
ISA

Giorgio Richelli

Instruction Set Architecture

• Contract between programmer and the
hardware
– Defines visible state of the system
– Defines how state changes in response to

instructions

• Programmer: ISA is model of how a program
will execute

• Hardware Designer: ISA is formal definition of
the correct way to execute a program

• ISA specification
– The binary encodings of the instruction set

ISA Basics

Op Mode Ra Rb

Mem
Regs

Before State

Mem
Regs

After State

instructionInstruction formats
Instruction types
Addressing modes

Data types
Operations
Interrupts/Events

Machine state
Memory organization
Register organization

Architecture vs. Implementation

• Architecture: defines what a computer system
does in response to a program and a set of
data
– Programmer visible elements of computer system

• Implementation: defines how a computer does
it
– Sequence of steps to complete operations
– Time to execute each operation
– Hidden “bookkeeping” functions

Examples

• Architecture or Implementation?

– Logical number of GP registers
– Width of memory bus
– Size of the instruction cache
– Binary representation of the instruction
sub r4,r2,#27

– Number of cycles to execute FP instruction
– Which condition code bits are set on a move

instruction
– Type of FP format

Machine State

• Registers
– Size/Type

• Program Counter (= IP)
• accumulators

• index registers
• general registers
• control registers

• Memory
– Visible hierarchy (if any)
– Addressibility

• byte, word, bit
• byte order (endian-ness)
• maximum size

– protection/relocation

Machine State

PC

R0-R31
32 bit

Memory
Byte Addr

Little Endian
32-bit addr

Components of Instructions

• Operations (opcodes)
• Number of operands
• Operand specifiers

• Instruction encodings
• Instruction classes

– ALU ops (add, sub, shift)
– Branch (beq, bne, etc.)
– Memory (ld/st)

add r1,r2,r3

src2 dstopcode src1

Operand Number

• No Operands HALT NOP

• 1 operand NOT R4 R4 ⇐ R4
JMP _L1

• 2 operands ADD R1, R2 R1 ⇐ R1 + R2
LDI R3, #1234

• 3 operands ADD R1, R2, R3 R1 ⇐ R2 + R3

• > 3 operands MADD R4,R1,R2,R3 R4 ⇐R1+
(R2*R3)

Effect of Operand Number

E = (C+D)*(C-D)
C ⇒ r1
D ⇒ r2
E ⇒ r3

add r3,r1,r2
sub r4,r1,r2
mult r3,r4,r3

mov r3,r1
add r3,r2
sub r2,r1
mult r3,r2

3 operand machine 2 operand machine

Assign

Architectures

• Memory-memory
– CISC idea
– Usually allows any operand to be in register as well

• Register-memory
– Example: x86
– Can do one operand in register, one in memory, or 2

in regs

• Register-register
– Only design used in modern machines
– Lots of registers → fast flexible operand access
– Simplicity of hardware
– Compiler has full flexibility in register usage

Memory Organization

• Four components specified by ISA:

– Smallest addressable unit of memory (byte?
halfword? word?) (addressibility)

– Maximum addressable units of memory (doubleword?
)

– Alignment

– Endianness

Memory Addressing

• Originally just word addressing
• 8-bit bytes and byte addressing introduced on

IBM 360 series
• Brief experiments with bit addressing

• Unaligned accesses ?

• Some machines byte-address but only
load/store a word at a time

• Modern RISC designs allow short load/store,
but not short arithmetic

Addressing Modes

• How can an instruction reference memory?
• Early days: absolute address in instruction

– Led to instruction modification
– Improvement: “Indirection” picked up absolute

location, used it as final address

• Minimum necessary today: follow pointer in
register

– Clumsy if only option

• Fanciest conceivable: *(R1+S*R2+constant),
with either or both of R1 and R2
autoincremented or autodecremented as side
effect, either before or after instruction

– No machine went quite this far, but VAX came close

Addressing Modes (cont’d)

• What’s actually useful?
– Need to follow pointers: can restrict to registers

• ADD R1,(R2)
– Frequent stack access → register + constant useful
– Immediates needed for built-in constants
– Access to globals → absolute memory addresses
– PC-relative modes

• Used to be needed for data; not in modern
systems

• Still needed for calls and branches
– Absolute addresses no longer needed for branches

• Can always emulate with PC-relative, since PC
known

• Still available on some architectures

Alignment

• Some architectures restrict addresses that can
be used for particular size data transfers

• E.g:
– Bytes accessed at any address

– Halfwords only at even addresses

– Words accessed only at multiples of 4

0x10000x1004

unaligned word access

Endian-ness

• Reference to Gulliver’s Travels:
– whereas royal edict in Lilliput requires cracking open

one's soft-boiled egg at the small end, inhabitants of
the rival kingdom of Blefuscu crack theirs at the big
end (giving them the moniker Big-endians)

• Little-Endian invented by Digital Equipment on
the PDP-11

• Some machines can switch endianness with a
control bit

– awkward and seldom useful

Endianness

• How are bytes ordered within a word?
– Little Endian (Intel/DEC)

– Big Endian (IBM/Motorola)

– Internet Standard is Big Endian

0 1 2 3

0123

Data Types

• How the contents of
memory and registers
are interpreted

• Can be identified by
– tag
– use

• Driven by application
– Signal processing

• 16-bit fixed point
(fraction)

– Text processing
• 8-bit characters

– Scientific computing
• 64-bit floating point

• Most general purpose
computers support
several types
– 8, 16, 32, 64-bit
– signed and unsigned
– fixed and floating

0x8a1cint

“abcd”str

Examples of tags (ie. Symbolics machine)

Example: 32-bit Floating Point

• Type specifies mapping
from bits to real numbers
(plus symbols)
– format

• S, 8-bit exp, 23-bit
mantissa

– interpretation
• mapping from bits to

abstract set

– operations
• add, mult, sub, sqrt,

div

mantissaexps

2381

v MS E= − × ×−() .()1 2 1127

Types of ISAs

• Stack
– Implicit operands (top of stack)
– Heavy memory traffic
– Limited ability to access operands at will
– Obsolete

• Accumulator
– Implicit register operand (“accumulator”)
– One memory operand
– Insufficient temporaries
– Obsolete

• General-purpose register
– Multiple registers
– Several variations

Stack Machines

• Register state is PC and SP
• All instructions performed on

TOS (top of stack) and SOS
– pushes/pops of stack implied

op TOS SOS
op TOS M
op TOS *M
op TOS *(M+SP)

• Many instructions are zero
address

• Stack cache for performance
– similar to register file
– hardware managed

• Why do we care?

PC
Memory

Cur Inst

Code

TOS

Stack

TOS
SOS

Stack $

SP

JVM

Evolution of ISA

In the beginning…the accumulator
– Two instruction types: op and store

A ← A op M
A ← A op *M
*M ← A

– One address architecture
• each instruction encodes one

memory address
– Two addressing modes

• immediate: M

• indirect addressing: *M

Memory

0

FFF

PC

Accumulator

Machine State

Op Address (M)

Instruction Format

(Op encodes addressing mode)

Why Accumulator Architectures?

• Registers expensive in early technologies
(vacuum tubes)

• Simple instruction decode
– Logic also expensive
– Critical programs were small (efficient encoding)

• Less logic ⇒ faster cycle time

• Model similar to earlier “tabulating” machines
– Think of an “adding machine”

The Index Register

• Add an indexed addressing
mode

A ← A op (M+I)
 A ← A op *(M+I)

*(M+I) ← A
– good for array access: x[j]

• address of x[0] in
instruction

• j in index register
– one register for each key

function
• IP → instructions
• I → data addresses
• A → data values

– new instructions to use I
• INC I, CMP I, etc.

Memory

0

FFF

PC

Accumulator

Machine State

Op Address (M)

Instruction Format

Index

Example of Indexed Addressing

sum = 0;
for(i=0; i<n; i++)
 sum = sum + y[i];

START: CLRA
CLRX

LOOP: ADDA y(X)
INCX
CMPX n
BNE LOOP

START: CLR i
CLR sum

LOOP: LOAD IX
AND #MASK
OR i
STORE IX
LOAD sum

IX: ADD y
STORE sum
LOAD i
ADD #1
STORE i
CMP n
BNE LOOP

Without Index Register

With Index Register

General Registers

• Merge accumulators
(data) and index (address
)

• Any register can hold
variable or pointer
– simpler
– more orthogonal (opcode

independent of register
usage)

– More fast local storage
– but….addresses and data

must be same size
• How many registers?

– More - fewer loads and
stores but more
instruction bits

Memory

0

FFF
PC

Machine State

Op

3-address Instruction Format

R0
R1

Rn-1

i j k

Five Ways to Do C = A + B

STACK

PUSH A
PUSH B
ADD
POP C

ACCUM

LOAD A
ADD B
STORE C

MEM-MEM

ADD C,A,B

REG-MEM

LOAD R1,A
ADD R1,B
STORE R1,C

REG-REG

LOAD R1,A
LOAD R2,B
ADD R3,R1,R2
STORE R3,C

Principles of Instruction Set Design

• Keep it simple (KISS)
– complexity

• increases logic area
• increases pipe stages
• increases development

time
– evolution tends to make

kludges

• Orthogonality (modularity)
– simple rules, few exceptions
– all ops on all registers

Data Types

O
p

e
ra

tio
n

s

Add Modes

F
o

rm
a

ts
Regs

• Frequency
• make the common case

fast
• some instructions

(cases) are more
important than
others

0%

10%

20%

30%

40%

50%

60%

INT LOAD STORE JMP FLOAT

Principles of Instruction Set Design (part 2
)

• Generality
– not all problems need

the same
features/instructions

– principle of least
surprise

– performance should be
easy to predict

• Locality and concurrency
– design ISA to permit

efficient implementation
• today
• 10 years from now

0%

10%

20%

30%

40%

50%

60%

INT LOAD STORE JMP FLOAT CHAR

vs

F D R E W

F D R E W

F D R E W

F D R E W

Operand Types and Sizes

• Type usually implies size
• Integers can safely be widened to word size

– Shrink again when stored
– Takes advantage of two’s-complement

representation
• Single-precision FP gives different results than

double-precisions
→ Necessary to support both widths
– Some FPUs can do two SP operations in parallel

• Older machines allowed “packed” decimal (2
digits per byte)

– x86 supports with DAA (Decimal Add Adjust)
instruction

– Still useful in business world, though dying
• 32 bits / 64 bits standard today

– 128?

Operations Provided

• Only one instruction truly needed: SJ
– Subtract A from B, giving C; if result is < 0, jump to D
– It’s Turing-complete!

• Practical machines need a bit more at
minimum:

– Arithmetic and logical (add, multiply, divide?, and, or,
…)

– Data movement (load/store, move between registers)
– Control (conditional/unconditional branch, procedure

call and return, trap to OS)
– System control (return from interrupt, manage VM,

set unprivileged mode, access I/O devices)
• Other builtins can be useful:

– Basic floating point
– Decimal
– String
– Vector, graphics

Control Flow

• Addressing modes are important
– PC-relative means code can run at any virtual

address
– Useful for dynamically linked (shared) libraries

• Pointer-following jump needed for returns
– Also useful for switch statements, function pointers,

virtual functions, and shared libraries

• How to specify condition for conditional
branches?

– Condition code as side effect of every instruction
– Condition register explicitly set by comparison
– Compare as part of branch

• Adds delay slots in pipeline

Encodings

• Variable-length instructions
– Highly efficient (few wasted bits)
– Allows complex specifications (e.g., x86 addressing

modes)
– Usually means misaligned instruction fetch
– Greatly complicates fetch/decode units

• Fixed-length instructions
– May limit number of registers
– Usually very few instruction formats
– Wastes space but gains speed (e.g., only aligned

fetches)
– Limits width of immediate operands

The Fight for Bits

• How wide should instruction be?
– Wider → can encode more registers, more options
– Wider → bigger programs, more memory bandwidth
– Bigger programs → fewer cache hits

• Things you need to encode:
– Operation code (16 to 1000 instructions)
– Operands (at least one, normally two or three)
– Immediate operands
– Memory offsets
– Branch targets
– Branch conditions
– Conditional operations (e.g., conditional load, add)

Interaction with Compilers

• Nearly all modern code generated by compilers
• Architect must make compiler’s job easier:

– Lots of registers
– Orthogonal instruction set
– Few side effects
– Instructions and addressing modes matched to language

constructs
• But NOT attempt to implement them in detail!
• Primitives are better than “solutions” even when

solutions are correct
– Good support for stack, globals, and pointers
– Support for both compile-time and run-time binding
– Don’t ask compiler to predict dynamic information (e.g.,

branch targets)
– Don’t provide features language can’t express

• Example pro and con: vector architectures

Role of the Optimizing Compiler

Front End
(Language Specific)

Code Generator

High-Level Optimizations

Global Optimizations

C source code

Machine binary code

IR

IR

Machine-IR

Procedure Inlining
Loop Transformations

Common SubExp Elim.
Code Motion

Instruction Scheduling
Register Allocation
Machine Dependent

HW/SW
complexity
tradeoffs

Example: Loop Optimization

LW R1, X
ADD R2,R0,R0
ADD R3,R0,R0

LOOP: LW R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
ADD R2,R2,#1
SLT R5,R2,#MAX
BNEZ R5,LOOP

CONT:

LW R1, X
ADD R2,R0,#MAX
SLLI R2,R2,#2
ADD R2,R1,R2
ADD R3,R0,R0

LOOP: LW R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
SLT R5,R1,R2
BNEZ R5,LOOP

CONT:

LW R1, X
ADD R2,R0,R0
ADD R3,R0,R0

LOOP: SLT R5,R2,#MAX
BEQZ R5,CONT
LW R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
ADD R2,R2,#1
J LOOP

CONT:

sum=0;
for(i=0;i<max;i++)
 sum+=x[i];

Loop Reordering Induction Variable
Analysis

7
5

6

Cycles Per Instruction (CPI)

• Depends on the instruction

• Average cycles per instruction

• Example:

RateClock n instructio of timeExecution ∗= iCPI i

∑
=

=∗=
n

i tot

i
iii IC

IC
FFCPICPI

1

 where

Op Freq Cycles CPI(i) %time
ALU 50% 1 0.5 33%
Load 20% 2 0.4 27%
Store 10% 2 0.2 13%
Branch 20% 2 0.4 27%

CPI(total) 1.5

Comparing and Summarizing Performance

• Fair way to summarize performance?
• Capture in a single number?

• Example: Which of the following machines is
best?

Computer A Computer B Computer C
Program 1 1 sec 10 sec 20 sec
Program 2 1000 sec 100 sec 20sec

RISC/CISC

• RISC “concept” was developed by John Cocke
of IBM Research during 1974
– A computer uses only 20% of the instructions,

making the other 80% superfluous to requirement.
– By reducing the number of transistors and

instructions to only those most frequently used, the
computer would get more done in a shorter amount
of time.

• The RISC “term” (Reduced Instruction Set
Computer) was introduced by David Patterson.

RISC/CISC

• CISC (Complex Instruction Set Computer) is a
retroactive definition that was introduced to
distinguish the design from RISC
microprocessors.

• In contrast to RISC, CISC chips have a large
amount of different and complex instruction.

• The argument for its continued use indicates
that the chip designers should make life easier
for the programmer by reducing the amount of
instructions required to program the CPU

CISC Rationale

• Historic:
– High cost of memory.
– Need for compact code.

• Support for high-level languages

• Ease of adding new microinstructions

CISC Effects

• Compact code
• Ease of compiler design
• Software easier to debug
• Moved complexity from s/w to h/w
 => Lengthened design times
 => Increased design errors

RISC Evolution

• Increasingly cheap memory
• Improvement in compiler technology

Patterson: “Make the common case fast”

RISC Effect

• Move complexity from h/w to s/w
• Provided a single-chip solution
• Better use of chip area
• Better Speed
• Feasibility of pipelining

– Single cycle execution stages
– Uniform Instruction Format

Key arguments

• RISC argument
– for a given technology, RISC implementation will be faster
– current VLSI technology enables single-chip RISC
– when technology enabled single-chip CISC, RISC were

pipelined
– when technology enabled pipelined CISC, RISC had caches
– …

• CISC argument
– CISC flaws not fundamental (fixed with more transistors)
– Moore’s Law will narrow the RISC/CISC gap (true)
– software costs will dominate (very true)

And now .. Hybrid Architectures (accelerators)

Role of Compiler:RISC vs. CISC

• CISC instruction:
MUL <addr1>, <addr2>

• RISC instructions:
LOAD A, <addr1>
LOAD B, <addr2>
MUL A, B
STORE <addr1>

• RISC is dependent on optimizing compilers

Post-RISC Architecture

• Additional functional units for superscalar
• Additional “non-RISC” (but fast) instructions
• Increased pipeline depth
• Branch prediction
• Out of order execution

	 ISA
	Instruction Set Architecture
	ISA Basics
	Architecture vs. Implementation
	Examples
	Machine State
	Components of Instructions
	Operand Number
	Effect of Operand Number
	Architectures
	Memory Organization
	Memory Addressing
	Addressing Modes
	Addressing Modes (cont’d)
	Alignment
	Endian-ness
	Endianness
	Data Types
	Example: 32-bit Floating Point
	Types of ISAs
	Stack Machines
	Evolution of ISA
	Why Accumulator Architectures?
	The Index Register
	Example of Indexed Addressing
	General Registers
	Five Ways to Do C = A + B
	Principles of Instruction Set Design
	Principles of Instruction Set Design (part 2)
	Operand Types and Sizes
	Operations Provided
	Control Flow
	Encodings
	The Fight for Bits
	Interaction with Compilers
	Role of the Optimizing Compiler
	Example: Loop Optimization
	Cycles Per Instruction (CPI)
	Comparing and Summarizing Performance
	RISC/CISC
	Slide 41
	CISC Rationale
	CISC Effects
	RISC Evolution
	RISC Effect
	Key arguments
	Role of Compiler:RISC vs. CISC
	Post-RISC Architecture

