NTES

Log Recovery

NTES Log Recovery

NTEFS provides file system recoverability by means of a
logging.
In NTFS logging, the suboperations of any transaction that

alters important file system data structures are recorded in a
log file before they are carried through on the disk.

That way, if the system crashes, partially completed
transactions can be redone or undone when the system
comes back online

N.B:

— The FAT file system uses a write-through algorithm that causes
disk modifications to be immediately written to the disk

LES

* The log file service (LFYS) 1s a series of
kernel-mode routines inside the NTFS driver
that NTFS uses to access the log file.

* Although originally designed to provide
logging and recovery services for more than
one client, the LFS is used only by NTFS.

* The caller—NTEFS 1n this case—passes the
LFS a pointer to an open file object, which
specifies a log file to be accessed.

LES

* The LFS divides the log file into two
regions: a restart area and an "infinite"
logging area

LFS restart area Logging area

Copy 1 Copy 2 Log records

LES

* NTFS calls the LFS to read and write the
restart area.

* NTFS uses the restart area to store context
information such as the location 1n the
logging area at which NTFS will begin to
read during recovery after a system failure.

* The LFS maintains a second copy of the
restart data 1n case the first becomes
corrupted or otherwise maccessible.

LES

* The remainder of the log file 1s the circular
logging area.

* The LFS uses 64 bit logical sequence
numbers (LSNs) to identify records written
to the log file.

* NTFS never reads transactions from or
writes transactions to the log file directly .

LES

* The LFS provides services NTFS calls to:

— open the log file

— write log records

— read log records 1n forward or backward order
— flush log records up to a particular LSN

— set the beginning of the log file to a higher LSN

LES

* NTFS:

* calls the LFS to record in the (cached) log file any
transactions that will modify the volume structure.

* modifies the volume (also in the cache)

* The cache manager prompts the LFS to flush the log
file to disk.

* The LFS implements the flush by calling the cache

manager back, telling it which pages of memory to
flush

* After the cache manager flushes the log file to disk, it
flushes the volume changes (the metadata operations
themselves) to disk.

Flus
log

Log file
service

h the
file

|
Read/write/flush
the logfile

LES

Log the transaction

IY'O manager

Write the
volume updates

Cache
manager

Call the virtual memaory
manager to access
the mappedfile

\

MNTFS driver

Log Record Types

* The LFS allows its clients to write any kind
of record to their log files

* NTFS writes several types of records

* Amongst the others:
— update records
— checkpoint records

Update Records

* Each update record contains two kinds of
information:

— Redo information

* How to reapply one sub-operation of a fully logged
transaction to the volume 1f a system failure occurs
before the transaction is flushed from the cache

— Undo information

* How to reverse one sub-operation of a transaction that
was only partially logged at the time of a system
failure

Update Records

* Each record represents one sub-operation of
a transaction

— The redo entry 1n each update record tells NTFS
how to reapply the suboperation

— The undo entry tells NTFS how to roll back the
suboperation

LFS restart area Logging area
Log file records

/ /
Redo: Allocate/initialize an MFT file record Redo: Set bits 3-9 in the bitmap
Undo: Deallocate the file record Undo: Clear bits 3-9 in the bitmap

Redo: Add the filename to the index
Undo: Remove the filename from the index

Logging

* After logging a transaction NTFS performs
the sub-operations on the volume 1itself, in
the cache

* When 1t has finished updating the cache,
NTFS writes another record to the log file,
recording the entire transaction as complete

Logging

* When recovering after a system failure,
NTFS reads through the log file and redoes
each committed transaction.

* After redoing the committed transactions
during a file system recovery, NTFS locates
all the transactions 1n the log file that weren't
committed at failure and rolls back

Logging

* The format of the update records must ensure
that executing redundant redo or undo
operations 1s idempotent

* For example, setting a bit that 1s already set
has no effect, but toggling a bit that has
already been toggled does

Logging

* NTFS writes update records for the
following operations:

— Creating a file

— Deleting a file

— Extending a file

— Truncating a file

— Setting file information

— Renaming a file

— Changing the security applied to a file

Checkpoint Records

* In addition to update records, NTFS
periodically writes a checkpoint record to the
log file

LFS restart area Logging area
Log file records

LSN LSN LSN LSN
2058 2059 2060 2061

Checkpoint record

NTFS restart

Checkpoint Records

* Tell NTFS what processing would be needed
to recover a volume 1f a crash were to occur
immediately.

* After writing a checkpoint record, NTEFS
stores the LSN of the record in the restart
area

Log Full

* [fthe log file doesn't contain enough
available space LFS returns a "log file full"
error and NTFS raises an exception.

* The NTFS exception handler rolls back the
current transaction and places it in a queue to
be restarted later.

* NTFS blocks file creation and deletion and
then requests exclusive access to all system
files and shared access to all user files.

Log Full

* Gradually, active transactions either are
completed successfully or receive the "log
file full" exception. NTFS rolls back and
queues the transactions that receive the
exception.

* After flushing to disk, NTFS resets the
beginning of the log file to the current
position, making the log file "empty."

* Then 1t restarts the queued transactions

