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Instruction Execution

• 5 basic steps
– fetch instruction (F)
– decode instruction/read registers (R)
– execute (X)
– access memory (M)
– store result (W)
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Why Pipeline?

•Suppose we execute 100 instructions
•Single Cycle Machine

– 50 ns/cycle x 1 CPI x 100 inst = 5000 ns

•Multicycle Machine
– 10 ns/cycle x 5 CPI x 100 inst = 5000 ns

•Ideal pipelined machine
– 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 

ns

Slide courtesy of D. Patterson



Benefits of Pipelining

• Before pipelining:
– Throughput: 1 instruction per cycle

–  (or lower cycle time and CPI=5)

• After pipelining (multiple instructions in pipe at one time
)
– Throughput: 1 instruction per cycle

WMXRFclk t+t+t+t+t=t

latchWMXRFclk t+)t,t,t,t,(t=t max



Pipeline Hazards

• Hazards prevent next instruction from executing 
during its designated clock cycle

– Structural hazards: HW cannot support this combination 
of instructions (single person to fold and put clothes away
)

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow 
(branches and jumps).



Pipeline Hazards

• Data hazards
– an instruction uses the result of a previous instruction 

ADD R1, R2, R3 or SW R1, 3(R2)
ADD R4, R1, R5 LW R3, 3(R2)
• Control hazards

– the location of an instruction depends on a previous 
instruction

JMP R25
…

LOOP: ADD R1, R2, R3
• Structural hazards

– two instructions need access to the same resource
• e.g., single unit shared for instruction fetch and 

load/store
• collision in reservation table



• Read After Write (RAW) 
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  

• This hazard results from an actual need for 
communication between pipeline stages.

Data Hazards: RAW

I: add r1,r2,r3
J: sub r4,r1,r3



Data Hazards (RAW)
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• Write After Read (WAR) 
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in the sample 5-stage pipeline 
because:

– All instructions take 5 stages, and
– Reads are always in stage 2, and 
– Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Data Hazards: WAR



Data Hazards: WAW

• Write After Write (WAW) 
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler 
writers
This also results from the reuse of name “r1”.

– Can be solved by register renaming

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7



Types of Data Hazards

• RAW (read after write)
– only hazard for ‘fixed’ 

pipelines
– later instruction must read 

after earlier instruction 
writes

• WAW (write after write)
– variable-length pipeline 

(e.g. FP/int)
– later instruction must write 

after earlier instruction 
writes

• WAR (write after read)
– pipelines with late read
– later instruction must write 

after earlier instruction 
reads
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Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the desired functions
– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data path
– Based on desired function and signals
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Control Hazards
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Control Hazards
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Resolving Hazards: Pipeline Stalls

• Can resolve any type of hazard
– data, control, or structural

• Detect the hazard
• Freeze the pipeline up to the dependent stage 

until the hazard is resolved



Example Pipeline Stall (Diagram)
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Resolving Hazards
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Time (clock cycles)

Forwarding to Avoid Data Hazard
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Speedup Equation for Pipelining
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Time Cycle

Time Cycle

CPI stall Pipeline  CPI Ideal
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 Speedup ××

+
=
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Instper  cycles Stall Average  CPI Ideal CPIpipelined +=

For simple RISC pipeline, Ideal CPI = 1:



Example: Dual-port vs. Single-port

• Machine A: Dual-ported memory (“Harvard 
Architecture”)

• Machine B: Single-ported memory, but its pipelined 
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockunpipe)

                  = Pipeline Depth
SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

                    = (Pipeline Depth/1.4) x  1.05
                    = 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 



Producing fast code for

a = b + c

d = e – f

assuming a, b, c, d ,e, and f in memory.

 
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling
to Avoid Load Hazards

Faster code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd



Branch Stall Impact

• If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9

• Solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier



Branch Hazard Alternatives

Stall until branch direction is clear
Predict Branch (Taken or Not Taken):

 Execute successor instructions in 
sequence (if not taken) and “squash” 
instructions in pipeline if branch 
mispredicted 

 Modern CPUs have multiple predictors
 Must have already calculated branch 

target address



Branch Hazard Alternatives

Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
 sequential successor1

 sequential successor2

 ........
 sequential successorn

branch target if taken

– MIPS, SPARC
– Experience has shown it has issues:

• Makes code difficult to maintain and debug
• Compiler has to find an instruction which is safe to 

execute regarless if the branch is taken or not
• If the hardware changes, old programs may not work 

at all

Branch delay of length n



Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count 
(IC)

• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then
delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

 if $2=0 then
add  $1,$2,$3

add  $1,$2,$3
if $1=0 then
sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6



Delayed Branch

• Compiler effectiveness for single branch delay 
slot:

– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay 

slots useful in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed branching has lost popularity compared 
to more expensive but more flexible dynamic 
approaches

• Growth in available transistors has made 
dynamic approaches relatively cheaper



Exceptions and Interrupts

• Exception:  An unusual event happens to an 
instruction during its execution  

– Examples: divide by zero, undefined opcode

• Interrupt:  Hardware signal to switch processor 
to new instruction stream  

– Example: sound card interrupts when it needs more 
audio output samples (audio “click” happens if it is 
left waiting)



Exceptions and Interrupts

• Exception or interrupt must appear to happen 
between 2 instructions (Ii and Ii+1)

• Interrupt (exception) handler either aborts 
program or restarts at instruction Ii+1



Precise Exceptions (Sequential Processor)

• When interrupt occurs, state of interrupted process is saved, 
including PC, registers, and memory

• Interrupt is precise if the following three conditions hold
– All instructions preceding u have been executed, and have 

modified the state correctly
– All instructions following u are unexecuted, and have not modified 

the state
– If the interrupt was caused by an instruction, it was caused by 

instruction u, which is either completely executed (e.g.: overflow) 
or completely unexecuted (e.g: VM page fault)

• Precise interrupts are desirable if software is to fix up error 
that caused interrupt and execution has to be resumed
– Easy for external interrupts, could be complex and costly for 

internal
– Imperative for some interrupts (VM page faults, IEEE FP standard)
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