The Virtual Filesystem

File Systems

old days — "the" filesystem!

now — many filesystem types, many instances
— need to copy file from NTFS to Ext3

original motivation — NFS support (Sun)

idea — filesystem op abstraction layer ()

— Virtual File System (aka Virtual Filesystem Switch)

— file-related ops determine filesystem type

— dispatch (via function pointers) filesystem-specific op

VFSIntro.ppt#Slide 1

File System Types

lots and lots of filesystem types!
— 2.6 has nearly 100 in the standard kernel tree

examples

— standard: ufs (Solaris), svfs (SysV), ffs (Berkeley)
— network: RFS, NFS, Andrew, Coda, Samba, Novell
— journaling: Ext3, Veritas, ReiserFS, XFS, JFS

— media-specific: jffs, ISO9660 (cd), UDF (dvd)

— special: /proc, tmpfs, sockfs, etc.

proprietary

— MSDOS, VFAT, NTFS, Mac, Amiga, etc.

new generation for Linux

— Ext3, ReiserFS, XFS, JFS

Common File Model

* standard api (basically UNIX file semantics)
— doesn't fit perfectly with NT, etc.

— example: directory is a file with specific structure
* not true for some filesystems (MSDOS, etc.)
* File Allocation Table (FAT)

* VFS layer just dispatches to fs-specific functions

— libc read() -> sys_read()
* what type of filesystem does this file belong to?
 call filesystem (fs) specific read function
* maintained in open file object (file)

— example: file->f_op->read(...)
* similar to device abstraction model in UNIX

VES System Calls

* fundamental UNIX abstractions
— files (everything is a file)
* ex: /dev/ttySO — device as a file
* ex: /proc/123 — process as a file

— Processes
— USers

* lots of syscalls related to files (~100)
— most dispatch to filesystem-specific calls

— some require no filesystem action
* example: Iseek(pos) — change position in file
— others have default VFS implementations

VFS System Calls (cont.)

API :

— filesystem ops — mounting, info, flushing, chroot, pivot_root
— directory ops — chdir, getcwd, link, unlink, rename, symlink
— file ops — open/close, read/write, stat, permissions, seek

* chmod, chown, stat, creat, umask, dup, fcntl, truncate

* read/write, readv/writev, pread/pwrite
— memory mapping files — mmap, munmap, madvise, mlock
— wait for input — poll, select
— flushing — synch, fsync, msync, fdatasync
— file locking — flock

Common Filesystem Interface

T

Hard disk with ext3

VFS |——| CP(1)

-

Removable disk with ext2

Unix Filesystem

write()

A 4

sys_write()

filesystem’s
write method

v

Big Four Data Structures

one - open file object

— information about an open file

— includes current position (file pointer)

two - dentry

— information about a directory entry

— includes name + inode#

three - inode

— unique descriptor of a file or directory

— contains permissions, timestamps, block map (data)
— inode#: integer (unique per mounted filesystem)
four - superblock

— descriptor of a mounted filesystem

ok, one more - filesystem type

— pointer to implementing module

— including how to read a superblock

VFS Objects (Metadata Types)

The superblock, which represents a
specific mounted filesystem.

The inode object, which represents a
specific file

The dentry object, which represents a
specific directory entry

The file object, which represents an open
file as associated with a process

Data Structure Relationships

open
file
object

open
file
object

open
file
object

/

inode

\
I

dentry

identry cache

=

—_——_———

[superblock}

Sharing Data Structures

calling dup()

— shares open file objects

— example: 2>&1

opening the same file twice

— shares dentries

opening same file via different hard links

— shares inodes

mounting same filesystem on different dirs
— shares superblocks

VFS Objects

ne super_operations object
ne inode operations object
ne dentry operations object
ne file_operations object

Others

— file _struct
—fs_struct
— hamespace

— o4 o

Superblock

mounted filesystem descriptor

usually first block on disk (after boot block)

— copied into (similar) memory structure on mount

 distinction: disk superblock vs memory superblock
 dirty bit (s_dirt), copied to disk frequently

important fields

s _dev, s bdev — device, device-driver
s_blocksize, s maxbytes, s type

s flags, s magic, s _count, s_root, s _dquot
s_dirty — dirty inodes for this filesystem
s_op — superblock operations

u — filesystem specific data

Superblock Operations

filesystem-specific operations
— read/write/clear/delete inode
— write_super, put_super (release)

* no get super()
— ltisin file_system type descriptor

— write_super, lockfs, unlockfs, statfs
— file_handle ops (NFS-related)
— show_options

The Superblock Object

struct super block {

}

* linux/fs.h
* Created via alloc super ()
* Filled from the disk when mounted

Superblock Operations

Writing to its superblock:

sb->s op->write super (sb)
Creating a new inode under the given superblock:
sb->s op->alloc inode (sb)
Deallocating the given inode:

sb->s op->destroy 1node (1inode)
Reading the inode from the disk:

sb->s op->read inode (1node)
Writing the inode to the disk

sb->s op->write 1node (1node)
Others manipulating inodes

Inode

* "index" node — unique file or directory descriptor

— meta-data: permissions, owner, timestamps, size, link
count

— data: pointers to disk blocks containing actual data
* data pointers are "indices" into file contents (hence

"inode")
* inode # - unique integer (per-mounted
filesystem)
* what about names and paths?
— high-level fluff on top of a "flat-filesystem"
— implemented by directory files (directories)
— directory contents: name + inode

File Links

* UNIX link semantics

— hard links — multiple dir entries with same inode #
* equal status; first is not "real" entry
* file deleted when link count goes to O

* restrictions
— can't hard link to directories (avoids cycles)
— or across filesystems

— soft (symbolic) links — little files with pathnames
* just aliases for another pathname
* no restrictions, cycles possible, dangling links possible

Inode Fields

large struct (~50 fields)
linux/fs.h

important fields

— i_sb, i _ino (number), i_nlink (link count)

— metadata: i_mode, i _uid, i _gid, i_size, i times

— i_flock (lock list), i_wait (waitq — for blocking ops)
— linkage: i _hash, i list, i _dentry (aliases)

— i_op (inode ops), i_fop (default file ops)

— u (filesystem specific data — includes block map)

Inode Operations

create — new inode for regular file

link/unlink/rename —
— add/remove/modify dir entry

symlink, readlink, follow link — soft link
ops

mkdir/rmmdir — new inode for directory file
mknod — new inode for device file
truncate — modify file size

permission — check access permissions

The Inode Object

struct inode {
struct hlist node i hash; // hash list

struct list head i list; // linked list
struct list head i dentry; // dentry list
unsigned long 1 1no;

atomic t 1 count;

umode t 1 mode;

1 uid, 1 gid, 1 size;

struct 1node operations *1 op;

struct file operations *1 fop;

struct super block *1 sb;

kdev t i rdev; // real device node
struct block device *i bdev; // bdev driver
struct address space *1 mapping, *1i data;

Inode Operations

create (struct inode *, struct dentry *, 1int mode)
lookup (struct inode *, struct dentry *)

link (old dentry, dir, dentry)

unlink (dir, dentry)

mkdir (dir, dentry, mode)

rmdir (dir, dentry) // remove dentry from dir
mnod () // device file, named pipe, socket, etc
rename ()

readlink (dentry, buffer, buflen) // man readlink
follow link() // translating a symbolic

link to the inode 1t points to

truncate (struct inode *inode) // modify file size

Dentry

abstraction of directory entry

— ex: line from s -

— either files (hard links) or soft links or subdirectories

— every dentry has a parent dentry (except root)

— sibling dentries — other entries in the same directory
directory api: dentry iterators

— posix: opendir(), readdir(), scandir(), seekdir(), rewinddir()
— syscall: getdents()

why an abstraction?

— UNIX: directories are really files with directory "records”
— MSDOS, etc.: directory is just a big table on disk (FAT)

no such thing as subdirectories!
* just fields in table (file->parentdir), (dir->parentdir)

Dentry (cont.)

not-disk based (no dirty bit)

— dentry _cache — slab cache

— consistency maintenance using version numbers (later)
important fields

— d_name, d_count, d_flags

— d_inode — associated inode

— d_parent — parent dentry

— d_child — siblings list

— d_subdirs — my children (if i'm a subdirectory)

— d_alias — other names (links) for the same object (inode)?
— d_lru — unused state linkage

— d_op — dentry operations (function pointer table)

— d_fsdata — filesystem-specific data

Dentry Cache

* very important cache for filesystem performance

— every file access causes multiple dentry accesses!
— example: /tmp/foo
* dentries for "/", "tmp", "/tmp/foo" (path components)

* dentry cache "controls"” inode cache
— Inodes released only when dentry is released

* dentry cache accessed via hash table
— hash(dir, filename) -> dentry

Dentry Cache (cont.)

* dentry states
— free (not valid; maintained by slab cache)
— in-use (associated with valid open inode)
— unused (valid but not being used; LRU list)
— negative (invalid inode)
* example: bad symbolic link (link exists but not file/inode)
* dentry ops
— just a few, mostly default actions
— ex: d_compare(dir, name1, name2)
* case-insensitive for MSDOS

The Dentry Object

struct dentry {
atomic t d count; // usage count
struct inode *d inode
struct dentry operations *d op;
struct super block *d sb;
void *d fsdata; // filesystem-specific data
struct gstr d name; //dentry name
unsigned char d iname[]; // short filenames
struct list head d 1lru; // unused list
struct hlist node d hash; // hash list
struct hlist head *d bucket; // hash bucket
}

Dentry State:
* Used, d inode points to an inode
* Unused, d inode, d count = 0

* Negative, d inode = NULL

The Dentry Cache (dcache)

The dentry cache consists of three parts:

* Lists of “used” dentries that are linked off
their associated inode via the i_dentry field
of the inode object.

* A doubly linked “least recently used” list of
unused and negative dentry objects.

* A hash table and hashing function used to
quickly resolve a given path into the
associated dentry object.

Dentry Operations

d revalidate (dentry, flags)

d hash(dentry, name): creates a hash value from the given
dentry. Called when to add a dentry to the hash table

d compare (dentry, namel, name2)
d delete ()
de release ()

de 1iput ()

lcache

* The dentry cache also acts as a controller
for the inode cache

* Inodes in kernel memory associated with

unused dentries are not discarded since
|_count is not null

* Thus inode objects are kept in RAM and
can be referenced by corresponding
dentries.

(Open) File Object

struct file (usual variable name - filp)

— association between file and process

— no disk representation

— created for each open (multiple possible, even same file)

— most important info: file pointer

file descriptor (small ints)

— index into array of pointers to open file objects

file object states

— unused (memory cache + root reserve (10))
get_empty_filp()

— inuse (per-superblock lists)

system-wide max on open file objects (~8K)

— [proc/sys/fs/file-max

File Object Fields

important fields

— f_dentry (associated dentry)

— f vfsmnt (fs mount point)

— T _op (fs-specific functions — table of function pointers)
— f _count, f flags, f mode (r/w, pemissions, etc.)

— f _pos (current position — file pointer)

— info for read-ahead (more later)

— f uid, f gid, f owner

— f_version (for consistency maintenance)

— private_data (fs-specific data)

File Object Operations

* f op field — table of function pointers
— copied from inode (i_fop) initially (fs-specific)
— possible to change to customize (per-open)
device-drivers do some tricks like this sometimes
* important operations
— llseek(), read(), write(), readdir(), poll()
— ioctl() — "wildcard" function for per-fs semantics
— mmap(), open(), flush(), release(), fsync()
— fasync() — turn on/off asynchronous i/o notifications
— lock() — file-locks (more later)

— readv(), writev() — "scatter/gather i/0"
read/write with discontiguous buffers (e.g. packets)

— sendpage() — page-optimized socket transfer

The File Object

struct file {
struct list head f list;
struct dentry *f dentry; // associated dentry
struct vismount *f vfsmnt; // assoc mounted fsys
struct file operations *f op;
atomic t £ count;
unsigned int f flags; // flags specified on open
mode t f mode;
loff t £ pos; // file offset

File Operations

llseek ()

read (), readv()
aio read()

write (), writev ()
aio write ()
poll ()

ioctl ()

mmap ()

open ()

flush ()

fsync ()

aio fsync ()
fasync ()
sendfile (), sendpage ()

get unmapped area(): gets unused address space to map
the given file

Filesystem Types

* Linux must "know about" filesystem before
mount

— multiple (mounted) instances of each type possible
* special (virtual) filesystems (like /proc)
— structuring technique to touch kernel data

— examples:
* /proc, /dev (devfs)
* sockfs, pipefs, tmpfs, rootfs, shmfs

— associated with fictitious block device (major# 0)
* minor# distinguishes special filesystem types

Registering a Filesystem Type

* must register before mount
— static (compile-time) or dynamic (modules)

* register filesystem() / unregister_filesystem
— adds file_system_type object to linked-list

* file_systems (head; kernel global variable)
* file_systems_lock (rw spinlock to protect list)

* file_system type descriptor
— name, flags, pointer to implementing module
— list of superblocks (mounted instances)
— read_super() — pointer to method for reading superblock
* most important thing! filesystem specific

Data Structures Associated with
Filesystems

struct file system type
const char *name;
struct subsystem subsys;
int fs flags;
struct super block *(*get sb) ();
void (*kill sb) (struct super block *);
struct module *owner; // assoc module if any
struct file system type *next;
struct list head fs supers; // sb list
}

There 1s only one above struct per filesystem.

Mounting

* Vfsmount is used

a Filesystem

to represent a specific

instance of a filesystem—a mount point

struct vismount {

struct dentry *mnt mountpoint; // mnt point

dentry

struct dentry *mnt

struct super block
atomlic t mnt count;

char *mnt devname;

root;// fs root dentry
*mnt sb;
//usage count

// device file name

VFES-related Task Fields

* task struct fields
— fs — includes root, pwd
* pointers to dentries

— files — includes file descriptor array fd[]
* pointers to open file objects

Data structures associated with a
Process

struct files struct, the *files” field in task_struct
struct fs struct contains filesystem information related to a
process and is pointed by the “fs” field in task_struct
struct fs struct {
struct dentry *root, *pwd, *altroot,
struct vismount *rootmnt, *pwdmnt, *altrootmnt

}
struct namespace, enables each process to have a unique view
of the mounted filesystems on the system (not in 2.2 kernels)

struct namespace {
atomic t count
struct vfsmont *root; // mount obj of root directory
struct list head list; // list of mount points
struct rw semphore sem; // semaphore for namespace

}

Process-related Files

* current->fs (fs_struct)

— root (for chroot jails)

— pwd

— umask (default file permissions)
* current->files (files_struct)

— fd[] (file descriptor array — pointers to file objects)
* 0,1, 2 - stdin, stdout, stderr

— originally 32, growable to 1,024 (RLIMIT_NOFILE)
* complex structure for growing ...

— close_on_exec memory (bitmap)

* open files normally inherited across exec

Accessing FileSystem Data

* mmap()

— Gives application direct memory-mapped
access to the kernel’'s page cache data.

* Direct block |/O (read, write)

— The read() system call reads data from block
device into the kernel cache, then copies data
from the kernel cached copy onto the
application address space.

Linux Page-cache and Buffer-
cache

* Buffer cache:
— Holding individual disk blocks copies.

— Using device and block No. indexes the cache
entries.

— Using Linked-list (unused, free, clean, dirty,
locked, etc.) to minimize management
overhead.

— Using hash table to speed up cache finding.

— Grouping several writes together (dirty
buffers).

Linux Page-cache and Buffer-
cache (cont.)

* Page cache:
— 4K / page

— Page cache entries are partially indexed by
the file i-node number and its offset within the
file.

Integration of page and buffer
cache

— If the system become short on memory, the
page cache tends to be easier to deal with to
reclaim memory from.

— The individual blocks of a page cache entry
are still managed through the buffer cache.

— Linux stores the file data only in the page
cache to reduce the inefficiencies of double

copies.

Linux Page-cache and Buffer-cache

application

I mmap I read/write I

I page-cache

exira data
Copy

butter-cache

block device

Fig. 1: Buffer cache and page cache

I application

— T

mmap read/write

page-cache

cfalan

"
"
: R
il
W

buller-cache

I block device I

Fig. 2: Data is shared by page cache and buffer cache

! application |

I rmap | read/write

| page-cache |

#

owides [
huffer-cache |H_;$_mnm

| hlock device |

Fig. 3: Unified to page cache

