
  



File system
• Mount-on

– A directory is covered by the mounted file system.
– mount table & vfs list



  

File Structure
• O.S. systems such as UNIX and Windows 

impose no structure to ensure maximum 
flexibility. They consider a file as a stream 
of bytes , and user processes define any 
structure that they want

• I/O is usually performed in units of ONE 
physical Block and all blocks have the 
same size that is related to the page size 
in paging scheme. 



  

File Types
Some of the file types are
• Regular files: User files (ASCII files or binary 

files) 
• Directory files: System files used to maintain 

directory structure
• Device files : Special system files dedicated to I/

O
• Executable files: O.S. usually expects special 

structure for these files. For example in Unix 
they must start with Magic Number. 



  

 Executable Library



  

File System Layout
• Most disks divided up into one or more partitions, 

with independent file systems on each partition.
• On a PC, sector 0 of disk is called MBR ( Master 

Boot Record) and contains partition table that 
contains start and ending address for each 
partition

• The layout of a disk partition depends on its file 
system. For example after its first block ( i.e., 
boot block) it may contain super block that 
contains administrative information such as 
magic numbers to identify file types. (see next 
slide)       



  

   



  

Implementing the Files
Various methods are used in different O.S. for 

implementing the files:
• Contiguous Allocation: Each file is stored on 

consecutive disk blocks. For example for a disk 
with 4K block size a 20K file is stored on 5 
consecutive blocks. (see next slide) 

   Advantages: 
• simple to implement because we need to know 

only disk address of the first block and number of 
blocks 

• The read performance is excellent because we 
need only one disk operation to read the entire 
file.     



  

Contiguous Allocation

    



  

Contiguous Allocation
The disadvantages of Contiguous allocation are:
• Disk fragmentation: happens when the files are 

removed. Compaction is difficult because all the 
blocks following the holes should be copied. It is 
worse when the disk filled up. 

• Needs to know the final size of new file to be 
able to choose the correct hole to place it. That is 
also difficult

Consecutive allocation is good for write once 
medias such as CD-ROMS and DVDs  



  

Linked List Allocation
• A linked list of disk blocks (first word is pointer) 

is kept in this method 
• Every disk blocks can be used (except for 

internal fragmentation) 
• The sequential read for the blocks of the file is 

easy but random access to each block is hard 
because we have to read all the blocks of a file 
before that block

• Because of pointer the amount of data stored in 
each block is not a power of two 



  

Linked List Allocation
 



  

Linked List Allocation using a Table in 
Memory 

• Both of disadvantages of the linked list allocation 
can be eliminated by keeping the table of pointer 
to the blocks (FAT) in the memory. MSDOS 
uses that.

• Random access to blocks is easy because there 
is no disk reference involved. We need only the 
starting block number. 

• The problem is for 20 GB disk, and a 1 KB block 
size table needs 20  million entries if each be 4 
bytes, table will take approximately 80 MB .    



  

File Allocation Table

 



  

I-nodes

• To solve the problem of the large file table 
we can use i-node

• In this method for each file there is a table 
contains attributes and disk address of the 
blocks of that file. 

• Thus memory consumption depends on 
open files and not disk size



  

    



  

I-node in Unix

i-node in UNIX has  
• Initial 10 disk addresses. 
• Single indirect blocks keeps address of file 

more blocks for larger files.
• Double indirect block that holds address of 

the blocks each contains a list of single 
indirect block

• Triple indirect block has the address of 
block each is double indirect block 



  

I-node in Unix

 



  

Implementing Directories

• Basically, a directory is a file that contains 
an entry for each file or subdirectory in that 
directory

• When a file is opened, O.S. uses the path 
name to locate directory entry

• Each directory entry contain the file 
information

• Each file information can be stored:
– directly in directory entry (a in the next slide) 
– in i-node and each directory entry refers to i-

node (b in the next slide)  



  

Implementing Directories

    



  

Directories in MS-DOS

• Same as CP/M directory entries 
• 32 bytes each
• The extension is for a large file size that 

requires more than one directory entry. 
• First block number is the physical block 

number address of the file 



  

Directories in MS-DOS
    



  

Directories in UNIX
• Each directory entry contains file name and i-node 

number



  

Directories in UNIX
• Directory lookup in Unix and all hierarchical 

system is same
• First file system locates the root directory.
• Then it looks up the first component of the path 

and its i-node
• From the i-node system looks up the block 

address of next component and it works in the 
same way until the file can be found. For 
example next slide shows the steps in looking up 
/usr/ast/mbox  



  

   



  

z/OS
• I Dati sono contenuti su 

– dischi magnetici ad accesso Diretto (DASD) , 
– nastri magnetci 
– altri dispositivi Ottici. 

• Usualmente i dati possono essere reperiti in maniera
–  Sequenziale
– con Accesso Casuale. 

• Si possono usare I DASD suddividendoli 
– in strutture fisiche o 
– In strutture logiche dette VOLUMI.

• All’interno di un volume si possono conservare
– dati, 
– programmi eseguibili , tra i quali lo stesso SO 
– aree di lavoro temporaneo. ecc

• Le allocazioni possono essere 
– statiche 
– dinamiche,
– manuali
– automaticamente gestite da un componente di Sistema 

detto Storage Management System (DFSMS)

• Si definisce data set una collezione di strutture di 
dati logiche dette  records e contenute in un disco 
magnetico o in un altro dispositivo in grado di 
contenere dati in maniera non volatile.  

• IL contenuto di un data set puo’ essere:

– Un programma
– Un componente di System library of macros
– Un file (archivio) di dati usabili dall’utente. 

• Il record e’ l’unita’ di base delle informazioni 
contenute sul Sistema z/OS .

• Lo spazio sul DASD puo’ essere usato per molti 
archivi   detti ‘data sets’ .Essi possono essere

–  allocati,
–  riservati, 
–  scritti
–  letti
–  cancellati, lo spazio puo’ essere subito 

riutilizzato.



  

Metodi di Accesso e Formati dei 
Record 

Il metodo di accesso :

• definisce la tecnica per scrivere e 
reperire i dati sul Sistema. 

• include una serie di programmi e di 
utilities per trattare i dati 

• i metodi di accesso piu’ comuni sono :

– VSAM, 
– QSAM, 
– BSAM, 
– BDAM, 
– BPAM. 

• Il formato dei records puo’ avere varie 
implementazioni

– F= Fisso
– FB= Fisso Bloccato
– V=Variabile
– VB=Variabile Bloccato
– U=indefinito

record

block block

block

record record record

record

recordrecord recordrecord record record

block

record record

record

record

record

record record

record

record

recordrecord

BDW

F

FB

V

VB

U

Fixed records.  

Fixed blocked records.  BLKSIZE = n * LRECL

RDW
Variable records.

Variable blocked records.  BLKSIZE >= 4 + n * lragest LRECL

Undefined records.  No defined internal structure for access method.

Record and block descriptors words are each 4 bytes long

record

block block

block

record record record

record

recordrecord recordrecord record record

block

record record

record

record

record

record record

record

record

recordrecord

BDW

F

FB

V

VB

U

Fixed records.  

Fixed blocked records.  BLKSIZE = n * LRECL

RDW
Variable records.

Variable blocked records.  BLKSIZE >= 4 + n * lragest LRECL

Undefined records.  No defined internal structure for access method.

Record and block descriptors words are each 4 bytes long

Tipi di Data Set:
• Sequenziali

Semplici Raccolte di records
• Partizionati o librerie (PDS/PDSE) 

Archivi con un organizzazione a 2 livelli ,
Data set name e member name tipici delle 
librerie di programi

• VSAM
Utilizzano il metodo di accesso VSAM.  
Rappresentano la maggior parte dei DATI 
contenuti nel Sistema



  

VSAM 

• VSAM  indica un Virtual Storage 
Access Method

• VSAM fornisce una serie di 
funzioni  che vanno ben oltre il 
metodo di accesso (ad esempio 
indici, Gestione Spazi ,Utilities)

• VSAM record formats:
– Key Sequence Data Set 

(KSDS)
– Entry Sequence Data Set 

(ESDS)
– Relative Record Data Set 

(RRDS)
– Linear Data Set (LDS)

R1 R2 R3 free space in CI
R
D
F

R
D
F

R
D
F

CI
D
F

Record Descriptor Fields



  

Catalogs and VTOCs
• VTOC (volume table of contents):

– E’ la lista dei data sets contenuti in un 
volume .

– Contiene anche informazioni sullo 
spazio vuoto del volume.

• Catalog 
– E’ una funzione di Sistema in grado di 

localizzare un dataset in base al nome.
–  Esistono Cataloghi di Sistema ed 

Utente.
• z/OS usa entrambe le tecniche per reperire I 

dati

LABEL
(volser)

Extents

tracks

free spaceYOUR.DATAMY.DATA

trackstracks

VTOC

IBMUSER.A1
USER.A1
SYS1.A1

Catalog Structure

SYSTEM.MASTER.CATALOG

Data Set-SYS1.A1
or

HLQs  (alias)
IBMUSER...USER

Master Catalog

USERCAT.COMPANY

Data Set with
HLQ=USER

User Catalog

USERCAT.IBM

User Catalog

Data Set with
HLQ=IBMUSER

volume (wrk002)
unit (3390)

IBMUSER.A2
IBMUSER.A3

volume (wrk001)
unit (3390)

volume (012345)
unit (tape)

USER.TAPE.A1



Logical Disks
• A logical disk is a storage abstraction that the 

kernel sees as a linear sequence of fixed 
sized, randomly accessible blocks.
– Looks like a regular disk to OS

• Advanced Topics:
– Logical Volume Managers
– RAID

• Striping
– Stripe sets

• Mirroring 



  

Device I/O

• Two type of devices in Unix:
– Block
– Character

• The interface to the kernel are different but 
basic framework is the same

• Each device is required to support a 
standard set of operations



Character Device I/O
• Operations are encapsulated in a:
  struct {

 int (*d_open)();

 int (*d_close)();

 int (*d_read)();

 int (*d_write)();

  } cdevsw[];

• Major & minor device number: 
– indexes in the device table



read() system call
1) Use the file descriptor to get to the open file object;
2) Check the entry to see if the file is open for read;
3) Get the pointer to the in-core inode from this entry;
4) Lock the inode so as to serialize access to the file;
5) Check the inode mode field and find that the file is a character device 

file.
6) Use the major device number to index into a table of character 

devices and obtain the cdevsw entry for this device;
7) From the cdevsw, obtain the pointer to the d_read routine for this 

device;
8) Invoke the d_read operation to perform the device-specific 

processing of the read request.
result=(*(*cdevsw[major].d_read))(…);

9) Unlock the inode and return to the user.



  

read() system call
• Much of the processing is independent of the 

specific device
• cdevsw[] fields define an abstract interface
• E.g. each device implements d_read through 

specific functions:
– lpread()
– ttread()

• The major device number translates the generic 
read() operation



  

Operations on Files

• One of the most frequently used functions 
is the “path name traversal”

• Translate a pathname and returns a 
pointer to the vnode of the file

• Starting point can be relative or absolute
• lookuppn()locks the starting vnode and 

then parses each component of the 
pathname



Operations on Files

• lookuppn():  
1 v_type
2 “..” & system root -> move to next component
3 “..” & a mounted system root -> access the mount point
4 VOP_LOOKUP
5 Not found, last one & SLASHOK -> success (mkdir) else -> 

ENOENT
6 A mount point -> follow the pointer to mount point
7 A symbolic link -> translate it (and restart)
8 Release the directory
9 If not at end, go back to 4
10 Terminate, do not release the reference and return a pointer to 

the final vnode 



  

VOP_LOOKUP

• Interface to the filesystem specific function
– first searches the lookup cache 
– then lookup in the parent directory

• local search 
• remote search (request to the server)

– check if the vnode is in memory
– or allocate and initialize a new vnode, if 

needed
– add an entry to the lookup cache



Opening a file

• fd = open(pathname, mode)
1 Allocate a descriptor
2 Allocate an open file object
3 Call lookuppn()
4 Check the vnode for permissions
5 Check for the operations
6 Not exist && O_Creat?  VOP_CREAT:ENOENT
7 VOP_OPEN
8 O_TRUNC?  VOP_SETATTR
9 Initialize
10 Return the index of the dexcriptor



  

Example File Systems
     CD-ROM File Systems

The ISO 9660 directory entry



  

The CP/M File System

The CP/M directory entry format



  

The MS-DOS File System

The MS-DOS directory entry



  

The MS-DOS File System

• Maximum partition for different block sizes
• The empty boxes represent forbidden combinations



  

The Windows 98 File System

The extended MS-DOS directory entry used in Windows 98

Bytes



  

The Windows 98 File System

An entry for (part of) a long file name in Windows 98

Bytes

Checksum



  

The Windows 98 File System

An example of how a long name is stored in Windows 98



The System V File System(s5fs)

• The layout of s5fs partition:

• Directories:
– s5fs directory is a special file containing a 

list of files and subdirectories.

B   S   inode list          data blocks    



  

inode & Data

• linear array of inodes
– inode identified by its index into the list
– inode is 64 bytes
– several inodes are stored in one disk block

• Data region - area for allocating data 
blocks and indirect blocks



  

The UNIX V7 File System

The steps in looking up /usr/ast/mbox



  

The UNIX V7 File System

A UNIX V7 directory entry



Inodes

• The inode contains administrative 
information,or meta data. 
– The node list contains all the inodes.
– On-disk inode 
– In-core inode 



Inode Fields



 di_mode

E.g. 
Regular file, directory, 
symbolic link



Block array of inode, 
di_addr



  

Holes
• Files may contain holes

– E.g. create a file, seek to arbitrary offset, write
– Reading before the offset will return 0s

• Corresponding elements of di_addr are set 
to 0

• Beware of consequences:
– cp might create larger entities
– tar or cpio could have problems restoring 

filesystems



The superblock
• Total size
• Size of Inode list (I-list)
• Header of free block list
• Partial list of free inodes
• Modified flag
• Read-only flag
• Number of free blocks and free inodes



  

Free Block List

• Superblock stores up to n free disk blocks
• The last of these blocks contains pointers 

to additional free blocks in a linked list
• Most requests obtain free blocks from 

superblock
• When last block is consumed a disk read 

must be done to fetch up the next n blocks 
from the last block



Free block list



  

Free inode list
• Superblock maintains partial list of free 

inodes (cache)
• I-list contains (on disk) the complete list of 

inodes
• When free inode is needed, its index is 

taken from this cache
• When superblock cache becomes empty, 

kernel scans the I-list on disk to find free 
inodes to replenish the list (di_mode==0)



  

Unix file system “the big picture”

partition
disk drive

partition

bootb. superb. ilist directory blocks and file data blocks

inode inode inode inode inode
File 

attributes

block #
block #

...
1st 

indirect
block #

block

block

dir’s inode

block
block #

...
block #

dir. 
attributes

pointer

block
block

block

inode #
...

File’s inode

1st indi-
rect block

dir’s
block

name

inode # name

Directory and file
data blocks



s5fs Kernel Organization
• In-core nodes (struct inode)

– Same fields as struct dinode plus:
• vnode: contains the vnode of the file
• Device ID of the partition containing the file
• Inode number of the file
• Flags for synchronization and cache 

management
• Pointers to keep the inode on a free list
• Pointers to keep the inode on a hash queue
• Block number of last block read



  

Working with directories (Lookup)

• A directory is a table of entries:
– 2 bytes — inumber
– 14 bytes — file name (improved in BSD 4.2 and later)

• Search to find the file begins with either root, or the 
current working directory
– Inode 2 points to the root directory (“ / ”)
– Example above shows lookup of

/usr/ast/mbox



Inode lookup

•  s5lookup()
– Checks the directory name lookup cache
– Directory name lookup cache Miss? Reads the 

directory one block at a time, searching the entries for 
the specified file name 

– If the file is in the directory, get the inode number, use 
iget() to locate the inode 

– Inode in the table? No: allocate a new inode, initialize, 
copy, put in the hash queue, also initialize the 
vnode(v_ops, v_data, vfs)

– Return the pointer to the inode



File I/O (1)

• Read(to a user buffer address)
– Fd-> the open file object, verify mode-> vnode-> get the rw-lock->call 

s5read()
– Offset -> block number & the offset 
– uiomove() -> copyout() (one page at atime)
– page fault? ->s5getpage() -> bmap() (convert logical to physical block#)
– search vnode’s page list, not in? allocates a free page and call the disk 

driver to read the file
– sleep until the I/O completes (before copy to user data space, verify the 

user has access)  -> resume copyout()
– s5read() returns, unlock, advance the offset, return the number of bytes 

read 



File I/O (2)

• write():
– Similar to read() but with a few differences:

• Blocks might not immediately written to disk
• May increase the file size, and require 

allocation of blocks (data or indirect blocks)
• If only a parto of a block must be written, then 

read the entire block, write relevant data, write 
back the whole block 



  

Allocating and Reclaiming Inodes

• Inodes remain active as long as the vnode has a 
nonzero reference count

• SVR2:
– Free inodes are marked as “invalid”, so they have to 

be read back from disk, if needed
– Inefficient

• SVR3:
– LRU replacement
– Suboptimal (certain inodes are likely to be referenced 

more often than others)



Allocating and Reclaiming 
Inodes

• SVR4:
– Inode table(LRU) containing the active 

inodes
– When reference count of a vnode ==0,   

mark the inode as free (leaving it on the 
hash list)

• iget():
– Get 1st inode from list
– If it has pages in memory, then allocate a 

new one





  

Analysis of s5fs

• Advantages: 
– Simple

• Problems: 
– Reliability, Performance, Functionality



  

Analysis of s5fs

• Reliability
– Superblock corruption 

• Performance
– Grouping problems:

• Inodes grouped together followed by data blocks
• Reading a file means accessing an inode then a 

long seek to the data blocks



  

Analysis of s5fs
• Performance

– Disk block allocation:
• mkfs configures the free block list optimally so that blocks are 

allocated in a rotationally consecutive  order but as files are created 
and freed blocks are returned in random order

• after a while, as blocks become free, list becomes random
– Disk block size

• SVR2 uses block size of 512 bytes
• SVR3 goes to 1024 bytes
• less overhead on I/O
• more disk storage wasted

• Functionality
– File names restricted to 14 characters
– Limit of 65535 inodes per file system is too restrictive



  

The Berkeley Fast File System

• Improves performance, reliability and 
functionality

• Provides all functionality of s5fs, system 
call handling algorithms and kernel data 
structures

• Difference in disk layout, on disk 
structures and free block allocation 
methods



  

Berkeley FFS
• On disk organization

– Disk partition comprises of set of consecutive cylinders on disk
– FFS further divides the partition into one or more cylinder groups 

(consecutive cylinders)
• Traditional superblock is divided into two structures

– FFS superblock contains information like number, size and 
location of cylinder group, block size, inodes etc.

– Superblock does not change unless file system is rebuilt
– Every cylinder group has information about the group including 

free inodes, free block lists etc
– Each group has a copy of superblock



  

FFS Headers
• Boot block: first few sectors

– Typically all of cylinder 0 is reserved for boot blocks, 
partition tables, etc.

• Superblock: file system parameters, including
– Size of partition (note that this is dangerously redundant)
– Location of root directory
– Block size

• Cylinder groups, including
– Data blocks
– List of inodes
– Bitmap of used blocks and fragments in the group
– Replica of superblock (not always at start of group)



  

Berkeley FFS
• Sector size is 512 bytes
• Unix view of disk is linear array of blocks
• Number of sectors/block = 2n, n is small number
• Device driver translates block number to logical 

sector number and the physical track, head and 
sector number

• Each cylinder contains a sequential set of block 
numbers

• Head seek time, rotation latency



  

FFS File Tracking
• Directory:  file containing variable-length 

records
– File name
– I-node number

• Inode: holds metadata for one file
– Located by number, using info from superblock
– Integral number of inodes in a block
– Includes

• Owner and group
• File type (regular, directory, pipe, symbolic link, …)
• Access permissions
• Time of last i-node change, last modification, last access
• Number of links (reference count)
• Size of file (for directories and regular files)
• Pointers to data blocks



  

FFS Inodes

• Inode has 15 pointers to data blocks
– 12 point directly to data blocks
– 13th points to an indirect block, containing pointers to data blocks
– 14th points to a double indirect block
– 15th points to a triple indirect block

• With 4K blocks and 4-byte pointers, triple indirect block can 
address 4 terabytes (242 bytes) of data

• Data blocks might not be contiguous on disk
• But OS tries to cluster related items in cylinder group:

– Directory entries
– Corresponding inodes
– Their data blocks



  

Berkeley FFS
• Blocks and fragments:

– Advantage & disadvantage of block size
• FFS divides blocks in to fragments:

– Block size is 2n , min = 4096, larger then s5fs ( 512/1024 bytes)
– Replacing the free block list with a bitmap that track each fragment

• Useful for small files
• Lower bound of fragments = 512 bytes
• File has complete disk blocks except last, which may contain one or 

more consecutive fragments
• First block should be a single block not set of fragments
• Occasional recopying of data when file grows 

– FFS controls this by allowing only direct block to contain fragments



  

Berkeley FFS
• Allocation Policies:

– In s5fs,  free inode and block lists locate blocks randomly, 
except after the file system creation

– FFS aim to collocate related information on the disk to optimize 
sequential access

– FFS places inodes of all the files of a single directory into same 
cylinder group 

– Create new directory in a different cylinder group from the parent 
( for uniform distribution)

– Place data blocks of file in the same cylinder group as inodes
– Change cylinder group when the file reaches 48KB size and 

again at every MB
– Allocate sequential blocks of a file at rotationally optimal 

positions



  

FFS Free-Space Management
• Free space managed by bitmaps

– One bit per block
– Makes it easy to find groups of contiguous blocks

• Each cylinder group has own bitmap
– Can find blocks that are physically nearby
– Prevents long scans on full disks

• Prefer to allocate block in cylinder group of last 
previous block
– If can’t, pick group that has most space
– Heuristic tries to maximize number of blocks close to 

each other



  

FFS Fragmentation
• Blocks are typically 4K or 8K

– Amortizes overhead of reading or writing block
– On average, wastes 1/2 block (total) per file

• FFS divides blocks into 4-16 fragments
– Free space bitmap manages fragments
– Small files, or tails of files are placed in fragments
– This turned out to be terrible idea

• Greatly complicates OS code
• Didn’t foresee how big disks would get

• Linux EXT2 uses smaller block size (typically 
1K) instead of fragments



  

Berkeley FFS

• FFS Functional enhancements
– Long file names- 255 characters and variable 

directory entry length
– Symbolic links: a file that points to another file

• Type field of the inode identifies the file as 
symbolic link



  

Berkeley FFS
• Analysis

– Read throughput increases from 29KB/s in 
s5fs to 221 KB/s in FFS (VAX/750 … 1983!)

– CPU utilization increases from 11% to 43%
– Write throughput increases from 48KB/s to 

142 KB/s
– On the average, it is lost half block per file in 

s5fs and half fragment per file in FFS
• Same when fragment size equals block size

– Overhead to maintain fragments


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

