VEFS Mount

* All mounted filesystems are included in a
list, referenced by vismntlist

* Each element of the list is a struct
vismount

mnt dev: device number

mnt devname: device name

mnt dirname: mount point

mnt flags: mount flags

mnt sb: pointer to superblock
mnt dquot: disk quota mount options

mnt dnext: pointer to next element



VEFS Mount

* add vfsmnt(), remove vfsmnt()
- add or remove an element from the list
* lookup vismnt()

- search a specific mounted filesystem and
return a pointer to vfsmnt structure



VEFS Mount

* Sys mount()
- mount() service routine

- parameters:

* pathname of the device file
- NULL when not required
* pathename of the mount point

* filesystem type
* mount flags

* pointer to filesystem dependent data structure
- NULL when not required



VEFS Mount

* Sys mount():
- check user permissions
- call do_remount() if appropriate and return
- get filesystem type
- check parameters

- call do_mount() to perform the actual
operation



VES Mount

* do _mount():

- get directory entry (lock semaphore) and
check it

- read superblock

- add filesystem to list of mounted filesystems
- update directory pointers

- unlock semaphore



VEFS Mount

File System to Be Mounted

_rGDt

System’s Directory Tree Before Mounting

d_mounts

System's Directory Tree After Mounting

d_covers

d_covers d_mounts

d_m:::u_nts

(c)

s_root

d_mounts

d_covers

l superblock object
D dentry object

a directory subtree




VFS UnMount

* sys unmount()

- umount() service routine

- check access permission

- determine device (+ check)
- release dentry

- lock semaphore and call umount _dev()-
>do_umount()

- unlock semaphore



VFS UnMount

* do _umount()

- shrink dentry cache
- fsync device
- check if device can be umounted (not /)

- check access count & state, release
structures

- update (if needed) and release superblock
- remove struct vismnt from list



Lookup Path Name

Derive inode from corresponding pathname
Break path into a sequence of filenames

All components (except the last) must identify
directories

If the first character is / then pathname is absolute
- use current->fs->root

else
- current->fs->pwd

For each component of the pathname (left to right)
derive the corresponding inode, lookup and continue



Lookup Path Name

* A component might be a symbolic link
which expands in an arbitrary pathname

* Circular references may arise

* A filename might be the mountpoint of
another filesystem

* Access rights must be checked for each
access



Lookup Path Name

* lookup dentry()

- called by namei() and Inamei()
- recursive

- Name: file pathname

- Base: pointer to a dentry object
- flags

» LOOKUP FOLLOW, LOOKUP DIRECTORY,
LOOKUP SLASHOK



Lookup Path Name

* lookup dentry()

- Determine from the first character of name
(and base) and where the search must start
from

- Gets the inode of the initial directory

- lteratively repeat on each part of the
filename:



Lookup Path Name

* Check process permissions
* Computes hash value

* Updates name

* Calls reserved lookup()



Lookup Path Name

* reserved lookup()

- Initalizes the dentry local variable
- Locks the i sem semaphore

- Re-execute cached lookup and, if needed, calls the
lookup method filling a new dentry object

- Release the | sem semaphore
- Invokes follow_mount() and do_follow_link()

- If the inode references a directory either starts a
new cycle or returns base (depending on value of
flags)

- Returns base or an error code




