Concurrency and Synchronisation
Details

Donato Capitella

Department of Computer Science
University of Birmingham

Linux Kernel Programming, 2011

Donato Capitella Concurrency/Synchronization



Outline

@ Atomic operations

@ Spinlocks, Semaphores and Mutexes
@ Spinlocks
@ Semaphores
@ Mutexes
@ Producer/Consumer

© Other mechanisms

@ Reader/Writer Locks
@ The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



Primitives offered by Linux

@ Linux implements a wide range of synchronization primitives

Atomic operations
Spinlocks

Semaphores and Mutexes
Reader/Writer Locks
The big kernel lock

Donato Capitella Concurrency/Synchronization



Primitives offered by Linux

@ Linux implements a wide range of synchronization primitives

Atomic operations
Spinlocks

Semaphores and Mutexes
Reader/Writer Locks
The big kernel lock

@ Note: Atomic operations

e not exactly syhncoronisation primitives
e but can be used as a basis for implementing all of the other
primitives

Donato Capitella Concurrency/Synchronization



Atomic operations

Atomic operations (1)

@ Basic mechanism

e guarantee that simple operations on integers are executed
atomically on every supported architecture

Donato Capitella Concurrency/Synchronization



Atomic operations

Atomic operations (1)

@ Basic mechanism

e guarantee that simple operations on integers are executed
atomically on every supported architecture

@ Linux offers an abstract data type atomic_t

o defined in arch/x86/include/asm/atomic.h (for x86)
e initialized with ATOMIC_INIT() macro
e accessed with a set of operations atomic_* ()

Variables of type atomic_t MUST be accessed only through these functions.

Donato Capitella Concurrency/Synchronization



Atomic operations

Atomic operations (II)

’ Operation

‘ Effect

atomic_read(atomic_t *v)

Reads the value of the atomic variable.

atomic_set(atomic_t *v, int i)

Sets v to i.

atomic_add(int i, atomic_t *v)

Adds i to v.

atomic_add_return(int i, atomic_t *v)

Adds i to v and returns the result.

atomic_sub(int i, atomic_t *v)

Subtracts i from v.

atomic_sub_return(int i, atomic_t *v)

Subtracts i from v and returns the result.

atomic_inc(atomic_t *v)

Adds 1 to v.

atomic_inc_and_test(atomic_t *v)

Adds 1 to v. Returns true if the result is 0,

otherwise false

atomic_dec(atomic_t *v)

Subtracts 1 from v.

atomic_dec_and_test(atomic_t *v)

Subtracts 1 from v. Returns true if the result is 0,

otherwise false

*Table adapted from W. Mauerer, Professional Linux Kernel Architecture, Wiley

onato Ca

ella

Concurrency/Synchroniza




Atomic operations

counter atomic.c

@ To enforce mutual exclusion:

e change counter type to
atomic_t

o initialise counter using
ATOMIC _INIT macro

@ use atomic_read() to read the
variable

@ use atomic_add() to increment
the variable

/* Shared counter variable */
atomic_t counter = ATOMIC_INIT(0);

static int counter_read (...) A{
/* Read variable */
return sprintf(buf, "}1i",
atomic_read(8counter) );

}

static int counter_write(...) {

/* Increment variable */
atomic_add(digit, Hcounter);

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Outline

@ Spinlocks, Semaphores and Mutexes
@ Spinlocks

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (1)

@ Spinlocks are mutexes with active wait

o if the mutex is not available, the thread remains spinning at
the entry point of the critical section (thus active wait)

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (1)

@ Spinlocks are mutexes with active wait

o if the mutex is not available, the thread remains spinning at
the entry point of the critical section (thus active wait)

e Why active wait?

o (Performance) if the critical section is very small and quick,
the cost of putting a process to sleep and then awaking it can
be higher then the cost of spinning

o (Need) there are some situations where the kernel cannot sleep
(e.g. interrupts)

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (I1)

@ A spinlock is represented by the spinlock_t data structure

o defined in 1linux/spinlock.h
e initialised with SPIN_LOCK_UNLOCKED macro

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores
Mutexes
Producer/Consumer

Spinlocks (I1)

@ A spinlock is represented by the spinlock_t data structure

o defined in 1linux/spinlock.h
e initialised with SPIN_LOCK_UNLOCKED macro

@ A spinlock in essentially manipulated with two functions:

e spin_lock(spinlock_t *lock)
e spin_unlock(spinlock_t *lock)

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores
Mutexes
Producer/Consumer

Spinlocks (I1)

@ A spinlock is represented by the spinlock_t data structure

o defined in 1linux/spinlock.h
e initialised with SPIN_LOCK_UNLOCKED macro

@ A spinlock in essentially manipulated with two functions:

e spin_lock(spinlock_t *lock)
e spin_unlock(spinlock_t *lock)

o Example >> counter_spinlock.c

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (I1)

@ A spinlock is represented by the spinlock_t data structure

o defined in 1linux/spinlock.h
e initialised with SPIN_LOCK_UNLOCKED macro

@ A spinlock in essentially manipulated with two functions:

e spin_lock(spinlock_t *lock)
e spin_unlock(spinlock_t *lock)

o Example >> counter_spinlock.c

e A critical region protected by a spinlock MUST NOT go to sleep in ANY
circumstances.

e Be careful: your code might not go to sleep directly, but some of the functions it
calls may(e.g. kmalloc)

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (I11)

o If the lock is busy, spin_lock() is a blocking call

e sometimes we don’t want this behaviour

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (I11)

o If the lock is busy, spin_lock() is a blocking call

e sometimes we don’t want this behaviour
@ Thus, the kernel offers a non-blocking equivalent

e int spin_trylock(spinlock_t *lock)

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (I11)

o If the lock is busy, spin_lock() is a blocking call
e sometimes we don’t want this behaviour

@ Thus, the kernel offers a non-blocking equivalent
e int spin_trylock(spinlock_t *lock)

@ Semantics

e if spin_trylock acquires the lock successfully, it returns
non-zero value

e otherwise (it cannot acquire the lock) it returns O

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Spinlocks (I11)

o If the lock is busy, spin_lock() is a blocking call
e sometimes we don’t want this behaviour

@ Thus, the kernel offers a non-blocking equivalent
e int spin_trylock(spinlock_t *lock)

@ Semantics

e if spin_trylock acquires the lock successfully, it returns
non-zero value

e otherwise (it cannot acquire the lock) it returns O

e If 0 is returned, the thread MUST NOT enter the critical section because another
thread is already there.

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Outline

@ Spinlocks, Semaphores and Mutexes

@ Semaphores

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Semaphores

struct semaphore {
spinlock_t lock;
unsigned int count;
struct list_head wait_list;

@ Linux offers Dijkstra's sempahores as
well

@ struct semaphore
o defined in
include/linux/semaphore.h

};

nato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Semaphores

struct semaphore {
spinlock_t lock;
unsigned int count;
struct list_head wait_list;

@ Linux offers Dijkstra's sempahores as
well

@ struct semaphore
o defined in
include/linux/semaphore.h

};

@ Semaphore structure

@ lock: used to make the operations on the semaphore atomic

o count: threads allowed to enter the critical region (other
releases used atomic_t)

e wait_list: processes sleeping on the sempahore

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Semaphores in Use

o Initialization

@ macros: DEFINE_SEMAPHORE(name)l,__SEMAPHORE_INITIALIZER(name,
n)
o function: sema_init(struct semaphore *sem, int val)

DEFINE_SEMAPHORE (sem)

down(&sem) ;
/*Critical section*/
up(&sem) ;

Lkernel > 2.6.26
Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Semaphores in Use

o Initialization

@ macros: DEFINE_SEMAPHORE(na.me)l, __SEMAPHORE_INITIALIZER(name,
n)
o function: sema_init(struct semaphore *sem, int val)

DEFINE_SEMAPHORE (sem)

@ Functions

down(&sem) ;

@ down(struct semaphore
*sem) /*Critical sectionx/
@ up(struct semaphore *sem) up(&sem) ;

Lkernel > 2.6.26
Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Semaphores in Use

o Initialization

@ macros: DEFINE_SEMAPHDRE(na.me)l, __SEMAPHORE_INITIALIZER(name,
n)
o function: sema_init(struct semaphore *sem, int val)

DEFINE_SEMAPHORE (sem)

@ Functions

down(&sem) ;

@ down(struct semaphore
*sem) /*Critical sectionx/
@ up(struct semaphore *sem) up(&sem) ;

Look at the source

e Use >> counter_sem.c
o Very straight-forward implementation >> kernel/semaphore.c

Lkernel > 2.6.26
Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Outline

@ Spinlocks, Semaphores and Mutexes

@ Mutexes

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Special-purpose Mutexes (1)

@ As we have seen mutexes are a particular case of sempahores

o initialized to 1
o used to enforce mutual exclusion in critical sections

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Special-purpose Mutexes (1)

@ As we have seen mutexes are a particular case of sempahores

o initialized to 1
o used to enforce mutual exclusion in critical sections

@ However, the generality of semaphores causes unneeded
overhead

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Special-purpose Mutexes (1)

@ As we have seen mutexes are a particular case of sempahores

o initialized to 1
o used to enforce mutual exclusion in critical sections

@ However, the generality of semaphores causes unneeded
overhead

@ Thus, Linux offers a special-purpose implementation of
mutexes

o datatype struct mutex
o defined in include/linux/mutex.h

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Special-purpose Mutexes (II)

#include <linux/mutex.h>

@ Initialisation
DEFINE_MUTEX (mymutex) ;

@ static: DECLARE_MUTEX macro
@ dynamic: mutex_init() /* Acquire the mutex */
mutex_lock(&mymutex) ;

/* Critical Section */
mutex_unlock(&mymutex) ;

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Special-purpose Mutexes (II)

@ Initialisation #include <linux/mutex.h>
DEFINE_MUTEX (mymutex) ;
@ static: DECLARE_MUTEX macro

@ dynamic: mutex_init() /* Acquire the mutex */

. mutex_lock(&mymutex) ;

@ Operations /* Crgtica](. Sthion)*/

@ mutex_lock(struct mutex mutex_unlock (&mymutex) ;
*1lock)

o mutext_unlock(struct mutex
*1lock)

o mutext_trylock(struct mutex
*1lock)

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Special-purpose Mutexes (II)

@ Initialisation #include <linux/mutex.h>
DEFINE_MUTEX (mymutex) ;
@ static: DECLARE_MUTEX macro

@ dynamic: mutex_init() /* Acquire the mutex */

. mutex_lock(&mymutex) ;

@ Operations /* Crgtica](. Sthion)*/

@ mutex_lock(struct mutex mutex_unlock (&mymutex) ;
*1lock)

o mutext_unlock(struct mutex
*1lock)

o mutext_trylock(struct mutex
*1lock)

e A mutex can only be released by the same thread that acquired it.
e The thread may not exit without first unlocking the mutex
o Recursive locking is not allowed

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Outline

@ Spinlocks, Semaphores and Mutexes

@ Producer/Consumer

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Consumer /Producer (1)

@ Let us consider the classical Consumer/Producer problem

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Consumer /Producer (1)

@ Let us consider the classical Consumer/Producer problem

@ Two groups of threads manipulate a shared buffer

e producers: produce items and add them to the buffer
e consumers: extract items from the buffer and accomplish
some task with them

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Consumer /Producer (1)

@ Let us consider the classical Consumer/Producer problem

@ Two groups of threads manipulate a shared buffer

e producers: produce items and add them to the buffer
e consumers: extract items from the buffer and accomplish
some task with them

@ The buffer is shared, so we must guarantee mutual
execlusion when manipulating it

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Consumer /Producer (1)

@ Let us consider the classical Consumer/Producer problem

Two groups of threads manipulate a shared buffer

e producers: produce items and add them to the buffer
e consumers: extract items from the buffer and accomplish
some task with them

@ The buffer is shared, so we must guarantee mutual
execlusion when manipulating it

@ However, this is not enough

o if the buffer is empty, consumers must wait for producers to
put something in it

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Consumer /Producer (II)

@ Solution:

e use a mutex to enforce mutual exclusion on accesses to the
buffer

e use a sempahore (say 'available’) to stop the consumers when
the buffer is empty

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

Consumer /Producer (II)

@ Solution:

e use a mutex to enforce mutual exclusion on accesses to the
buffer

e use a sempahore (say 'available’) to stop the consumers when
the buffer is empty

@ The semaphore

e is initialised to 0 (or to the number of items already in the
buffer)

o before extracting an item, consumers have to wait on the
sempahore issuing down()

o after adding an item, a producer signals that a new item is
available by calling up() on the semaphore

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

cons_prod.c (I)

/* List x/

struct item { list_head list; int integerl};
LIST_HEAD(integers);

/* Synchronisation structures */

DEFINE_MUTEX (mutex);
struct semaphore available = __SEMAPHORE_INITIALIZER(available, 0);

static int cons_read (...) {

int ret;

/* This is the consumer’s code */
down(&available) ;
mutex_lock(&mutex);

ret = get_head(integers);
mutex_unlock(&mutex) ;

return sprintf(buf, "%d", ret);

Donato Capitella Concurrency/Synchronization



Spinlocks
Spinlocks, Semaphores and Mutexes Semaphores

Mutexes

Producer/Consumer

cons_prod.c (1)

static int prod_write(...) {

/* This is the producer code */

struct item *new_item = build_new_item(digit);
mutex_lock(&mutex) ;
list_add_tail(&(new_item->1list), &integers);
mutex_unlock(&mutex);

up(&available);

Look at the source

e Play with the code >> prod_cons.c

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Outline

© Other mechanisms
@ Reader/Writer Locks

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Reader/Writer Locks (1)

@ Classical mutual exclusion constraint

o only one thread can access a resource at a time

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Reader/Writer Locks (1)

@ Classical mutual exclusion constraint

o only one thread can access a resource at a time

@ Sometime we want to relax this constraint for performance
reasons
e a group of threads may be allowed to execute concurrently the
same operation

o but we do not allow concurrent execution of any other
operation

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Reader/Writer Locks (1)

@ Classical mutual exclusion constraint

o only one thread can access a resource at a time

@ Sometime we want to relax this constraint for performance
reasons
e a group of threads may be allowed to execute concurrently the
same operation

o but we do not allow concurrent execution of any other
operation

@ Reader/Writer classical problem

o multiple threads are allowed to read concurrently from a data
structure
e while write access is restricted to a single thread at a time

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Reader/Writer Locks (II)

@ Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Reader/Writer Locks (II)

@ Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

o Reader/Writer locks - rwlock_t
(include/linux/rwlock_types.h)

o read_lock() and read_unlock()
e write_lock() and write_unlock()

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Reader/Writer Locks (II)

@ Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

o Reader/Writer locks - rwlock_t
(include/linux/rwlock_types.h)

o read_lock() and read_unlock()
e write_lock() and write_unlock()

o Reader/Writer semaphores - struct rw_semaphore
(include/linux/rwsem.h)

e down_read() and up_read()
e down_write() and up_write()

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Reader/Writer Locks (II)

@ Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

o Reader/Writer locks - rwlock_t
(include/linux/rwlock_types.h)

o read_lock() and read_unlock()
e write_lock() and write_unlock()

o Reader/Writer semaphores - struct rw_semaphore
(include/linux/rwsem.h)

e down_read() and up_read()
e down_write() and up_write()

Look at the source
e counter LKM using reader/writer sempahores >> counter_rwsem.c

Donato Capitella Concurrency/Synchronization




Reader/Writer Locks
Other mechanisms The Big Kernel Lock

Outline

© Other mechanisms

@ The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



Reader/Writer Locks
Other mechanisms The Big Kernel Lock

The Big Kernel Lock

e Big Kernel Lock (BKL)

e introduced in the early days of multiprocessor support
e to prevent more than one processor from running in parallel in
kernel mode

@ Still used in some parts of the kernel, but DEPRECATED

e new code should never use it
o prefer the finer-grained options described before

@ Operations

o lock_kernel()
e unlock_kernel()

Donato Capitella Concurrency/Synchronization



Summary

@ Various synchronisation mechanisms in the kernel.
@ How to some some common synchronization problems

o Mutual exclusion
o Produer/Consumer
o Reader/Writer

@ Next — Advanced concepts

o Kernel threads and completion structures
o Deferred work

Donato Capitella Concurrency/Synchronization



	Atomic operations
	Spinlocks, Semaphores and Mutexes
	Spinlocks
	Semaphores
	Mutexes
	Producer/Consumer

	Other mechanisms
	Reader/Writer Locks
	The Big Kernel Lock

	Summary

