
Pipelining

Giorgio Richelli

Instruction Execution

• 5 basic steps
– fetch instruction (F)
– decode instruction/read registers (R)
– execute (X)
– access memory (M)
– store result (W)

I-Fetch

Decode

Execute

Memory

Write
Result

Why Pipeline

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

ALUIm Reg Dm Reg

ALUIm Reg Dm Reg

ALUIm Reg Dm Reg

ALUIm Reg Dm Reg

ALUIm Reg Dm Reg

Slide courtesy of D. Patterson

Why Pipeline?

•Suppose we execute 100 instructions
•Single Cycle Machine

– 50 ns/cycle x 1 CPI x 100 inst = 5000 ns

•Multicycle Machine
– 10 ns/cycle x 5 CPI x 100 inst = 5000 ns

•Ideal pipelined machine
– 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040

ns

Slide courtesy of D. Patterson

Benefits of Pipelining

• Before pipelining:
– Throughput: 1 instruction per cycle

– (or lower cycle time and CPI=5)

• After pipelining (multiple instructions in pipe at one time
)
– Throughput: 1 instruction per cycle

WMXRFclk t+t+t+t+t=t

latchWMXRFclk t+)t,t,t,t,(t=t max

Pipeline Hazards

• Hazards prevent next instruction from executing
during its designated clock cycle

– Structural hazards: HW cannot support this combination
of instructions (single person to fold and put clothes away
)

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

Pipeline Hazards

• Data hazards
– an instruction uses the result of a previous instruction

ADD R1, R2, R3 or SW R1, 3(R2)
ADD R4, R1, R5 LW R3, 3(R2)
• Control hazards

– the location of an instruction depends on a previous
instruction

JMP R25
…

LOOP: ADD R1, R2, R3
• Structural hazards

– two instructions need access to the same resource
• e.g., single unit shared for instruction fetch and

load/store
• collision in reservation table

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler
nomenclature).

• This hazard results from an actual need for
communication between pipeline stages.

Data Hazards: RAW

I: add r1,r2,r3
J: sub r4,r1,r3

Data Hazards (RAW)

Cycle

F

Instruction

R X M W

F R X M W

Write Data to R1 Here

Read from R1 Here

ADD R1, R2, R3
ADD R4, R1, R5

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in the sample 5-stage pipeline
because:

– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Data Hazards: WAR

Data Hazards: WAW

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler
writers
This also results from the reuse of name “r1”.

– Can be solved by register renaming

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Types of Data Hazards

• RAW (read after write)
– only hazard for ‘fixed’

pipelines
– later instruction must read

after earlier instruction
writes

• WAW (write after write)
– variable-length pipeline

(e.g. FP/int)
– later instruction must write

after earlier instruction
writes

• WAR (write after read)
– pipelines with late read
– later instruction must write

after earlier instruction
reads

F R A M W

F R A M W

F R 1 2 3

F R A M W

4 W

F R 1 2 3

F R A M W

4 R 5 W

Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the desired functions
– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data path
– Based on desired function and signals

Datapath

Regs

ALU

Controller

Control Points

signals

Control Hazards

Cycle

F

Instruction

R X M W

F R X M W

Destination Available Here

Need Destination Here
JR R25
...

XX: ADD ...

Control Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg ALU DMemIfetch Reg

Resolving Hazards: Pipeline Stalls

• Can resolve any type of hazard
– data, control, or structural

• Detect the hazard
• Freeze the pipeline up to the dependent stage

until the hazard is resolved

Example Pipeline Stall (Diagram)

Cycle

F

Instruction

R X M W

F R X M W

Write Data to R1 Here

Read from R1 Here

ADD R1, R2, R3
ADD R4, R1, R5

Bubble

Resolving Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg ALU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Reg ALU DMemIfetch Reg

Speedup Equation for Pipelining

pipelined

dunpipeline

Time Cycle

Time Cycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal
 Speedup ××

+
=

pipelined

dunpipeline

Time Cycle

Time Cycle

CPI stall Pipeline 1

depth Pipeline
 Speedup ×

+
=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, Ideal CPI = 1:

Example: Dual-port vs. Single-port

• Machine A: Dual-ported memory (“Harvard
Architecture”)

• Machine B: Single-ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockunpipe)

 = Pipeline Depth
SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

 = (Pipeline Depth/1.4) x 1.05
 = 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

Producing fast code for

a = b + c

d = e – f

assuming a, b, c, d ,e, and f in memory.

Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling
to Avoid Load Hazards

Faster code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

Branch Stall Impact

• If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9

• Solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

Branch Hazard Alternatives

Stall until branch direction is clear
Predict Branch (Taken or Not Taken):

 Execute successor instructions in
sequence (if not taken) and “squash”
instructions in pipeline if branch
mispredicted

 Modern CPUs have multiple predictors
 Must have already calculated branch

target address

Branch Hazard Alternatives

Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
 sequential successor1

 sequential successor2

 sequential successorn

branch target if taken

– MIPS, SPARC
– Experience has shown it has issues:

• Makes code difficult to maintain and debug
• Compiler has to find an instruction which is safe to

execute regarless if the branch is taken or not
• If the hardware changes, old programs may not work

at all

Branch delay of length n

Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count
(IC)

• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

 if $2=0 then
add $1,$2,$3

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

Delayed Branch

• Compiler effectiveness for single branch delay
slot:

– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay

slots useful in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed branching has lost popularity compared
to more expensive but more flexible dynamic
approaches

• Growth in available transistors has made
dynamic approaches relatively cheaper

Exceptions and Interrupts

• Exception: An unusual event happens to an
instruction during its execution

– Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch processor
to new instruction stream

– Example: sound card interrupts when it needs more
audio output samples (audio “click” happens if it is
left waiting)

Exceptions and Interrupts

• Exception or interrupt must appear to happen
between 2 instructions (Ii and Ii+1)

• Interrupt (exception) handler either aborts
program or restarts at instruction Ii+1

Precise Exceptions (Sequential Processor)

• When interrupt occurs, state of interrupted process is saved,
including PC, registers, and memory

• Interrupt is precise if the following three conditions hold
– All instructions preceding u have been executed, and have

modified the state correctly
– All instructions following u are unexecuted, and have not modified

the state
– If the interrupt was caused by an instruction, it was caused by

instruction u, which is either completely executed (e.g.: overflow)
or completely unexecuted (e.g: VM page fault)

• Precise interrupts are desirable if software is to fix up error
that caused interrupt and execution has to be resumed
– Easy for external interrupts, could be complex and costly for

internal
– Imperative for some interrupts (VM page faults, IEEE FP standard)

	 Pipelining
	Instruction Execution
	Why Pipeline
	Why Pipeline?
	Benefits of Pipelining
	Pipeline Hazards
	Slide 7
	 Read After Write (RAW) InstrJ tries to read operand before InstrI writes it Caused by a “Dependence” (in compiler nomenclature). This hazard results from an actual need for communication between pipeline stages.
	Data Hazards (RAW)
	Write After Read (WAR) InstrJ writes operand before InstrI reads it Called an “anti-dependence” by compiler writers. This results from reuse of the name “r1”. Can’t happen in the sample 5-stage pipeline because: All instructions take 5 stages, and Reads are always in stage 2, and Writes are always in stage 5
	Data Hazards: WAW
	Types of Data Hazards
	Datapath vs Control
	Control Hazards
	Slide 15
	Resolving Hazards: Pipeline Stalls
	Example Pipeline Stall (Diagram)
	Resolving Hazards
	Forwarding to Avoid Data Hazard
	Speedup Equation for Pipelining
	Example: Dual-port vs. Single-port
	Software Scheduling to Avoid Load Hazards
	Branch Stall Impact
	Branch Hazard Alternatives
	Slide 25
	Scheduling Branch Delay Slots
	Delayed Branch
	Exceptions and Interrupts
	Slide 29
	Precise Exceptions (Sequential Processor)

