
Computer Architectures

Multiprocessors & Consistency

Giorgio Richelli

Flynn’s Taxonomy

• Flynn classified by data and control streams in
1966

• SIMD ⇒ Data Level Parallelism
• MIMD ⇒ Thread Level Parallelism
• MIMD popular because

– Flexible: N pgms and/or 1 multithreaded pgm
– Cost-effective: same CPU as for desktops

Single Instruction Single
Data (SISD)
(Uniprocessor)

Single Instruction Multiple
Data SIMD
(CM-2, Vector, SSE/VMX)

Multiple Instruction Single
Data (MISD)
(????)

Multiple Instruction
Multiple Data MIMD
(Clusters, SMP servers)

Back to Basics

• “A parallel computer is a collection of processing
elements that cooperate and communicate to solve large
problems fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• 2 classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor

• Few dozen chips and ~ 100 cores
• Small enough to share single, centralized memory

2. Physically Distributed-Memory Multiprocessor
• Larger number of chips and cores than above.
• BW demands ⇒ Memory distributed among processors

Centralized vs. Distributed Memory

P1

Cache

Interconnection network

Cache

Pn

Mem Mem

P1

Cache

Interconnection network

Cache

Pn

Mem Mem

Centralized Memory Distributed Memory

Scale

Centralized-Memory Multiprocessors

• Also called symmetric multiprocessors (SMPs)
because single main memory has symmetric
relationship to all processors

• Large caches ⇒ single memory can satisfy
memory demands of small number of
processors

• Can scale to few dozen processors by using a
switch and many memory banks

• Further scaling technically conceivable but
becomes less attractive as number of
processors sharing centralized memory
increases

Distributed-Memory Multiprocessors

• Pro: Cost-effective way to scale memory
bandwidth
– If most accesses are to local memory

• Pro: Reduces latency of local memory
accesses

• Con: Communicating data between processors
more complex

• Con: Could have to change software

Two Models for Communication
and Memory Architecture

1. Communication occurs by explicitly passing messages
among the processors:
message-passing multiprocessors

2. Communication occurs through shared address space (via
loads and stores):
shared memory multiprocessors either

• UMA (Uniform Memory Access time) for
shared address, centralized memory MP

• NUMA (Non Uniform Memory Access time
multiprocessor) for shared address,
distributed memory MP

• In past, confusion whether “sharing” means sharing
physical memory (UMA) or sharing address space (NUMA)

Challenges of Parallel Processing

• First challenge is percentage of program that
is inherently sequential

• Suppose we need 80X speedup from 100
processors. What fraction of original program
can be sequential?
a. 10%
b. 5%
c. 1%
d. <1%

Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime
ExTime

 Speedup
+−

==
1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1
 Speedup =

() 







+−×=

enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

Amdahl’s Law Answers

()

()

()

%75.992.79/79Fraction

Fraction*8.0Fraction*8079

1
100

Fraction
 Fraction 1*80

100

Fraction
 Fraction 1

1
 08

Speedup

Fraction
 Fraction 1*

 Speedup

parallel

parallelparallel

parallel
parallel

parallel
parallel

parallel

parallel
enhanced

overall

==

−=

=







+−

+−
=











+−

==

serial

serial

parallel

serial

t

t
t

t

Challenges of Parallel Processing

• Second challenge is long latency to remote
memory

• Suppose 32 CPU MP, 2GHz, 200 ns remote
memory, all local accesses hit memory
hierarchy and base CPI is 0.5. (Remote access
= 200/0.5 = 400 clock cycles.)

• What is performance impact if 0.2%
instructions involve remote access?
a. < 1.5X
b. 2.0X
c. > 2.5X

CPI Equation

• CPInew = CPIbase+

 RemoteAccessRate *
RemoteRequestCost

• CPInew = 0.5 + 0.2% * 400 = 0.5 + 0.8 =
1.3

• No communication is
CPIbase/CPInew= 1.3/0.5 = 2.6 times faster

Symmetric Shared-Memory Architectures

• Caches
– helps to alleviate memory latency
– can be:

• Dedicated to a single CPU
• Shared among CPUs

– contains
• Private data used by a single processor
• Shared data used by multiple processors

• Caching shared data
⇒ Reduces latency to shared data, memory

bandwidth for shared data, and
interconnect bandwidth
⇒ Introduces cache coherence problem

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write-back caches, value written back to memory depends on

which cache flushes or writes back value first
• Processes accessing main memory may see stale value
• Unacceptable for programming

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

Example (1)

• Coherence pertains only to single location
• Program behaviour could be different from what

expected

Mem

P2
Conceptual
Picture

P1 P2/*Assume A=flag=0*/

A = 1; while (flag == 0);

flag = 1; print A;

P1

Example (2)

Example (3)

Example (4)

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will be

returned by a read
• Coherence defines behavior to same location
• Consistency defines behavior to other locations

• Reading an address
should return the last
value written to that
address
– Easy in uniprocessors,

except for I/O

Defining Coherent Memory System

1. Preserve Program Order: A read by processor P to
location X that follows a write by P to X, with no writes
of X by another processor occurring between the write
and the read by P, always returns the value written by
P

2. Coherent view of memory: Read by a processor to
location X that follows a write by another processor to
X returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all
processors
– If not, a processor could keep value 1 since saw as

last write
– For example, if the values 1 and then 2 are written

to a location, processors can never read the value of
the location as 2 and then later read it as 1

Write Consistency

• Assume:
1. A write does not complete (and allow the next write

to occur) until all processors have seen effect of that
write

2. Processor does not change the order of any write
with respect to any other memory access

⇒ if a processor writes location A followed by location
B, any processor that sees new value of B must also
see new value of A

• These restrictions allow processor to reorder
reads, but force it to finish writes in program
order

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though

a shared medium (bus) will order read misses too
– Any order among reads between writes is fine,

as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have
copies of same data in several caches
– Unlike I/O, where it’s rare

• Rather than trying to avoid sharing in SW,
SMPs use HW protocol to keep caches coherent
– Migration and replication key to performance of shared

data

• Migration - data can be moved to a local cache
and used there in transparent fashion
– Reduces both latency to access shared data that is

allocated remotely and bandwidth demand on shared
memory

• Replication – for shared data being simultaneously
read, since caches make copy of data in local
cache
– Reduces both latency of access and contention for read-

shared data

Classes of Cache Coherence Protocols

1. Directory-based — Sharing status of a block of
physical memory is kept in just one location,
the directory

2. Snooping — Every cache with copy of data
also has copy of sharing status of block, but
no centralized state is kept
• All caches are accessible via some

broadcast medium (a bus or switch)
• All cache controllers monitor or snoop on

the medium to determine whether or not
they have copy of a block that is requested
on bus or switch access

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on the
shared medium (bus or switch)
– Relevant transaction if is for a block the cache contains
– Take action to ensure coherence

• Invalidate, update, or supply value
– Depends on state of block and on protocol

• Either get exclusive access before write (via write
invalidate), or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Example: Write-Thru Invalidate

• Must invalidate after step 3
• Write update uses more broadcast medium

BW
⇒ All recent CPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

u = 7

Locate Up-to-Date Copy of Data

• Write-through: get up-to-date copy from memory
– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache

block, it provides it in response to a read
request and aborts the memory access

– Complexity from retrieving cache block from a
processor cache, which can take longer than
retrieving it from memory

• Write-back needs lower memory bandwidth
⇒ Support larger numbers of faster processors
⇒ Most multiprocessors use write-back

Example Protocol

• Snooping coherence protocol is usually
implemented by incorporating finite-state
controller in each node

• Logically, think of separate controller
associated with each cache block
– So snooping operations or cache requests for

different blocks can proceed independently

• In reality, single controller allows multiple
operations to distinct blocks to be interleaved
– One operation may be initiated before another is

completed even through only one cache or bus
access allowed at a time

Example Write Back Snoopy Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If has dirty copy of requested block, provides it in

response to read request and aborts the memory access
• Each memory block is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR dirty in exactly one cache (Exclusive)
– OR not in any caches

• Each cache block is in one state:
– Shared : block can be read
– OR Exclusive : cache has only copy, it’s writable and dirty
– OR Invalid : block contains no data (in uniprocessor

cache too)
• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses

CPU Read hit

Write-Back State Machine - CPU

• State
machine
for CPU
requests
for each
cache block

• Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU read hit
CPU write hit

Cache Block
State

Write-Back State Machine- Bus request

• State machine
for bus
requests
 for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

Block Replacement

• State
machine
for CPU
requests
for each
cache
block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Place read miss
on bus

Write-back State Machine-III

• State
machine
for CPU
and
 for bus
requests
 for each
cache
block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 != A2

MOESI

• A protocol that encompasses all of the possible states
commonly used in other protocols. Each cache line is in one of
five states:

– Modified: A cache line in the modified state holds the most recent, correct
copy of the data. The copy in main memory is stale (incorrect), and no
other processor holds a copy.

– Owned: A cache line in the owned state holds the most recent, correct
copy of the data. The owned state is similar to the shared state in that
other processors can hold a copy of the most recent, correct data. Unlike
the shared state, however, the copy in main memory can be stale (incorrect
). Only one processor can hold the data in the owned state—all other
processors must hold the data in the shared state.

– Exclusive: A cache line in the exclusive state holds the most recent,
correct copy of the data. The copy in main memory is also the most recent,
correct copy of the data. No other processor holds a copy of the data.

– Shared: A cache line in the shared state holds the most recent, correct
copy of the data. Other processors in the system may hold copies of the
data in the shared state, as well. The copy in main memory is also the most
recent, correct copy of the data, if no other processor holds it in owned
state.

– Invalid: A cache line in the invalid state does not hold a valid copy of the
data. Valid copies of the data can be either in main memory or another
processor cache.

	Computer Architectures Multiprocessors & Consistency
	Flynn’s Taxonomy
	Back to Basics
	Centralized vs. Distributed Memory
	Centralized-Memory Multiprocessors
	Distributed-Memory Multiprocessors
	Two Models for Communication and Memory Architecture
	Challenges of Parallel Processing
	Amdahl’s Law
	Amdahl’s Law Answers
	Slide 11
	CPI Equation
	Symmetric Shared-Memory Architectures
	Example Cache Coherence Problem
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Intuitive Memory Model
	Defining Coherent Memory System
	Write Consistency
	Ordering
	Basic Schemes for Enforcing Coherence
	Classes of Cache Coherence Protocols
	Snoopy Cache-Coherence Protocols
	Example: Write-Thru Invalidate
	Locate Up-to-Date Copy of Data
	Example Protocol
	Example Write Back Snoopy Protocol
	Write-Back State Machine - CPU
	Write-Back State Machine- Bus request
	Block Replacement
	Write-back State Machine-III
	Example
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	MOESI

