>_packet_count node
model to included.

5 Click OK to close the Select Included Entries
dialog box, and then click OK to close the
Configure Palette dialog box.

6 At the prompt, click OK to save the custom model
list with the default name.
34

Implementing the Node and Network Models

Next, place the node in the workspace and select the
proper statistics for collection.

1 Place an <initials>_packet_count node in the
workspace, then close the object palette.

2 Right-click on the node to open its Object pop-up
menu, and choose Choose Individual Statistics.

➥ The Choose Results statistic browser opens.

Selecting Statistics

3 Collect the following statistics:

— Animations > Node Animation

— Node Statistics > node packet count
35

Implementing the Node and Network Models

4 Right-click on Node Statistics > node packet
count to open its Statistic pop-up menu, and
choose Record Statistic Animation.

➥ A small “A” (for “animation”) appears in the
check box next to node packet count.

5 Click OK to close the browser window.
36

Implementing the Node and Network Models

In the preceding steps, you:

• Created an animation of packet flow within the
node (Animations > Node Animation).

• Specified that the node packet count statistic be
collected (Node Statistics > node packet
count).

• Specified that the node packet count statistic be
animated.

Recall that when building the node model, you
changed the interarrival pdf attribute for the second
generator module to promoted so that you could
specify it later. You will now specify the distribution for
that attribute.

1 Right-click on the node to open its Object pop-up
menu, and choose Edit Attributes.

2 Click on promoted in the value column of
src2.Packet Interarrival Time.

3 Verify that Distribution Name is constant and
Mean Outcome is 1.0.
37

Implementing the Node and Network Models

Specify Distribution Dialog Box

4 Click OK to close the Specification dialog box.

5 Click OK to close the Attributes dialog box.

To investigate the effect of different PDFs, you can
create new scenarios based on this one. After
simulating them, you can then compare the results. To
create a new scenario and set the PDF:

1 Choose Scenarios > Duplicate Scenario....

2 Name the new scenario exponential. Click OK to
save the file.
38

Implementing the Node and Network Models

3 Right-click on the node and choose Edit
Attributes from the Object pop-up menu.

4 Click on the Value column of src2.Packet
Interarrival Time to open its Specification dialog
box.

5 Select exponential from the Distribution Name
pull-down menu and set the Mean Outcome to
1.0.

6 Click OK to close the Specification dialog box.

7 Click OK to close the Attributes dialog box.

8 Save the project with the default name.
39

Running the Simulation

Running the Simulation

You are now ready to configure and run the
simulations. You can run both simulations with a single
command from the Manage Scenarios dialog box.

To configure the simulations:

1 Choose Simulation > Configure Discrete Event
Simulation....

2 Set the following values in the Configure Discrete
Event Simulation dialog box:

— Duration: 100 seconds

— Seed: 1471

— Values Per Statistic: 100

3 Close the Configure Discrete Event Simulation
dialog box.

4 Choose Simulation > Record Animation for
Subnet.
40

Running the Simulation

Record Animation for Subnet Item Checked

5 Switch to the constant scenario by choosing
Scenarios > Switch To Scenario > constant.

6 Repeat steps 1–4 to configure the constant
scenario.

To configure the repositories:

1 Choose Edit > Preferences.

2 Verify that the repositories preference is empty.
Delete any entries. Click OK to close the dialog
box.

To run the simulations:

1 Choose Scenarios > Manage Scenarios....
41

Running the Simulation

2 Change the value of the Results column for each
scenario from uncollected to <collect>.

3 Click OK to begin the simulation runs.

➥ OPNET runs two simulations, one for each
scenario. The simulations should take less
than one minute. If you have problems, see
"Troubleshooting Tutorial Simulations".

4 Close the Simulation Sequence dialog box.
42

Analyzing the Results

Analyzing the Results

View results in the Project Editor.

1 If necessary, switch to the exponential scenario
by choosing Scenarios > Switch To >
exponential.

2 Right-click on node_0, then choose View
Results from the Object pop-up menu.

➥ The View Results statistic browser opens,
displaying the statistics that you can choose to
view.

View Results Dialog Box
43

Analyzing the Results

3 Place a check in the check box for node_0 >
node packet count.

4 Click the Show button to display the graph.

The resulting graph shows the number of packets
received by the count processor module over time
during the simulation.

Number of Packets Received

As illustrated in this graph, the results of the simulation
indicate that the total number of packets received
steadily increases over the simulation duration, though
not at a perfectly constant rate. As expected, with two
44

Analyzing the Results

sources delivering packets each at a mean of 1
packet/second, the total number of packets received
after 90 seconds of packet generation (packet
generation commences after 10s of simulation time) is
about 180.

A close-up visual examination of the graph will reveal
more detail. To see this detail, magnify the graph.

1 Drag the cursor along the graph, selecting a box
that covers the trace from 20 seconds to 1
minute on the time axis.

Select the Area to Magnify

➥ A close-up of the selected graph area appears.
45

Analyzing the Results

Magnified Area

You can contrast the graph of the packet count in the
exponential scenario with the one in the constant
scenario.

1 Close the current graph.

2 Close the View Results statistics browser.

3 Switch to the constant scenario by choosing
Scenarios > Switch To > constant.

4 Choose View Results from the Object pop-up
menu for node_0.

➥ The View Results statistic browser opens.

5 Display the graph for node_0 > node packet
count.
46

Analyzing the Results

6 Zoom in on a portion of this graph as you did for
the last graph.

➥ Magnified (as shown in the following diagram),
this graph reveals a step pattern that results
from the two generators sending packets at the
same constant arrival rate.

Zooming Reveals Step Pattern

A discrete graph of this data will illustrate the true
quantized property of the counting statistic and the
underlying event-driven property of the packet arrivals.

1 Right-click on the graph to open the Graph pop-up
menu.
47

Analyzing the Results

2 Choose Draw Style > Discrete from the Graph
pop-up menu.

The graph now displays the data as individual
points.The discrete plotting style depicts only the
discrete statistic values without connecting them.

Discrete Draw Style Applied

The discrete graph reveals that the Simulation Kernel
repeatedly delivered two packets during each second
of simulation time, each of which was counted
separately. The graph also shows the event-scheduled
nature of the OPNET Simulation Kernel. The
simultaneous events (multiple packets arriving every
second) caused the Simulation Kernel to advance
48

Analyzing the Results

simulated time once, but invoke the packet_count
process twice. In turn, the packet_count process
incremented the packet count statistic once each time
it was invoked.

1 Close the graph dialog box.

Finally, you can view the animations created by
OPNET during the simulation. The utility op_vuanim
allows you to view statistic and packet animations.

1 Choose Results > Play Animation.

➥ The Animation Viewer (op_vuanim) opens,
showing the statistics animation for the
constant scenario.

2 To see the packet animation, choose Windows >
Animation Viewers > top.node_0.packet flow.

3 To exit the Animation Viewer, choose File > Exit.
Note that the Project Editor is still open.
49

Analyzing the Results

4 To view the animations for the exponential
scenario, change to the exponential scenario
(Scenarios > Switch to Scenario >
exponential), then choose Results > Play
Animation.

➥ The animation for the exponential scenario
displays.

5 Exit the Animation Viewer. For more detailed
information about op_vuanim, see the Utility
Programs manual.

You have now completed the Basic Processes lesson
of the tutorial. You should have a good understanding
of how to control node behavior by creating custom
process models.

The next lesson, Packet Switching, explores the
creation of a packet switching network.

• To continue with the next lesson, save any work
that has not yet been saved, then close all open
editor windows in OPNET. Return to the main
tutorial menu and choose Packet Switching I
from the list of available lessons.

• To quit the tutorial, close Acrobat Reader.
50

	Modeler Main Menu
	Tutorials Menu
	====================
	Overview
	Designing the Model
	Implementing the Process Model
	Create State Transitions
	Define Conditions and Variables
	Create State Executives
	Edit Process Interfaces
	Compile the Model

	Implementing the Node and Network Models
	Create the Node Model
	Create the Network Model

	Running the Simulation
	Analyzing the Results
	====================
	Search the Document Set
	====================
	Show/Hide Menu Bar
	Show/Hide Tool Bar
	Fit Window
	Print This Document

