
Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Concurrency and Synchronisation
Details

Donato Capitella

Department of Computer Science
University of Birmingham

Linux Kernel Programming, 2011

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Outline

1 Atomic operations

2 Spinlocks, Semaphores and Mutexes
Spinlocks
Semaphores
Mutexes
Producer/Consumer

3 Other mechanisms
Reader/Writer Locks
The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Primitives o�ered by Linux

Linux implements a wide range of synchronization primitives

Atomic operations
Spinlocks
Semaphores and Mutexes
Reader/Writer Locks
The big kernel lock

Note: Atomic operations

not exactly syhncoronisation primitives
but can be used as a basis for implementing all of the other
primitives

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Primitives o�ered by Linux

Linux implements a wide range of synchronization primitives

Atomic operations
Spinlocks
Semaphores and Mutexes
Reader/Writer Locks
The big kernel lock

Note: Atomic operations

not exactly syhncoronisation primitives
but can be used as a basis for implementing all of the other
primitives

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Atomic operations (I)

Basic mechanism

guarantee that simple operations on integers are executed
atomically on every supported architecture

Linux o�ers an abstract data type atomic_t

de�ned in arch/x86/include/asm/atomic.h (for x86)
initialized with ATOMIC_INIT() macro
accessed with a set of operations atomic_*()

Warning

Variables of type atomic_t MUST be accessed only through these functions.

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Atomic operations (I)

Basic mechanism

guarantee that simple operations on integers are executed
atomically on every supported architecture

Linux o�ers an abstract data type atomic_t

de�ned in arch/x86/include/asm/atomic.h (for x86)
initialized with ATOMIC_INIT() macro
accessed with a set of operations atomic_*()

Warning

Variables of type atomic_t MUST be accessed only through these functions.

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Atomic operations (II)

Operation E�ect

atomic_read(atomic_t *v) Reads the value of the atomic variable.

atomic_set(atomic_t *v, int i) Sets v to i.

atomic_add(int i, atomic_t *v) Adds i to v.

atomic_add_return(int i, atomic_t *v) Adds i to v and returns the result.

atomic_sub(int i, atomic_t *v) Subtracts i from v.

atomic_sub_return(int i, atomic_t *v) Subtracts i from v and returns the result.

atomic_inc(atomic_t *v) Adds 1 to v.

atomic_inc_and_test(atomic_t *v) Adds 1 to v. Returns true if the result is 0,

otherwise false.

atomic_dec(atomic_t *v) Subtracts 1 from v.

atomic_dec_and_test(atomic_t *v) Subtracts 1 from v. Returns true if the result is 0,

otherwise false.

*Table adapted from W. Mauerer, Professional Linux Kernel Architecture, Wiley

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

counter_atomic.c

To enforce mutual exclusion:

change counter type to
atomic_t
initialise counter using
ATOMIC_INIT macro
use atomic_read() to read the
variable

use atomic_add() to increment

the variable

/* Shared counter variable */

atomic_t counter = ATOMIC_INIT(0);

...

static int counter_read (...) {

..

/* Read variable */

return sprintf(buf, "%li",

atomic_read(&counter) );

}

...

static int counter_write(...) {

..

/* Increment variable */

atomic_add(digit, &counter) ;

..

}

..

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Outline

1 Atomic operations

2 Spinlocks, Semaphores and Mutexes
Spinlocks
Semaphores
Mutexes
Producer/Consumer

3 Other mechanisms
Reader/Writer Locks
The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (I)

Spinlocks are mutexes with active wait

if the mutex is not available, the thread remains spinning at
the entry point of the critical section (thus active wait)

Why active wait?

(Performance) if the critical section is very small and quick,
the cost of putting a process to sleep and then awaking it can
be higher then the cost of spinning
(Need) there are some situations where the kernel cannot sleep
(e.g. interrupts)

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (I)

Spinlocks are mutexes with active wait

if the mutex is not available, the thread remains spinning at
the entry point of the critical section (thus active wait)

Why active wait?

(Performance) if the critical section is very small and quick,
the cost of putting a process to sleep and then awaking it can
be higher then the cost of spinning
(Need) there are some situations where the kernel cannot sleep
(e.g. interrupts)

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (II)

A spinlock is represented by the spinlock_t data structure

de�ned in linux/spinlock.h

initialised with SPIN_LOCK_UNLOCKED macro

A spinlock in essentially manipulated with two functions:

spin_lock(spinlock_t *lock)

spin_unlock(spinlock_t *lock)

Example >�> counter_spinlock.c

Warning

• A critical region protected by a spinlock MUST NOT go to sleep in ANY
circumstances.
• Be careful: your code might not go to sleep directly, but some of the functions it
calls may(e.g. kmalloc)

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (II)

A spinlock is represented by the spinlock_t data structure

de�ned in linux/spinlock.h

initialised with SPIN_LOCK_UNLOCKED macro

A spinlock in essentially manipulated with two functions:

spin_lock(spinlock_t *lock)

spin_unlock(spinlock_t *lock)

Example >�> counter_spinlock.c

Warning

• A critical region protected by a spinlock MUST NOT go to sleep in ANY
circumstances.
• Be careful: your code might not go to sleep directly, but some of the functions it
calls may(e.g. kmalloc)

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (II)

A spinlock is represented by the spinlock_t data structure

de�ned in linux/spinlock.h

initialised with SPIN_LOCK_UNLOCKED macro

A spinlock in essentially manipulated with two functions:

spin_lock(spinlock_t *lock)

spin_unlock(spinlock_t *lock)

Example >�> counter_spinlock.c

Warning

• A critical region protected by a spinlock MUST NOT go to sleep in ANY
circumstances.
• Be careful: your code might not go to sleep directly, but some of the functions it
calls may(e.g. kmalloc)

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (II)

A spinlock is represented by the spinlock_t data structure

de�ned in linux/spinlock.h

initialised with SPIN_LOCK_UNLOCKED macro

A spinlock in essentially manipulated with two functions:

spin_lock(spinlock_t *lock)

spin_unlock(spinlock_t *lock)

Example >�> counter_spinlock.c

Warning

• A critical region protected by a spinlock MUST NOT go to sleep in ANY
circumstances.
• Be careful: your code might not go to sleep directly, but some of the functions it
calls may(e.g. kmalloc)

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (III)

If the lock is busy, spin_lock() is a blocking call

sometimes we don't want this behaviour

Thus, the kernel o�ers a non-blocking equivalent

int spin_trylock(spinlock_t *lock)

Semantics

if spin_trylock acquires the lock successfully, it returns
non-zero value
otherwise (it cannot acquire the lock) it returns 0

Warning

• If 0 is returned, the thread MUST NOT enter the critical section because another
thread is already there.

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (III)

If the lock is busy, spin_lock() is a blocking call

sometimes we don't want this behaviour

Thus, the kernel o�ers a non-blocking equivalent

int spin_trylock(spinlock_t *lock)

Semantics

if spin_trylock acquires the lock successfully, it returns
non-zero value
otherwise (it cannot acquire the lock) it returns 0

Warning

• If 0 is returned, the thread MUST NOT enter the critical section because another
thread is already there.

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (III)

If the lock is busy, spin_lock() is a blocking call

sometimes we don't want this behaviour

Thus, the kernel o�ers a non-blocking equivalent

int spin_trylock(spinlock_t *lock)

Semantics

if spin_trylock acquires the lock successfully, it returns
non-zero value
otherwise (it cannot acquire the lock) it returns 0

Warning

• If 0 is returned, the thread MUST NOT enter the critical section because another
thread is already there.

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Spinlocks (III)

If the lock is busy, spin_lock() is a blocking call

sometimes we don't want this behaviour

Thus, the kernel o�ers a non-blocking equivalent

int spin_trylock(spinlock_t *lock)

Semantics

if spin_trylock acquires the lock successfully, it returns
non-zero value
otherwise (it cannot acquire the lock) it returns 0

Warning

• If 0 is returned, the thread MUST NOT enter the critical section because another
thread is already there.

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Outline

1 Atomic operations

2 Spinlocks, Semaphores and Mutexes
Spinlocks
Semaphores
Mutexes
Producer/Consumer

3 Other mechanisms
Reader/Writer Locks
The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Semaphores

Linux o�ers Dijkstra's sempahores as
well

struct semaphore

de�ned in
include/linux/semaphore.h

struct semaphore {

spinlock_t lock;

unsigned int count;

struct list_head wait_list;

};

Semaphore structure

lock: used to make the operations on the semaphore atomic
count: threads allowed to enter the critical region (other
releases used atomic_t)
wait_list: processes sleeping on the sempahore

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Semaphores

Linux o�ers Dijkstra's sempahores as
well

struct semaphore

de�ned in
include/linux/semaphore.h

struct semaphore {

spinlock_t lock;

unsigned int count;

struct list_head wait_list;

};

Semaphore structure

lock: used to make the operations on the semaphore atomic
count: threads allowed to enter the critical region (other
releases used atomic_t)
wait_list: processes sleeping on the sempahore

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Semaphores in Use

Initialization

macros: DEFINE_SEMAPHORE(name)1, __SEMAPHORE_INITIALIZER(name,
n)

function: sema_init(struct semaphore *sem, int val)

Functions

down(struct semaphore

*sem)

up(struct semaphore *sem)

DEFINE_SEMAPHORE(sem)

...

down(&sem);

/*Critical section*/

up(&sem);

...

Look at the source

• Use >�> counter_sem.c

• Very straight-forward implementation >�> kernel/semaphore.c

1kernel > 2.6.26

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Semaphores in Use

Initialization

macros: DEFINE_SEMAPHORE(name)1, __SEMAPHORE_INITIALIZER(name,
n)

function: sema_init(struct semaphore *sem, int val)

Functions

down(struct semaphore

*sem)

up(struct semaphore *sem)

DEFINE_SEMAPHORE(sem)

...

down(&sem);

/*Critical section*/

up(&sem);

...

Look at the source

• Use >�> counter_sem.c

• Very straight-forward implementation >�> kernel/semaphore.c

1kernel > 2.6.26

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Semaphores in Use

Initialization

macros: DEFINE_SEMAPHORE(name)1, __SEMAPHORE_INITIALIZER(name,
n)

function: sema_init(struct semaphore *sem, int val)

Functions

down(struct semaphore

*sem)

up(struct semaphore *sem)

DEFINE_SEMAPHORE(sem)

...

down(&sem);

/*Critical section*/

up(&sem);

...

Look at the source

• Use >�> counter_sem.c

• Very straight-forward implementation >�> kernel/semaphore.c

1kernel > 2.6.26

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Outline

1 Atomic operations

2 Spinlocks, Semaphores and Mutexes
Spinlocks
Semaphores
Mutexes
Producer/Consumer

3 Other mechanisms
Reader/Writer Locks
The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Special-purpose Mutexes (I)

As we have seen mutexes are a particular case of sempahores

initialized to 1
used to enforce mutual exclusion in critical sections

However, the generality of semaphores causes unneeded
overhead

Thus, Linux o�ers a special-purpose implementation of
mutexes

datatype struct mutex

de�ned in include/linux/mutex.h

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Special-purpose Mutexes (I)

As we have seen mutexes are a particular case of sempahores

initialized to 1
used to enforce mutual exclusion in critical sections

However, the generality of semaphores causes unneeded
overhead

Thus, Linux o�ers a special-purpose implementation of
mutexes

datatype struct mutex

de�ned in include/linux/mutex.h

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Special-purpose Mutexes (I)

As we have seen mutexes are a particular case of sempahores

initialized to 1
used to enforce mutual exclusion in critical sections

However, the generality of semaphores causes unneeded
overhead

Thus, Linux o�ers a special-purpose implementation of
mutexes

datatype struct mutex

de�ned in include/linux/mutex.h

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Special-purpose Mutexes (II)

Initialisation

static: DECLARE_MUTEX macro
dynamic: mutex_init()

Operations

mutex_lock(struct mutex

*lock)

mutext_unlock(struct mutex

*lock)

mutext_trylock(struct mutex

*lock)

#include <linux/mutex.h>

DEFINE_MUTEX(mymutex);

...
/* Acquire the mutex */

mutex_lock(&mymutex);

/* Critical Section */

mutex_unlock(&mymutex);

...

Limitations
• A mutex can only be released by the same thread that acquired it.
• The thread may not exit without �rst unlocking the mutex
• Recursive locking is not allowed

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Special-purpose Mutexes (II)

Initialisation

static: DECLARE_MUTEX macro
dynamic: mutex_init()

Operations

mutex_lock(struct mutex

*lock)

mutext_unlock(struct mutex

*lock)

mutext_trylock(struct mutex

*lock)

#include <linux/mutex.h>

DEFINE_MUTEX(mymutex);

...
/* Acquire the mutex */

mutex_lock(&mymutex);

/* Critical Section */

mutex_unlock(&mymutex);

...

Limitations
• A mutex can only be released by the same thread that acquired it.
• The thread may not exit without �rst unlocking the mutex
• Recursive locking is not allowed

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Special-purpose Mutexes (II)

Initialisation

static: DECLARE_MUTEX macro
dynamic: mutex_init()

Operations

mutex_lock(struct mutex

*lock)

mutext_unlock(struct mutex

*lock)

mutext_trylock(struct mutex

*lock)

#include <linux/mutex.h>

DEFINE_MUTEX(mymutex);

...
/* Acquire the mutex */

mutex_lock(&mymutex);

/* Critical Section */

mutex_unlock(&mymutex);

...

Limitations
• A mutex can only be released by the same thread that acquired it.
• The thread may not exit without �rst unlocking the mutex
• Recursive locking is not allowed

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Outline

1 Atomic operations

2 Spinlocks, Semaphores and Mutexes
Spinlocks
Semaphores
Mutexes
Producer/Consumer

3 Other mechanisms
Reader/Writer Locks
The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Consumer/Producer (I)

Let us consider the classical Consumer/Producer problem

Two groups of threads manipulate a shared bu�er

producers: produce items and add them to the bu�er
consumers: extract items from the bu�er and accomplish
some task with them

The bu�er is shared, so we must guarantee mutual

execlusion when manipulating it

However, this is not enough

if the bu�er is empty, consumers must wait for producers to
put something in it

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Consumer/Producer (I)

Let us consider the classical Consumer/Producer problem

Two groups of threads manipulate a shared bu�er

producers: produce items and add them to the bu�er
consumers: extract items from the bu�er and accomplish
some task with them

The bu�er is shared, so we must guarantee mutual

execlusion when manipulating it

However, this is not enough

if the bu�er is empty, consumers must wait for producers to
put something in it

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Consumer/Producer (I)

Let us consider the classical Consumer/Producer problem

Two groups of threads manipulate a shared bu�er

producers: produce items and add them to the bu�er
consumers: extract items from the bu�er and accomplish
some task with them

The bu�er is shared, so we must guarantee mutual

execlusion when manipulating it

However, this is not enough

if the bu�er is empty, consumers must wait for producers to
put something in it

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Consumer/Producer (I)

Let us consider the classical Consumer/Producer problem

Two groups of threads manipulate a shared bu�er

producers: produce items and add them to the bu�er
consumers: extract items from the bu�er and accomplish
some task with them

The bu�er is shared, so we must guarantee mutual

execlusion when manipulating it

However, this is not enough

if the bu�er is empty, consumers must wait for producers to
put something in it

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Consumer/Producer (II)

Solution:

use a mutex to enforce mutual exclusion on accesses to the
bu�er
use a sempahore (say 'available') to stop the consumers when
the bu�er is empty

The semaphore

is initialised to 0 (or to the number of items already in the
bu�er)
before extracting an item, consumers have to wait on the
sempahore issuing down()
after adding an item, a producer signals that a new item is
available by calling up() on the semaphore

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

Consumer/Producer (II)

Solution:

use a mutex to enforce mutual exclusion on accesses to the
bu�er
use a sempahore (say 'available') to stop the consumers when
the bu�er is empty

The semaphore

is initialised to 0 (or to the number of items already in the
bu�er)
before extracting an item, consumers have to wait on the
sempahore issuing down()
after adding an item, a producer signals that a new item is
available by calling up() on the semaphore

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

cons_prod.c (I)

/* List */

struct item { list_head list; int integer};

LIST_HEAD(integers);

/* Synchronisation structures */

DEFINE_MUTEX(mutex);

struct semaphore available = __SEMAPHORE_INITIALIZER(available, 0);

...

static int cons_read (...) {

int ret;

/* This is the consumer's code */

down(&available);

mutex_lock(&mutex);

ret = get_head(integers);

mutex_unlock(&mutex);

return sprintf(buf, "%d", ret);

}

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Spinlocks
Semaphores
Mutexes
Producer/Consumer

cons_prod.c (II)

static int prod_write(...) {

..

/* This is the producer code */

struct item *new_item = build_new_item(digit);

mutex_lock(&mutex);

list_add_tail(&(new_item->list), &integers);

mutex_unlock(&mutex);

up(&available);

..

}

Look at the source

• Play with the code >�> prod_cons.c

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Outline

1 Atomic operations

2 Spinlocks, Semaphores and Mutexes
Spinlocks
Semaphores
Mutexes
Producer/Consumer

3 Other mechanisms
Reader/Writer Locks
The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Reader/Writer Locks (I)

Classical mutual exclusion constraint

only one thread can access a resource at a time

Sometime we want to relax this constraint for performance
reasons

a group of threads may be allowed to execute concurrently the
same operation
but we do not allow concurrent execution of any other
operation

Reader/Writer classical problem

multiple threads are allowed to read concurrently from a data
structure
while write access is restricted to a single thread at a time

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Reader/Writer Locks (I)

Classical mutual exclusion constraint

only one thread can access a resource at a time

Sometime we want to relax this constraint for performance
reasons

a group of threads may be allowed to execute concurrently the
same operation
but we do not allow concurrent execution of any other
operation

Reader/Writer classical problem

multiple threads are allowed to read concurrently from a data
structure
while write access is restricted to a single thread at a time

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Reader/Writer Locks (I)

Classical mutual exclusion constraint

only one thread can access a resource at a time

Sometime we want to relax this constraint for performance
reasons

a group of threads may be allowed to execute concurrently the
same operation
but we do not allow concurrent execution of any other
operation

Reader/Writer classical problem

multiple threads are allowed to read concurrently from a data
structure
while write access is restricted to a single thread at a time

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Reader/Writer Locks (II)

Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

Reader/Writer locks - rwlock_t
(include/linux/rwlock_types.h)

read_lock() and read_unlock()

write_lock() and write_unlock()

Reader/Writer semaphores - struct rw_semaphore

(include/linux/rwsem.h)

down_read() and up_read()

down_write() and up_write()

Look at the source

• counter LKM using reader/writer sempahores >�> counter_rwsem.c

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Reader/Writer Locks (II)

Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

Reader/Writer locks - rwlock_t
(include/linux/rwlock_types.h)

read_lock() and read_unlock()

write_lock() and write_unlock()

Reader/Writer semaphores - struct rw_semaphore

(include/linux/rwsem.h)

down_read() and up_read()

down_write() and up_write()

Look at the source

• counter LKM using reader/writer sempahores >�> counter_rwsem.c

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Reader/Writer Locks (II)

Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

Reader/Writer locks - rwlock_t
(include/linux/rwlock_types.h)

read_lock() and read_unlock()

write_lock() and write_unlock()

Reader/Writer semaphores - struct rw_semaphore

(include/linux/rwsem.h)

down_read() and up_read()

down_write() and up_write()

Look at the source

• counter LKM using reader/writer sempahores >�> counter_rwsem.c

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Reader/Writer Locks (II)

Linux provides additional implementations of semaphores and
spinlocks for the reader/writer problem

Reader/Writer locks - rwlock_t
(include/linux/rwlock_types.h)

read_lock() and read_unlock()

write_lock() and write_unlock()

Reader/Writer semaphores - struct rw_semaphore

(include/linux/rwsem.h)

down_read() and up_read()

down_write() and up_write()

Look at the source

• counter LKM using reader/writer sempahores >�> counter_rwsem.c

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

Outline

1 Atomic operations

2 Spinlocks, Semaphores and Mutexes
Spinlocks
Semaphores
Mutexes
Producer/Consumer

3 Other mechanisms
Reader/Writer Locks
The Big Kernel Lock

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Reader/Writer Locks
The Big Kernel Lock

The Big Kernel Lock

Big Kernel Lock (BKL)

introduced in the early days of multiprocessor support
to prevent more than one processor from running in parallel in
kernel mode

Still used in some parts of the kernel, but DEPRECATED

new code should never use it
prefer the �ner-grained options described before

Operations

lock_kernel()

unlock_kernel()

Donato Capitella Concurrency/Synchronization



institution-logo

Atomic operations
Spinlocks, Semaphores and Mutexes

Other mechanisms
Summary

Summary

Various synchronisation mechanisms in the kernel.

How to some some common synchronization problems

Mutual exclusion
Produer/Consumer
Reader/Writer

Next → Advanced concepts

Kernel threads and completion structures
Deferred work

Donato Capitella Concurrency/Synchronization


	Atomic operations
	Spinlocks, Semaphores and Mutexes
	Spinlocks
	Semaphores
	Mutexes
	Producer/Consumer

	Other mechanisms
	Reader/Writer Locks
	The Big Kernel Lock

	Summary

