
Virtual Memory

Giorgio Richelli

Typical Memory Technologies

• Integrated into
CPU

• Fast, many ports
• Main Memory
• Very dense
• Slower to access,

one port
• Must be refreshed

Register
 File

• Caches
– On chip L1
– On/off chip L2
– Off chip L3

SRAM

DOA

DI

DRAM

DA

W

B B

Physical Memory Addressing

CPU Cache

LW R1,0(R2)

address
32 bits 32 bits

tag ind off

DRAM
64MB

26 bits

DRAM
256MB

28 bits

Simple View of Memory

• Single program runs at a
time

• Code and static data are
at fixed locations
– code starts at fixed

location, e.g., 0x100
– subroutines may be at

fixed locations (absolute
jumps)

• data locations may be
wired into code

• Stack accesses relative to
stack pointer.

PC

R1

R31

...

Code

Data

Stack

Running Two Programs (Relocation)

• Need to relocate logical
addresses to physical
locations

• Stack is already relocatable
– all accesses relative to SP

• Code can be made
relocatable
– allow only relative jumps
– all accesses relative to PC

• Data segment
– can calculate all addresses

relative to a DP
• expensive

– faster with hardware
support
• base register

PC

R1

R31

...

Code

Data

Stack

Code

Data

Stack

PC

R1

R31

...

Base-Register Addressing

• Add a single base
register, BR, to hardware

• Base register loaded with
data pointer (DP) for
current program

• All data addresses added
to base before accessing
memory
– Can relocate code too

• Often implemented with
a three-input adder
– Addr, Offset, Base

• Need to bypass base
register to access system
tables for program
switching

Logical Address Base (DP)

Logical Address

Base Register Addressing

Code

Data

Stack

Code

Data

Stack

Base 0

Base 1

Sys Code

Sys Table

•System code handles
switching between
programs

•System table contains
base address of each
program

•Saved state of non-
running programs

Providing Protection Between Programs
(Length Registers)

• Add a Length Register LR to
the hardware

• A program is only allowed
to access memory from BR
to BR+Length-1

• A program cannot set BR or
LR
– they are privileged

registers

Code

Data

Stack

Code

Data

Stack

Base 0

Base 1

Sys Code

Sys Table

Length 0 +

Length 1 +

Base + Length Addressing

Logical Address Base

Logical Address

Length

<

Allowed

Privileged Registers

Issues

A program can be loaded into different places in
memory each time it runs

 Relocation

Multiple programs may run concurrently
 Protection

A program may wish to use more memory than
physically exists

 Paging

Virtual Memory

• A technology that permits to:
– Simplify protection
– Enable relocation
– Extend the physical memory capacity

Virtual Memory

• Translate from virtual space to physical space
– VA ⇒ PA
– May need to go to disk

CPU Cache
DRAM
64MB

LW R1,0(R2)

Virtual Addr.

32 bits

26 bits

T
ran

slate

Physical Addr.

28 bits

Virtual Memory

• Both programs can use the same set of addresses
– Change translation tables to point same VA to different PA

for different programs

CPU Cache
DRAM
64MB

LW R1,0(R2)

Virtual Addr.

32 bits

26 bits

T
ran

slate

Physical Addr.

28 bits

Process 1

Process 2

T
ran

slate
T

ran
slate

Paging and Protection

• How to ensure that processes can’t access
each other’s data
– Put them in separate virtual address spaces
– Control the mappings of VA to PA for each process

• Separate page tables

• How can you share data between processes
– Give them each a VA mapping to the same PA

• Similar entry in each process’ page table

Virtual Address Translation

• Main Memory = 64MB
• Page Size = 4KB
• VPN = 20 bits
• PPN = 14 bits

Virtual Page Number (VPN) Page Offset

Physical Page Number (PPN) Page Offset

Translation
Table

0

11

1225

31 0

11

12

• Translation table
– aka “Page Table”

Paging: Main Memory as a Cache for Disk

• 32 bit addresses = 4GB, Main Memory = 64MB
• Dynamically adjust what data stays in main memory

– Page similar to cache block

• Note: file system >> 4GB, managed by O/S

data page
(4-256KB)

Demand Paging

Virtual Memory Access (+ Fault)

1) Examine page table

2) Discover that no mapping exists

3) Select page to evict, store back to disk

4) Bring in new page from disk

5) Update page table

Page Fault

User Program Runs

Page fault

OS requests page

Disk read

2nd User Program Runs

Disk interrupt

OS Installs page

User program
resumes

Page Management and Thrashing

• Need to keep a process’
working set in memory or
thrashing will occur

• Find working set size by
increasing page frame
allocation until PF/s falls
below limit

• Swap out whole process
if insufficient page
frames for working set
– Historically used in Unix

Systems

W

X

Y

Z

X

Y

Z

W

Y

Z

W

X

Reference four pages in
sequence, mapped to three page
frames

Virtual Memory Requirements

• Restartable (or resumable) instructions
– must be able to resume program after recovering

from a page fault

• Ability to mark a page not present
– and raise a page fault when referencing such a page

• Maintain status bits per page
– R - referenced - for use by replacement algorithm
– M - modified - to determine when page is dirty

Page Frame Management

• OS maintains
– page table for each user

process
– page frame table
– free page list

• pages evicted when
number of free pages
falls below a low water
mark.

– pages evicted using a
replacement policy
• random, FIFO, LRU, clock

– if M-bit is clear, need not
copy the page back to disk

Page Frame Table

Link R M State

Free

Proc 1

Page Table Construction

• Page table size
– (14 + 1) bits => 4 bytes
– 4 * 220 = 4MB (for 32 bit addresses) …

• Where to put the page table?

valid Physical Page Number

Page Table Register

+

VPN offset

PPN offset

Page Table Organization

• Flat page table has size
proportional to size of
virtual address space
– can be very large for a

machine with 64-bit
addresses and several
processes

• Three solutions
– page the page table
– multi-level page table

(lower levels paged -
Tree)

– inverted page table
(hash table)

PTP

2n-o

Multi-Level Page Table

PTP

Dir1 Dir2 Page offset

Directory
Directory

Page
Directory

Page
Table

e.g., 42-bit VA with 12-bit offset
10-bits for each of three fields
1024 4-byte entries in each table (one page)

Inverted Page Tables

• Store only PTEs for pages
in physical memory

• Miss in page table
implies page is on disk

• Need KP entries for P
page frames (usually K >
2)

Virtual Address
Page Offset

Hash Page Frame S

=

Frame Offset

OK

How Long does it Take to Access VM?

• Problem: Multiple memory (and potentially
disk) accesses

Issue Load
Walk page

table
Translate
VA⇒PA

Fetch data
using PA

Best Case

Worst Case

Issue Load Use dataWalk page
table

Fetch PTE from disk Fetch data page from disk
Install new page,
update page table

Use data

Translation Lookaside Buffers

• Store most frequently
used translations in
small, fast memory
(cache for page table
entries)

• Valid, Writeable,
Referenced, Modified
– Access protection
– Replacement strategies

• Size: often 128+ entries
• Highly associative

(sometimes fully assoc.)

PID VPN Offset

TLB

VWRM VPN PPN

PPN Offset Page = VPN
Frame = PPN

Behavior in VM system

• TLB Miss
– Translation is not in TLB – but everything could be in

memory
– Two approaches

• Hardware state machine walks the page table
– fast but inflexible

• Exception raised and software walks the page
table

• Page Fault
– Entry not in TLB and target page not in main memory

Reducing TLB misses

• Same type of optimizations as for cache
– Associativity (many TLBs are fully associative)
– Capacity – TLBs tend to be 32-256 entries

• Adjust page size
– Small pages

• Reduces internal fragmentation
• Speeds page movement to/from disk

– Large pages
• Can cover more physical memory with same

number of TLB entries
– Solution: typically have a variable page size

• Select by OS, 4KB-16MB (superpages)

Virtual Memory + Caching

• Conflicting demands:
– Convenience of flexible memory management

(translation)
– Performance of memory hierarchy (caching)

• Requires cooperation of O/S
– Data in cache implies that data is in main memory

• Combine VM and Caching

Physically Addressed Cache

• Translate first from VA ⇒ PA
• Access cache with PA

CPU Cache

LW R1,0(R2)

Virtual Addr.

32 bits

Physical Addr.

26 bits

 TLB DRAM

Virtually Addressed Cache

• Access cache first
• Only translate if going to main memory

CPU Cache

LW R1,0(R2)

Virtual Addr.

32 bits

Physical Addr.

26 bits

 TLB DRAM

Aliasing

• Can occur when switching among multiple
address spaces

• Synonym aliasing
– Different VAs point to the same PA
– Occurs when data shared among multiple address

spaces
– One solution: always translate before going to the

cache

• Homonym aliasing
– Same VA point to different PAs
– Occurs on context switching
– Two solutions:

• Flush TLB on process switch/system call
• TLB includes process ID

Best of Both Worlds:

Virtually addressed, Physically Tagged
• Parallel Access
• Eliminate synonym problem

CPU

Cache

LW R1,0(R2)

Virtual Addr.

32 bits

Physical Addr.

26 bits

 TLB

DRAM

Virtual Index, Physical Tag

	 Virtual Memory
	Typical Memory Technologies
	Physical Memory Addressing
	Simple View of Memory
	Running Two Programs (Relocation)
	Base-Register Addressing
	Base Register Addressing
	Providing Protection Between Programs (Length Registers)
	Base + Length Addressing
	Issues
	Virtual Memory
	Slide 12
	Slide 13
	Paging and Protection
	Virtual Address Translation
	Paging: Main Memory as a Cache for Disk
	Virtual Memory Access (+ Fault)
	Page Fault
	Page Management and Thrashing
	Virtual Memory Requirements
	Page Frame Management
	Page Table Construction
	Page Table Organization
	Multi-Level Page Table
	Inverted Page Tables
	How Long does it Take to Access VM?
	Translation Lookaside Buffers
	Behavior in VM system
	Reducing TLB misses
	Virtual Memory + Caching
	Physically Addressed Cache
	Virtually Addressed Cache
	Aliasing
	Best of Both Worlds:
	Virtual Index, Physical Tag

