Concurrency and Synchronisation
Advanced Concepts

Donato Capitella

Department of Computer Science
University of Birmingham

Linux Kernel Programming, 2011

Donato Capitella Concurrency/Synchronization

Outline

@ Kernel Threads
@ Introduction
e API

@ Completion structures
@ The problem
@ Completion structures

© Case study
@ Background job execution
@ Terminating a thread

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Outline

@ Kernel Threads
@ Introduction

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Kernel threads (I)

@ In kernel space sometimes we need

e to carry out background tasks
e to answer asynchronous events

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Kernel threads (I)

@ In kernel space sometimes we need

e to carry out background tasks
e to answer asynchronous events

@ Linux provides kernel threads for these purposes

o like user-space threads BUT
e they live in kernel-space

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Kernel threads (I)

@ In kernel space sometimes we need

e to carry out background tasks
e to answer asynchronous events

@ Linux provides kernel threads for these purposes

o like user-space threads BUT
e they live in kernel-space

@ Thus, a kernel thread can

e access kernel data structures
e execute kernel functions

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Kernel threads (II)

o Kernel threads are used extensively thoughout the kernel

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Kernel threads (II)

o Kernel threads are used extensively thoughout the kernel

@ To see a list of all the kernel threads running

e ps aux
o kernel threads are in square brakets

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 2888 1696 ? Ss 14:05 0:00 /sbin/init
root 2 0.0 0.0 0 0 ? S 14:05 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 14:05 0:00 [ksoftirqd/0]
root 4 0.0 0.0 0 0 ? S 14:05 0:00 [migration/0]
root 5 0.0 0.0 0 0 ? S 14:05 0:00 [watchdog/0]

root 6 0.0 0.0 0 0 ? S 14:05 0:00 [migration/1]

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Kernel threads (II)

o Kernel threads are used extensively thoughout the kernel

@ To see a list of all the kernel threads running

e ps aux
o kernel threads are in square brakets

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 2888 1696 ? Ss 14:05 0:00 /sbin/init
root 2 0.0 0.0 0 0 ? S 14:05 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 14:05 0:00 [ksoftirqd/0]
root 4 0.0 0.0 0 0 ? S 14:05 0:00 [migration/0]
root 5 0.0 0.0 0 0 ? S 14:05 0:00 [watchdog/0]

root 6 0.0 0.0 0 0 ? S 14:05 0:00 [migration/1]

e kthreadd is the default parent of all kernel threads

Donato Capitella Concurrency/Synchronizati

Kernel Threads
Introduction

API

Outline

@ Kernel Threads

o API

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Creating a kernel thread

o int kernel_thread(int (*fn)(void *), void *arg,
unsigned long flags)

e fn is a pointer to the function that the thread will execute
e arg is passed to fn and is a pointer to some arguments (can
be NULL)

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Creating a kernel thread

o int kernel_thread(int (*fn)(void *), void *arg,
unsigned long flags)
e fn is a pointer to the function that the thread will execute

e arg is passed to fn and is a pointer to some arguments (can
be NULL)

o Flags

o CLONE_FS
e CLONE_FILES
o CLONE_SIGHAND

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Creating a kernel thread

o int kernel_thread(int (*fn)(void *), void *arg,
unsigned long flags)

e fn is a pointer to the function that the thread will execute
e arg is passed to fn and is a pointer to some arguments (can
be NULL)

o Flags

o CLONE_FS
e CLONE_FILES
o CLONE_SIGHAND

@ Usually CLONE_KERNEL

o #define CLONE_KERNEL (CLONE_FS | CLONE_FILES |
CLONE_SIGHAND)

Donato Capitella Concurrency/Synchronization

Kernel Threads
Introduction

API

Daemonize()

@ The first thing that should be done is call daemonize ()

o all the required gunge to detach thread from user resources
e reparents the thread to kthreadd

static int k_thr(void *unused) {
daemonize();

return 0; /* end of the thread */
}

ret = kernel_thread(k_thr, NULL, CLONE_KERNEL);
if (ret < 0) {
printk(*Error...”);

}

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Outline

@ Completion structures
@ The problem

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Waiting for the completion of a task

@ Usually

e we create threads to carry out background tasks
e then we wait for them to complete their tasks

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Waiting for the completion of a task

@ Usually

e we create threads to carry out background tasks
e then we wait for them to complete their tasks

@ There are many ways of waiting for the completion of a thread

e can you think of a solution with semaphores?

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Waiting for the completion of a task

@ Usually

e we create threads to carry out background tasks
e then we wait for them to complete their tasks

@ There are many ways of waiting for the completion of a thread
e can you think of a solution with semaphores?
@ Completion structures

e a clean way to wait for the termination of a thread
e based on struct completion (linux/completion.h)

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Outline

@ Completion structures

@ Completion structures

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Completion structures (1)

o Initialisation

o DECLARE_COMPLETION (name)

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Completion structures (1)

o Initialisation
o DECLARE_COMPLETION (name)
@ To wait for the completion a thread calls

e wait_for_completion(struct completion *comp)
e of course, this is a blocking function if the thread has not
already exited

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Completion structures (1)

o Initialisation
o DECLARE_COMPLETION (name)
@ To wait for the completion a thread calls

e wait_for_completion(struct completion *comp)
e of course, this is a blocking function if the thread has not
already exited

@ To complete the execution and wake up the threads waiting

o complete_and_exit(struct completion *comp, long code)
e the second argument is the return code

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Completion structures (1)

o Initialisation
o DECLARE_COMPLETION (name)
@ To wait for the completion a thread calls

e wait_for_completion(struct completion *comp)
e of course, this is a blocking function if the thread has not
already exited

@ To complete the execution and wake up the threads waiting

o complete_and_exit(struct completion *comp, long code)
e the second argument is the return code

o the desirable property of complete and _exit() is its atomicity.

Donato Capitella Concurrency/Synchronization

Completion structures The problem
Completion structures

Completion structures (I1)

static DECLARE_COMPLETION(thread_exit);

static int k_thr(void *unused) {
daemonize ("k_thr");

while (keep_going) {
}
complete_and_exit(&thread_exit, 0);

}

static void __exit clean(void) {

wait_for_completion(&thread_exit);

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Outline

© Case study

@ Background job execution

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Background job execution(!)

o LKM >> bg_job.c

e small kernel module
o skeleton architecture for background job execution

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Background job execution(!)

o LKM >> bg_job.c

e small kernel module
o skeleton architecture for background job execution

e Based on a shared queue of jobs to be executed in background

o the jobs are extracted from the queue and executed by a kernel
thread [kthr_worker]

e it is possible to extend the architecture with more worker
threads

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Background job execution(l1)

Producer

enqueuejob |

-
‘Job #1 | Job #2 ‘ ‘ Job #n _>[[kthr_worker]
L gob —
e Iy

'

job_gqueue

Execute job in backgroundl

Consumer

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Job structure (bg_jobs.c)

@ A job consists of

@ a name
e a pointer to a function that executes that job
e a pointer to arguments to be passed to the previous function

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Job structure (bg_jobs.c)

@ A job consists of

@ a name
e a pointer to a function that executes that job
e a pointer to arguments to be passed to the previous function

#define JOB_NAME_MAX_SIZE 25
struct job {
struct list_head list;
char *name;
void (*do_job) (void *args);
void *args;

};

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Job structure (bg_jobs.c)

@ A job consists of

@ a name
e a pointer to a function that executes that job
e a pointer to arguments to be passed to the previous function

#define JOB_NAME_MAX_SIZE 25
struct job {
struct list_head list;
char *name;
void (*do_job) (void *args);
void *args;

};

e This skeleton implementation provides two very simple jobs, one that doesn’'t take
arguments(hello job) and another one that does(sleep job).

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

[kthr worker]

@ Background thread that waits for jobs

e extracts job next job from the queue

e prints job name

o calls the do_job() function on the current job with the
appropriate arguments

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

[kthr worker]

@ Background thread that waits for jobs

e extracts job next job from the queue

e prints job name

o calls the do_job() function on the current job with the
appropriate arguments

static int kthr_worker(void *unused) {

for(5;) {
job = dequeue();

printk(KERN_INFO "Job: %s\n", job->name);

job->do_job(job->args);

kfree(job);

}

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Init function

@ The init function

e creates and enqueues the jobs
e creates an instance of [kthr _worker]

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Init function

@ The init function

e creates and enqueues the jobs
e creates an instance of [kthr _worker]

int init_module(void) {

enqueue (build_job("JOB #1", hello_job, NULL));
enqueue (build_job("JOB #2", sleep_job, (void*)5));

if ('kernel_thread(kthr_worker, NULL, CLONE_KERNEL)) {

¥

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

Outline

© Case study

@ Terminating a thread

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

How to stop a kernel thread?

@ When the module is unloaded, we need to stop the kernel
thread

e moreover, if there are jobs in the queue, we need to wait for it
to complete all of them

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

How to stop a kernel thread?

@ When the module is unloaded, we need to stop the kernel
thread

e moreover, if there are jobs in the queue, we need to wait for it
to complete all of them

@ A possible solution

e insert in the queue a STOP_JOB job
e call wait_for_completion()

Donato Capitella Concurrency/Synchronization

Background job execution
Case study Terminating a thread

How to stop a kernel thread?

@ When the module is unloaded, we need to stop the kernel
thread

e moreover, if there are jobs in the queue, we need to wait for it
to complete all of them

@ A possible solution
e insert in the queue a STOP_JOB job
e call wait_for_completion()
@ When [kthr_worker] extracts the STOP_JOB job

o it exits its main loop
o it calls complete_and_exit()

Donato Capitella Concurrency/Synchronization

Summary

o Kernel threads
@ Completion structures

@ Architecture for background job execution

Donato Capitella Concurrency/Synchronization

	Kernel Threads
	Introduction
	API

	Completion structures
	The problem
	Completion structures

	Case study
	Background job execution
	Terminating a thread

	Summary

