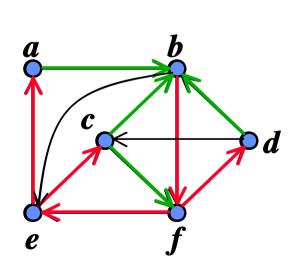
Algoritmi e Strutture Dati (Mod. B)

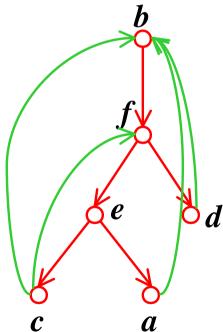
Algoritmi su grafi
Ricerca in profondità
(Depth-First Search) Parte II

Classificazione digli archi

Sia G_p la foresta DF generata da DFS sul grafo G.

- Arco d'albero: gli archi della foresta G_p , tali che l'arco $(u,v)\hat{I}$ E_p se v è stato scoperto esplorando l'arco (u,v).
- Arco di ritorno: gli archi (u,v) che connettono un vertice u con un antenato v nell'albero DF.

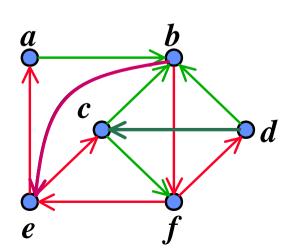




Classificazione digli archi

Sia G_p la foresta DF generata da DFS sul grafo G.

- Arco in avanti: archi (u,v) non appartenenti all'albero DF che connettono l'arco u con un discendente v
- Arco di attraversamento (cross): tutti gli altri archi. Possono connettere vertici nello stesso albero DF (a patto che un vertice non sia antenato dell'altro nell'albero) o vertici in alberi DF differenti.

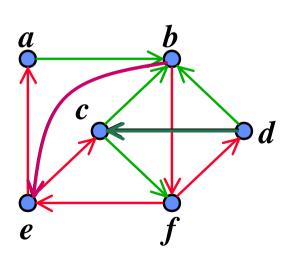


DFS per la classificazione digli archi

DFS può essere usata per classificare gli archi di un grafo G.

Si utilizza il colore del vertice che si raggiunge durante la visita dell'arco (u,v):

- se v è bianco: allora l'arco è un arco d'albero
- se v è grigio: allora l'arco è un arco di ritorno
- se v è nero: allora l'arco è un arco in avanti o un arco di attraversamento

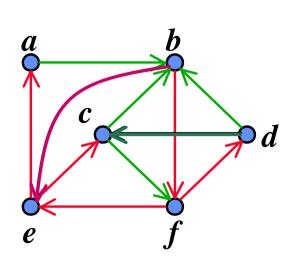


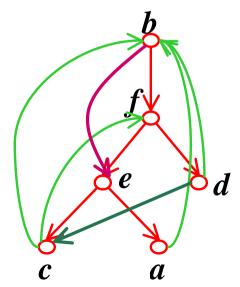
DFS per la classificazione digli archi

DFS può essere usata per classificare gli archi di un grafo G.

Si utilizza il colore del vertice che si raggiunge durante la visita dell'arco (u,v):

- v è nero: allora l'arco è un arco in avanti o un arco di attraversamento
 - se inoltre d[u] < d[v] allora è un arco in avanti
 - se d[v] < d[u] allora è un arco di attraversamento





Proprietà di DFS

Teorema: Durante la DFS di un grafo non orientato G, ogni arco è un arco dell'albero o un arco di ritorno.

Dimostrazione: Sia (u,v) un arco arbitrario di G. Consideriamo il caso in cui d[u] < d[v] (il caso d[v] < d[u] è simmetrico).

Se d[u] < d[v], v deve venir scoperto e visitato prima che si finisca di visitare u (v è nella lista di adiacenza di u).

Ora, se l'arco (u,v) viene esplorato prima da u a v, allora diventa un arco dell'albero.

Se l'arco (u,v) viene esplorato prima da v a u, allora diventa un arco di ritorno, poiché u è ancora grigio quando l'arco viene esplorato per la prima volta.

Esercizi

Dal libro di testo:

- Es. 23.1-3 (calcolo del grafo trasposto G^T di G)
- Es. 23.3-4
- Es. 23.3-6
- Es. 23.3-7
- Es. 23.3-8

Applicazioni di DFS

Due problemi:

- > calcolare l'<u>ordinamento topologico</u> indotto da un grafo aciclico.
- > calcolare le <u>componenti (fortemente) connes-</u> <u>se</u> (CFC) di un <u>grafo (non) orientato</u>.

Vedremo che entrambi i problemi possono essere risolti *impiegando* opportunamente l'*algoritmo* di *DFS*

- Definizione: Dato un grafo orientato aciclico G (un DAG), un ordinamento topologico su G è un ordinamento lineare dei suoi vertici tale che:
 - se G contiene l'arco (u,v), allora u compare prima di v nell'ordinamento.

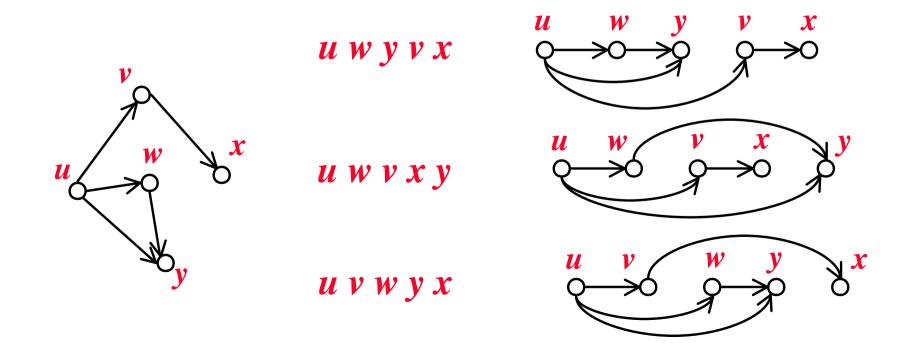
Ordinamento dei vertici in un DAG tale che

• se esiste un *percorso* da *u* a *v*, allora *u* compare prima di *v* nell'ordinamento

Ordinamento dei vertici in un DAG tale che

• se esiste un percorso da *u* a *v*, allora *u* compare prima di *v* nell'ordinamento

Ci possono essere più ordinamenti topologici.



Problema: Fornire un algoritmo che dato un grafo orientato aciclico, ne calcoli e ritorni un ordinamento topologico.

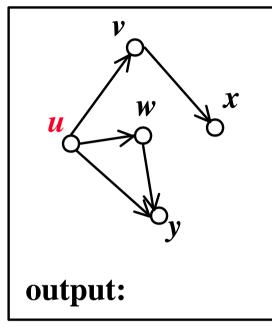
Soluzioni:

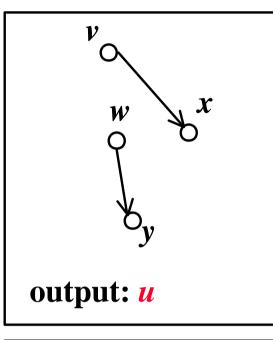
- Soluzione diretta
- Soluzione che utilizza **DFS**

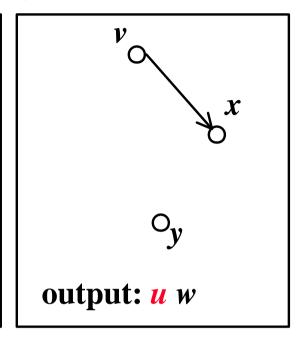
Ordinamento topologico: algoritmo I

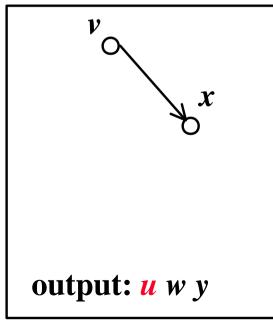
- >> Trovare ogni vertice che non ha alcun arco incidente in ingresso
 - > Stampare questo vertice e *rimuoverlo*, insieme ai suoi archi
 - Ripetere la procedura finché tutti i vertici risultano rimossi.

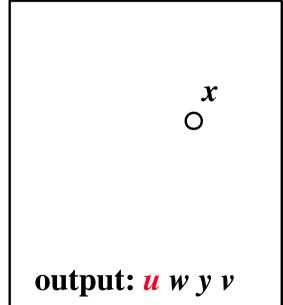
Ordinamento topologico: algoritmo I

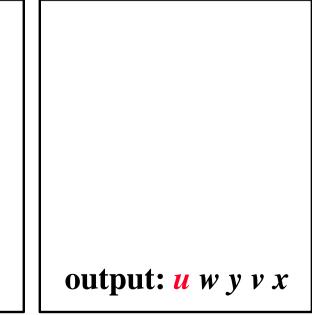












Esercizio

Es 23.4-5: Terminare l'esercizio fornendo un algoritmo che in tempo O(V+E) computa l'Ordinamento Topologico di un grafo G secondo l'idea appena illustrata.

Teorema: Un grafo orientato è aciclico se e solo se DFS su G non trova alcun arco di ritorno.

Dimostrazione:

se: Supponiamo che G contenga un ciclo c.

Allora *DFS* necessariamente troverà un *arco di* ritorno.

Infatti, se v è il *primo* vertice che viene scoperto in c, e (u,v) è l'arco che lo precede in c,

allora al tempo d[v] c'è un percorso bianco da v a u.

Per il teorema del percorso bianco, sappiamo che u diventa un discendente di v nella foresta DF.

Perciò, (u,v) deve essere un arco di ritorno.

Teorema: Un grafo orientato è aciclico se e solo se DFS su G non trova alcun arco di ritorno.

Dimostrazione:

solo se: Supponiamo che DFS incontri un arco di ritorno (u,v).

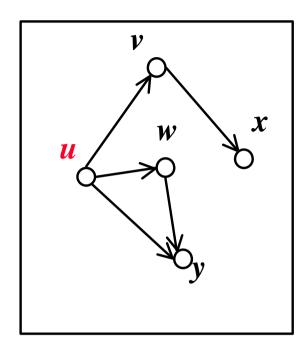
Allora il vertice v è un antenato di u nella foresta DF. Quindi esiste un percorso da v a u in G, e l'arco di ritorno (u,v) completa il ciclo, quindi G non è aciclico.

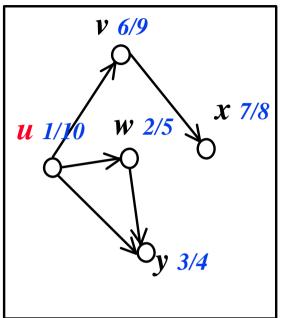
Ordinamento topologico: algoritmo II

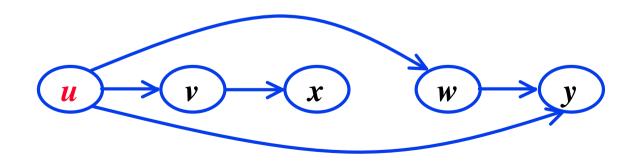
```
Ordinamento-Topologico(G: grafo)
1 DFS(G) per calcolare i tempi f[v]
2 Durente la DFS, ogni volta che un vertice è terminato, aggiungerlo in testa ad una lista
3 Ritornare la lista di vertici
```

In altre parole, l'algoritmo ordina i vertici in ordine inverso rispetto ai tempi di fine visita.

Ordinamento topologico: algoritmo II







output: u v x w y

Correttezza dell'algoritmo II

Teorema: Ordinamento-Topologico(G) calcola correttamente l'ordinamento topologico di un grafo aciclico G.

Dimostrazione: Dobbiamo dimostrare che vale la proprietà di ordinamento topologico: per ogni arco (u,v) \hat{I} E, u precede v nell'ordinamento.

Ma questo equivale a dimostrare che, dopo la DFS, per ogni coppia di vertici u e v, se abbiamo che (u,v) \hat{I} E, allora f[v] < f[u].

In tal caso abbiamo appunto che *u precederà v* nell'ordinamento (vedi Algoritmo).

Correttezza dell'algoritmo II

Quindi v o è bianco o è nero.

Teorema: Ordinamento-Topologico(G) calcola correttamente l'ordinamento topologico di un grafo aciclico G.

Dimostrazione: Dimostriamo che, dopo DFS, per ogni coppia di vertici u e v, se (u,v) Î E, allora f[v]<f[u].
Preso un qualsiasi arco (u,v)Î E esplorato da DFS, quando l'arco viene esplorato, v non può essere grigio, altrimenti v sarebbe un antenato di u e (u,v) un arco di ritorno, contraddicendo il teorema precedente.

Correttezza dell'algoritmo II

Teorema: Ordinamento-Topologico(G) produce correttamente l'ordinamento topologico di un grafo aciclico G.

Dimostrazione: il vertice v è o bianco o nero.

Se v è bianco, allora diventa un discendente di u e f[v] < f[u]

Se v è nero, allora ovviamente sarà f[v] < f[u].

In conclusione, dato l'ordine di inserimento nella lista e l'aciclicità di G, segue la correttezza.