
Kernel Threads
Completion structures

Case study
Summary

Concurrency and Synchronisation
Advanced Concepts

Donato Capitella

Department of Computer Science
University of Birmingham

Linux Kernel Programming, 2011

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Outline

1 Kernel Threads

Introduction

API

2 Completion structures

The problem

Completion structures

3 Case study

Background job execution

Terminating a thread

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Outline

1 Kernel Threads

Introduction

API

2 Completion structures

The problem

Completion structures

3 Case study

Background job execution

Terminating a thread

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Kernel threads (I)

In kernel space sometimes we need

to carry out background tasks
to answer asynchronous events

Linux provides kernel threads for these purposes

like user-space threads BUT
they live in kernel-space

Thus, a kernel thread can

access kernel data structures
execute kernel functions

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Kernel threads (I)

In kernel space sometimes we need

to carry out background tasks
to answer asynchronous events

Linux provides kernel threads for these purposes

like user-space threads BUT
they live in kernel-space

Thus, a kernel thread can

access kernel data structures
execute kernel functions

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Kernel threads (I)

In kernel space sometimes we need

to carry out background tasks
to answer asynchronous events

Linux provides kernel threads for these purposes

like user-space threads BUT
they live in kernel-space

Thus, a kernel thread can

access kernel data structures
execute kernel functions

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Kernel threads (II)

Kernel threads are used extensively thoughout the kernel

To see a list of all the kernel threads running

ps aux

kernel threads are in square brakets

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 2888 1696 ? Ss 14:05 0:00 /sbin/init

root 2 0.0 0.0 0 0 ? S 14:05 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 14:05 0:00 [ksoftirqd/0]

root 4 0.0 0.0 0 0 ? S 14:05 0:00 [migration/0]

root 5 0.0 0.0 0 0 ? S 14:05 0:00 [watchdog/0]

root 6 0.0 0.0 0 0 ? S 14:05 0:00 [migration/1]

...

Note

• kthreadd is the default parent of all kernel threads

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Kernel threads (II)

Kernel threads are used extensively thoughout the kernel

To see a list of all the kernel threads running

ps aux

kernel threads are in square brakets

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 2888 1696 ? Ss 14:05 0:00 /sbin/init

root 2 0.0 0.0 0 0 ? S 14:05 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 14:05 0:00 [ksoftirqd/0]

root 4 0.0 0.0 0 0 ? S 14:05 0:00 [migration/0]

root 5 0.0 0.0 0 0 ? S 14:05 0:00 [watchdog/0]

root 6 0.0 0.0 0 0 ? S 14:05 0:00 [migration/1]

...

Note

• kthreadd is the default parent of all kernel threads

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Kernel threads (II)

Kernel threads are used extensively thoughout the kernel

To see a list of all the kernel threads running

ps aux

kernel threads are in square brakets

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 2888 1696 ? Ss 14:05 0:00 /sbin/init

root 2 0.0 0.0 0 0 ? S 14:05 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 14:05 0:00 [ksoftirqd/0]

root 4 0.0 0.0 0 0 ? S 14:05 0:00 [migration/0]

root 5 0.0 0.0 0 0 ? S 14:05 0:00 [watchdog/0]

root 6 0.0 0.0 0 0 ? S 14:05 0:00 [migration/1]

...

Note

• kthreadd is the default parent of all kernel threads

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Outline

1 Kernel Threads

Introduction

API

2 Completion structures

The problem

Completion structures

3 Case study

Background job execution

Terminating a thread

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Creating a kernel thread

int kernel_thread(int (*fn)(void *), void *arg,

unsigned long flags)

fn is a pointer to the function that the thread will execute
arg is passed to fn and is a pointer to some arguments (can
be NULL)

Flags

CLONE_FS

CLONE_FILES

CLONE_SIGHAND

Usually CLONE_KERNEL

#define CLONE_KERNEL (CLONE_FS | CLONE_FILES |

CLONE_SIGHAND)

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Creating a kernel thread

int kernel_thread(int (*fn)(void *), void *arg,

unsigned long flags)

fn is a pointer to the function that the thread will execute
arg is passed to fn and is a pointer to some arguments (can
be NULL)

Flags

CLONE_FS

CLONE_FILES

CLONE_SIGHAND

Usually CLONE_KERNEL

#define CLONE_KERNEL (CLONE_FS | CLONE_FILES |

CLONE_SIGHAND)

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Creating a kernel thread

int kernel_thread(int (*fn)(void *), void *arg,

unsigned long flags)

fn is a pointer to the function that the thread will execute
arg is passed to fn and is a pointer to some arguments (can
be NULL)

Flags

CLONE_FS

CLONE_FILES

CLONE_SIGHAND

Usually CLONE_KERNEL

#define CLONE_KERNEL (CLONE_FS | CLONE_FILES |

CLONE_SIGHAND)

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Introduction
API

Daemonize()

The �rst thing that should be done is call daemonize()

all the required gunge to detach thread from user resources
reparents the thread to kthreadd

...

static int k_thr(void *unused) {

daemonize();

...

return 0; /* end of the thread */

}

..

ret = kernel_thread(k_thr, NULL, CLONE_KERNEL);

if (ret < 0) {

printk(�Error...�);

}

...

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Outline

1 Kernel Threads

Introduction

API

2 Completion structures

The problem

Completion structures

3 Case study

Background job execution

Terminating a thread

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Waiting for the completion of a task

Usually

we create threads to carry out background tasks
then we wait for them to complete their tasks

There are many ways of waiting for the completion of a thread

can you think of a solution with semaphores?

Completion structures

a clean way to wait for the termination of a thread
based on struct completion (linux/completion.h)

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Waiting for the completion of a task

Usually

we create threads to carry out background tasks
then we wait for them to complete their tasks

There are many ways of waiting for the completion of a thread

can you think of a solution with semaphores?

Completion structures

a clean way to wait for the termination of a thread
based on struct completion (linux/completion.h)

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Waiting for the completion of a task

Usually

we create threads to carry out background tasks
then we wait for them to complete their tasks

There are many ways of waiting for the completion of a thread

can you think of a solution with semaphores?

Completion structures

a clean way to wait for the termination of a thread
based on struct completion (linux/completion.h)

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Outline

1 Kernel Threads

Introduction

API

2 Completion structures

The problem

Completion structures

3 Case study

Background job execution

Terminating a thread

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Completion structures (I)

Initialisation

DECLARE_COMPLETION(name)

To wait for the completion a thread calls

wait_for_completion(struct completion *comp)

of course, this is a blocking function if the thread has not
already exited

To complete the execution and wake up the threads waiting

complete_and_exit(struct completion *comp, long code)
the second argument is the return code

Note

• the desirable property of complete_and_exit() is its atomicity.

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Completion structures (I)

Initialisation

DECLARE_COMPLETION(name)

To wait for the completion a thread calls

wait_for_completion(struct completion *comp)

of course, this is a blocking function if the thread has not
already exited

To complete the execution and wake up the threads waiting

complete_and_exit(struct completion *comp, long code)
the second argument is the return code

Note

• the desirable property of complete_and_exit() is its atomicity.

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Completion structures (I)

Initialisation

DECLARE_COMPLETION(name)

To wait for the completion a thread calls

wait_for_completion(struct completion *comp)

of course, this is a blocking function if the thread has not
already exited

To complete the execution and wake up the threads waiting

complete_and_exit(struct completion *comp, long code)
the second argument is the return code

Note

• the desirable property of complete_and_exit() is its atomicity.

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Completion structures (I)

Initialisation

DECLARE_COMPLETION(name)

To wait for the completion a thread calls

wait_for_completion(struct completion *comp)

of course, this is a blocking function if the thread has not
already exited

To complete the execution and wake up the threads waiting

complete_and_exit(struct completion *comp, long code)
the second argument is the return code

Note

• the desirable property of complete_and_exit() is its atomicity.

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

The problem
Completion structures

Completion structures (II)

static DECLARE_COMPLETION(thread_exit);

...

static int k_thr(void *unused) {

daemonize("k_thr");

...

while (keep_going) {

...

}

complete_and_exit(&thread_exit, 0);

}

...

static void __exit clean(void) {

...

wait_for_completion(&thread_exit);

}

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Outline

1 Kernel Threads

Introduction

API

2 Completion structures

The problem

Completion structures

3 Case study

Background job execution

Terminating a thread

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Background job execution(I)

LKM >�> bg_job.c

small kernel module
skeleton architecture for background job execution

Based on a shared queue of jobs to be executed in background

the jobs are extracted from the queue and executed by a kernel
thread [kthr_worker]

it is possible to extend the architecture with more worker
threads

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Background job execution(I)

LKM >�> bg_job.c

small kernel module
skeleton architecture for background job execution

Based on a shared queue of jobs to be executed in background

the jobs are extracted from the queue and executed by a kernel
thread [kthr_worker]

it is possible to extend the architecture with more worker
threads

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Background job execution(II)

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Job structure (bg_jobs.c)

A job consists of

a name
a pointer to a function that executes that job
a pointer to arguments to be passed to the previous function

#define JOB_NAME_MAX_SIZE 25

struct job {

struct list_head list;

char *name;

void (*do_job)(void *args);

void *args;

};

Note

• This skeleton implementation provides two very simple jobs, one that doesn't take
arguments(hello_job) and another one that does(sleep_job).

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Job structure (bg_jobs.c)

A job consists of

a name
a pointer to a function that executes that job
a pointer to arguments to be passed to the previous function

#define JOB_NAME_MAX_SIZE 25

struct job {

struct list_head list;

char *name;

void (*do_job)(void *args);

void *args;

};

Note

• This skeleton implementation provides two very simple jobs, one that doesn't take
arguments(hello_job) and another one that does(sleep_job).

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Job structure (bg_jobs.c)

A job consists of

a name
a pointer to a function that executes that job
a pointer to arguments to be passed to the previous function

#define JOB_NAME_MAX_SIZE 25

struct job {

struct list_head list;

char *name;

void (*do_job)(void *args);

void *args;

};

Note

• This skeleton implementation provides two very simple jobs, one that doesn't take
arguments(hello_job) and another one that does(sleep_job).

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

[kthr_worker]

Background thread that waits for jobs

extracts job next job from the queue
prints job name
calls the do_job() function on the current job with the
appropriate arguments

static int kthr_worker(void *unused) {

...

for(;;) {

job = dequeue();

...

printk(KERN_INFO "Job: %s\n", job->name);

job->do_job(job->args);

kfree(job);

}

...

}

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

[kthr_worker]

Background thread that waits for jobs

extracts job next job from the queue
prints job name
calls the do_job() function on the current job with the
appropriate arguments

static int kthr_worker(void *unused) {

...

for(;;) {

job = dequeue();

...

printk(KERN_INFO "Job: %s\n", job->name);

job->do_job(job->args);

kfree(job);

}

...

}

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Init function

The init function

creates and enqueues the jobs
creates an instance of [kthr_worker]

int init_module(void) {

...

enqueue(build_job("JOB #1", hello_job, NULL));

enqueue(build_job("JOB #2", sleep_job, (void*)5));

...

if (!kernel_thread(kthr_worker, NULL, CLONE_KERNEL)) {

...

}

...

}

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Init function

The init function

creates and enqueues the jobs
creates an instance of [kthr_worker]

int init_module(void) {

...

enqueue(build_job("JOB #1", hello_job, NULL));

enqueue(build_job("JOB #2", sleep_job, (void*)5));

...

if (!kernel_thread(kthr_worker, NULL, CLONE_KERNEL)) {

...

}

...

}

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

Outline

1 Kernel Threads

Introduction

API

2 Completion structures

The problem

Completion structures

3 Case study

Background job execution

Terminating a thread

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

How to stop a kernel thread?

When the module is unloaded, we need to stop the kernel

thread

moreover, if there are jobs in the queue, we need to wait for it
to complete all of them

A possible solution

insert in the queue a STOP_JOB job
call wait_for_completion()

When [kthr_worker] extracts the STOP_JOB job

it exits its main loop
it calls complete_and_exit()

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

How to stop a kernel thread?

When the module is unloaded, we need to stop the kernel

thread

moreover, if there are jobs in the queue, we need to wait for it
to complete all of them

A possible solution

insert in the queue a STOP_JOB job
call wait_for_completion()

When [kthr_worker] extracts the STOP_JOB job

it exits its main loop
it calls complete_and_exit()

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Background job execution
Terminating a thread

How to stop a kernel thread?

When the module is unloaded, we need to stop the kernel

thread

moreover, if there are jobs in the queue, we need to wait for it
to complete all of them

A possible solution

insert in the queue a STOP_JOB job
call wait_for_completion()

When [kthr_worker] extracts the STOP_JOB job

it exits its main loop
it calls complete_and_exit()

Donato Capitella Concurrency/Synchronization

institution-logo

Kernel Threads
Completion structures

Case study
Summary

Summary

Kernel threads

Completion structures

Architecture for background job execution

Donato Capitella Concurrency/Synchronization

	Kernel Threads
	Introduction
	API

	Completion structures
	The problem
	Completion structures

	Case study
	Background job execution
	Terminating a thread

	Summary

