
The Virtual Filesystem



File Systems

• old days – "the" filesystem!

• now – many filesystem types, many instances
– need to copy file from NTFS to Ext3

• original motivation – NFS support (Sun)

• idea – filesystem op abstraction layer (VFS)
– Virtual File System (aka Virtual Filesystem Switch)

– file-related ops determine filesystem type

– dispatch (via function pointers) filesystem-specific op
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File System Types

• lots and lots of filesystem types!
– 2.6 has nearly 100 in the standard kernel tree

• examples
– standard: ufs (Solaris), svfs (SysV), ffs (Berkeley)
– network: RFS, NFS, Andrew, Coda, Samba, Novell
– journaling: Ext3, Veritas, ReiserFS, XFS, JFS
– media-specific: jffs, ISO9660 (cd), UDF (dvd)
– special: /proc, tmpfs, sockfs, etc.

• proprietary
– MSDOS, VFAT, NTFS, Mac, Amiga, etc.

• new generation for Linux
– Ext3, ReiserFS, XFS, JFS



Common File Model

• standard api (basically UNIX file semantics)
– doesn't fit perfectly with NT, etc.
– example: directory is a file with specific structure

• not true for some filesystems (MSDOS, etc.)
• File Allocation Table (FAT) 

• VFS layer just dispatches to fs-specific functions
– libc read() -> sys_read()

• what type of filesystem does this file belong to?
• call filesystem (fs) specific read function
• maintained in open file object (file)

– example: file->f_op->read(…)

• similar to device abstraction model in UNIX



VFS System Calls

• fundamental UNIX abstractions
– files (everything is a file)

• ex: /dev/ttyS0 – device as a file
• ex: /proc/123 – process as a file

– processes
– users

• lots of syscalls related to files (~100)
– most dispatch to filesystem-specific calls
– some require no filesystem action

• example: lseek(pos) – change position in file

– others have default VFS implementations



VFS System Calls (cont.)

• API :
– filesystem ops – mounting, info, flushing, chroot, pivot_root
– directory ops – chdir, getcwd, link, unlink, rename, symlink
– file ops – open/close, read/write, stat, permissions, seek

• chmod, chown, stat, creat, umask, dup, fcntl, truncate
• read/write, readv/writev, pread/pwrite

– memory mapping files – mmap, munmap, madvise, mlock
– wait for input – poll, select
– flushing – synch, fsync, msync, fdatasync
– file locking – flock



Common Filesystem Interface

VFS CP(1)
Hard disk with ext3

Removable disk with ext2



Unix Filesystem

write() sys_write()
filesystem’s 
write method



Big Four Data Structures

• one - open file object
– information about an open file
– includes current position (file pointer)

• two - dentry
– information about a directory entry
– includes name + inode#

• three - inode
– unique descriptor of a file or directory
– contains permissions, timestamps, block map (data)
– inode#: integer (unique per mounted filesystem)

• four - superblock
– descriptor of a mounted filesystem

• ok, one more - filesystem type
– pointer to implementing module
– including how to read a superblock



VFS Objects (Metadata Types)

• The superblock, which represents a 
specific mounted filesystem.

• The inode object, which represents a 
specific file

• The dentry object, which represents a 
specific directory entry

• The file object, which represents an open 
file as associated with a process



Data Structure Relationships
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Sharing Data Structures

• calling dup() 
– shares open file objects
– example: 2>&1

• opening the same file twice 
– shares dentries

• opening same file via different hard links 
– shares inodes

• mounting same filesystem on different dirs 
– shares superblocks



VFS Objects

• The super_operations object

• The inode_operations object

• The dentry_operations object

• The file_operations object

• Others
– file_struct
– fs_struct

– namespace



Superblock

• mounted filesystem descriptor
– usually first block on disk (after boot block)
– copied into (similar) memory structure on mount

• distinction: disk superblock vs memory superblock
• dirty bit (s_dirt), copied to disk frequently

• important fields
– s_dev, s_bdev – device, device-driver
– s_blocksize, s_maxbytes, s_type
– s_flags, s_magic, s_count, s_root, s_dquot
– s_dirty – dirty inodes for this filesystem
– s_op – superblock operations
– u – filesystem specific data



Superblock Operations

• filesystem-specific operations
– read/write/clear/delete inode

– write_super, put_super (release)
• no get_super()

– It is in file_system_type descriptor

– write_super, lockfs, unlockfs, statfs

– file_handle ops (NFS-related)

– show_options



The Superblock Object

 struct super_block {

…

 }

• linux/fs.h
• Created via alloc_super()
• Filled from the disk when mounted



Superblock Operations

• Writing to its superblock: 
sb->s_op->write_super(sb)

• Creating a new inode under the given superblock: 
sb->s_op->alloc_inode(sb)

• Deallocating the given inode: 
sb->s_op->destroy_inode(inode)

• Reading the inode from the disk: 
sb->s_op->read_inode(inode)

• Writing the inode to the disk
 sb->s_op->write_inode(inode)

• Others manipulating inodes



Inode

• "index" node – unique file or directory descriptor
– meta-data: permissions, owner, timestamps, size, link 

count
– data: pointers to disk blocks containing actual data

• data pointers are "indices" into file contents (hence 
"inode")

• inode # - unique integer (per-mounted 
filesystem)

• what about names and paths?
– high-level fluff on top of a "flat-filesystem"
– implemented by directory files (directories)
– directory contents: name + inode



File Links

• UNIX link semantics
– hard links – multiple dir entries with same inode #

• equal status; first is not "real" entry

• file deleted when link count goes to 0

• restrictions
– can't hard link to directories (avoids cycles)

– or across filesystems

– soft (symbolic) links – little files with pathnames
• just aliases for another pathname

• no restrictions, cycles possible, dangling links possible



Inode Fields

• large struct (~50 fields)

• linux/fs.h

• important fields
– i_sb, i_ino (number), i_nlink (link count)

– metadata: i_mode, i_uid, i_gid, i_size, i_times

– i_flock (lock list), i_wait (waitq – for blocking ops)

– linkage: i_hash, i_list, i_dentry (aliases)

– i_op (inode ops), i_fop (default file ops)

– u (filesystem specific data – includes block map)



Inode Operations

• create – new inode for regular file
• link/unlink/rename – 

– add/remove/modify dir entry

• symlink, readlink, follow_link – soft link 
ops

• mkdir/rmdir – new inode for directory file
• mknod – new inode for device file
• truncate – modify file size
• permission – check access permissions



The Inode Object

 struct inode {
struct hlist_node i_hash; // hash list
struct list_head i_list; // linked list
struct list_head i_dentry; // dentry list
unsigned long i_ino;
atomic_t i_count;
umode_t i_mode;
i_uid, i_gid, i_size;
struct inode_operations *i_op;
struct file_operations *i_fop;
struct super_block  *i_sb;
kdev_t   i_rdev; // real device node
struct block_device  *i_bdev; // bdev driver
struct address_space *i_mapping, *i_data;
…

 }



Inode Operations

 create(struct inode *, struct dentry *, int mode)
 lookup(struct inode *, struct dentry *)
 link(old_dentry, dir, dentry)
 unlink(dir, dentry)
 mkdir(dir, dentry, mode)
 rmdir(dir, dentry) // remove dentry from dir
 mnod() // device file, named pipe, socket, etc
 rename()
 readlink(dentry, buffer, buflen) // man readlink
 follow_link() // translating a symbolic
 link to the inode it points to
 truncate(struct inode *inode) // modify file size
 …



Dentry
• abstraction of directory entry

– ex: line from ls -l
– either files (hard links) or soft links or subdirectories
– every dentry has a parent dentry (except root)
– sibling dentries – other entries in the same directory

• directory api: dentry iterators
– posix: opendir(), readdir(), scandir(), seekdir(), rewinddir()
– syscall: getdents()

• why an abstraction?
– UNIX: directories are really files with directory "records"
– MSDOS, etc.: directory is just a big table on disk (FAT)

• no such thing as subdirectories!
• just fields in table (file->parentdir), (dir->parentdir)



Dentry (cont.)

• not-disk based (no dirty bit)
– dentry_cache – slab cache
– consistency maintenance using version numbers (later)

• important fields
– d_name, d_count, d_flags
– d_inode – associated inode
– d_parent – parent dentry
– d_child – siblings list
– d_subdirs – my children (if i'm a subdirectory)
– d_alias – other names (links) for the same object (inode)?
– d_lru – unused state linkage
– d_op – dentry operations (function pointer table)
– d_fsdata – filesystem-specific data



Dentry Cache

• very important cache for filesystem performance
– every file access causes multiple dentry accesses!

– example: /tmp/foo
• dentries for "/", "/tmp", "/tmp/foo" (path components)

• dentry cache "controls" inode cache
– inodes released only when dentry is released

• dentry cache accessed via hash table
– hash(dir, filename) -> dentry



Dentry Cache (cont.)

• dentry states
– free (not valid; maintained by slab cache)
– in-use (associated with valid open inode)
– unused (valid but not being used; LRU list)
– negative (invalid inode)

• example: bad symbolic link (link exists but not file/inode)

• dentry ops
– just a few, mostly default actions
– ex: d_compare(dir, name1, name2) 

• case-insensitive for MSDOS



The Dentry Object
 struct dentry {

atomic_t d_count; // usage count
struct inode *d_inode
struct dentry_operations *d_op;
struct super_block *d_sb;
void *d_fsdata; // filesystem-specific data
struct qstr d_name; //dentry name
unsigned char d_iname[]; // short filenames
struct list_head d_lru; // unused list
struct hlist_node d_hash; // hash list
struct hlist_head *d_bucket;  // hash bucket

 }
Dentry State: 
• Used, d_inode points to an inode
• Unused, d_inode, d_count = 0
• Negative, d_inode = NULL



The Dentry Cache (dcache)

The dentry cache consists of three parts:
• Lists of “used” dentries that are linked off 

their associated inode via the i_dentry field 
of the inode object.

• A doubly linked “least recently used” list of 
unused and negative dentry objects.

• A hash table and hashing function used to 
quickly resolve a given path into the 
associated dentry object.



Dentry Operations

 d_revalidate(dentry, flags)

 d_hash(dentry, name): creates a hash value from the given 
dentry. Called when to add a dentry to the hash table

  d_compare(dentry, name1, name2)

 d_delete()

 de_release()

 de_iput()



Icache

• The dentry cache also acts as a controller 
for the inode cache

• Inodes in kernel memory associated with 
unused dentries are not discarded since 
i_count is not null

• Thus inode objects are kept in RAM and 
can be referenced by corresponding 
dentries.



(Open) File Object
• struct file (usual variable name - filp)

– association between file and process
– no disk representation
– created for each open (multiple possible, even same file)
– most important info: file pointer

• file descriptor (small ints)
– index into array of pointers to open file objects

• file object states
– unused (memory cache + root reserve (10))

• get_empty_filp()

– inuse (per-superblock lists)
• system-wide max on open file objects (~8K)

– /proc/sys/fs/file-max



File Object Fields

• important fields
– f_dentry (associated dentry)
– f_vfsmnt (fs mount point)
– f_op (fs-specific functions – table of function pointers)
– f_count, f_flags, f_mode (r/w, permissions, etc.)
– f_pos (current position – file pointer)
– info for read-ahead (more later)
– f_uid, f_gid, f_owner
– f_version (for consistency maintenance)
– private_data (fs-specific data)



File Object Operations

• f_op field – table of function pointers
– copied from inode (i_fop) initially (fs-specific)
– possible to change to customize (per-open)

• device-drivers do some tricks like this sometimes

• important operations
– llseek(), read(), write(), readdir(), poll()
– ioctl() – "wildcard" function for per-fs semantics
– mmap(), open(), flush(), release(), fsync() 
– fasync() – turn on/off asynchronous i/o notifications
– lock() – file-locks (more later)
– readv(), writev() – "scatter/gather i/o"

• read/write with discontiguous buffers (e.g. packets)

– sendpage() – page-optimized socket transfer



The File Object

 struct file {
struct list_head f_list;

struct dentry *f_dentry; // associated dentry

struct vfsmount *f_vfsmnt; // assoc mounted fsys

struct file_operations *f_op;

atomic_t f_count;

unsigned int f_flags; // flags specified on open

mode_t f_mode;

loff_t f_pos; // file offset

…

 }



File Operations
•  llseek()
•  read(), readv()
•  aio_read()
•  write(), writev()
•  aio_write()
•  poll()
•  ioctl()
•  mmap()
•  open()
•  flush()
•  fsync()
•  aio_fsync()
•  fasync()
•  sendfile(), sendpage()
•  get_unmapped_area(): gets unused address space to map 

the given file



Filesystem Types

• Linux must "know about" filesystem before 
mount
– multiple (mounted) instances of each type possible

• special (virtual) filesystems (like /proc)
– structuring technique to touch kernel data
– examples: 

• /proc, /dev (devfs)
• sockfs, pipefs, tmpfs, rootfs, shmfs

– associated with fictitious block device (major# 0)
• minor# distinguishes special filesystem types



Registering a Filesystem Type

• must register before mount
– static (compile-time) or dynamic (modules)

• register_filesystem() / unregister_filesystem
– adds file_system_type object to linked-list

• file_systems (head; kernel global variable)
• file_systems_lock (rw spinlock to protect list)

• file_system_type descriptor
– name, flags, pointer to implementing module
– list of superblocks (mounted instances)
– read_super() – pointer to method for reading superblock

• most important thing! filesystem specific



Data Structures Associated with 
Filesystems

 struct file_system_type {
const char *name;

struct subsystem subsys;

int fs_flags;

struct super_block *(*get_sb)();

void (*kill_sb)(struct super_block *);

struct module *owner; // assoc module if any

struct file_system_type *next;

struct list_head fs_supers; // sb list

 }

There is only one above struct per filesystem.



Mounting a Filesystem

• Vfsmount is used to represent a specific 
instance of a filesystem—a mount point
 struct vfsmount {

struct dentry *mnt_mountpoint; // mnt point 
dentry

struct dentry *mnt_root;// fs root dentry

struct super_block *mnt_sb;

atomic_t mnt_count; //usage count

char *mnt_devname; // device file name

…

 }



VFS-related Task Fields

• task_struct fields
– fs – includes root, pwd

• pointers to dentries

– files – includes file descriptor array fd[]
• pointers to open file objects



Data structures associated with a 
process

• struct files_struct, the “files” field in task_struct
• struct fs_struct contains filesystem information related to a 

process and is pointed by the “fs” field in task_struct
  struct fs_struct {

struct dentry *root, *pwd, *altroot,
 struct vfsmount *rootmnt, *pwdmnt, *altrootmnt
…

}
• struct namespace, enables each process to have a unique view 

of the mounted filesystems on the system (not in 2.2 kernels)
  struct namespace {

atomic_t count
struct vfsmont *root; // mount obj of root directory
struct list_head list; // list of mount points
struct rw_semphore sem; // semaphore for namespace

  }



Process-related Files

• current->fs (fs_struct)
– root (for chroot jails)
– pwd
– umask (default file permissions)

• current->files (files_struct)
– fd[] (file descriptor array – pointers to file objects)

• 0, 1, 2 – stdin, stdout, stderr
– originally 32, growable to 1,024 (RLIMIT_NOFILE)

• complex structure for growing …
– close_on_exec memory (bitmap)

• open files normally inherited across exec



Accessing FileSystem Data

• mmap()
– Gives application direct memory-mapped 

access to the kernel’s page cache data.

• Direct block I/O (read, write)
– The read() system  call reads data from block 

device into the kernel cache, then copies data 
from the kernel cached copy onto the 
application address space.



Linux Page-cache and Buffer-
cache

• Buffer cache:
– Holding individual disk blocks copies.
– Using device and block No. indexes the cache 

entries.

– Using Linked-list (unused, free, clean, dirty, 
locked, etc.) to minimize management 
overhead.

– Using hash table to speed up cache finding.

– Grouping several writes together (dirty 
buffers).



Linux Page-cache and Buffer-
cache (cont.)

• Page cache:
– 4K / page
– Page cache entries are partially indexed by 

the file i-node number and its offset within the 
file.



Integration of page and buffer 
cache

– If the system become short on memory, the 
page cache tends to be easier to deal with to 
reclaim memory from.

– The individual blocks of a page cache entry 
are still managed through the buffer cache.

– Linux stores the file data only in the page 
cache to reduce the inefficiencies of double 
copies.



Linux Page-cache and Buffer-cache




