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Flynn’s Taxonomy

• Flynn classified by data and control streams in 
1966

• SIMD ⇒ Data Level Parallelism
• MIMD ⇒ Thread Level Parallelism
• MIMD popular because 

– Flexible: N pgms and/or 1 multithreaded pgm
– Cost-effective: same CPU as for desktops

Single Instruction Single 
Data (SISD)
(Uniprocessor)

Single Instruction Multiple 
Data SIMD
(CM-2, Vector, SSE/VMX)

Multiple Instruction Single 
Data (MISD)
(????)

Multiple Instruction 
Multiple Data MIMD
(Clusters, SMP servers)



Back to Basics

• “A parallel computer is a collection of processing 
elements that cooperate and communicate to solve large 
problems fast.”

• Parallel Architecture = Computer Architecture + 
Communication Architecture

• 2 classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor 

• Few dozen chips and ~ 100 cores
• Small enough to share single, centralized memory

2. Physically Distributed-Memory Multiprocessor
• Larger number of chips and cores than above.
• BW demands ⇒ Memory distributed among processors



Centralized vs. Distributed Memory
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Centralized-Memory Multiprocessors 

• Also called symmetric multiprocessors (SMPs)  
because single main memory has symmetric 
relationship to all processors

• Large caches ⇒ single memory can satisfy 
memory demands of small number of 
processors

• Can scale to few dozen processors by using a 
switch and many memory banks

• Further scaling technically conceivable but 
becomes less attractive as number of 
processors sharing centralized memory 
increases



Distributed-Memory Multiprocessors 

• Pro: Cost-effective way to scale memory 
bandwidth 
– If most accesses are to local memory

• Pro: Reduces latency of local memory 
accesses

• Con:  Communicating data between processors 
more complex

• Con: Could have to change software



Two Models for Communication
and Memory Architecture

1. Communication occurs by explicitly passing messages 
among the processors: 
message-passing multiprocessors

2. Communication occurs through shared address space (via 
loads and stores): 
shared memory multiprocessors either

• UMA (Uniform Memory Access time) for 
shared address, centralized memory MP

• NUMA (Non Uniform Memory Access time 
multiprocessor) for shared address, 
distributed memory MP

• In past, confusion whether “sharing” means sharing 
physical memory (UMA) or sharing address space (NUMA)



Challenges of Parallel Processing

• First challenge is percentage of program that 
is inherently sequential

• Suppose we need 80X speedup from 100 
processors. What fraction of original program 
can be sequential?
a. 10%
b. 5%
c. 1%
d. <1%



Amdahl’s Law
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Amdahl’s Law Answers 
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Challenges of Parallel Processing

• Second challenge is long latency to remote 
memory

• Suppose 32 CPU MP, 2GHz, 200 ns remote 
memory, all local accesses hit memory 
hierarchy and base CPI is 0.5. (Remote access 
= 200/0.5 = 400 clock cycles.) 

• What is performance impact if 0.2% 
instructions involve remote access?
a.  < 1.5X
b.  2.0X
c.  > 2.5X



CPI Equation 

• CPInew = CPIbase+

      RemoteAccessRate * 
RemoteRequestCost

• CPInew = 0.5 + 0.2% * 400 = 0.5 + 0.8 = 
1.3

• No communication is 
CPIbase/CPInew= 1.3/0.5 = 2.6 times faster



Symmetric Shared-Memory Architectures

• Caches 
– helps to alleviate memory latency
– can be:

• Dedicated to a single CPU
• Shared among CPUs

– contains
• Private data used by a single processor
• Shared data used by multiple processors

• Caching shared data
⇒ Reduces latency to shared data, memory    

bandwidth for shared data, and 
interconnect bandwidth
⇒ Introduces cache coherence problem



Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write-back caches, value written back to memory depends on 

which cache flushes or writes back value first
• Processes accessing main memory may see stale value
• Unacceptable for programming

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7



Example (1)

• Coherence pertains only to single location
• Program behaviour could be different from what 

expected

Mem

P2
Conceptual 
Picture

P1 P2/*Assume A=flag=0*/

A = 1; while (flag == 0); 

flag = 1; print A;

P1



Example (2)



Example (3)



Example (4)
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Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will be 

returned by a read
• Coherence defines behavior to same location
• Consistency defines behavior to other locations

• Reading an address 
should return the last 
value written to that 
address
– Easy in uniprocessors, 

except for I/O



Defining Coherent Memory System

1. Preserve Program Order: A read by processor P to 
location X that follows a write by P to X, with no writes 
of X by another processor occurring between the write 
and the read by P, always returns the value written by 
P 

2. Coherent view of memory: Read by a processor to 
location X that follows a write by another processor to 
X returns the written value if the read and write are 
sufficiently separated in time and no other writes to X 
occur between the two accesses 

3. Write serialization: 2 writes to same location by any 2 
processors are seen in the same order by all 
processors 
– If not, a processor could keep value 1 since saw as 

last write
– For example, if the values 1 and then 2 are written 

to a location, processors can never read the value of 
the location as 2 and then later read it as 1



Write Consistency

• Assume:
1. A write does not complete (and allow the next write 

to occur) until all processors have seen effect of that 
write

2. Processor does not change the order of any write 
with respect to any other memory access

⇒ if a processor writes location A followed by location 
B, any processor that sees new value of B must also 
see new value of A 

• These restrictions allow processor to reorder 
reads, but force it to finish writes in program 
order



Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though 

a shared medium (bus) will order read misses too
– Any order among reads between writes is fine, 

as long as in program order
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Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have 
copies of same data in several caches
– Unlike I/O, where it’s rare

• Rather than trying to avoid sharing in SW, 
SMPs use HW protocol to keep caches coherent
– Migration and replication key to performance of shared 

data

• Migration - data can be moved to a local cache 
and used there in transparent fashion 
– Reduces both latency to access shared data that is 

allocated remotely and bandwidth demand on shared 
memory

• Replication – for shared data being simultaneously 
read, since caches make copy of data in local 
cache
– Reduces both latency of access and contention for read-

shared data



Classes of Cache Coherence Protocols

1. Directory-based — Sharing status of a block of 
physical memory is kept in just one location, 
the directory

2. Snooping — Every cache with copy of data 
also has copy of sharing status of block, but 
no centralized state is kept
• All caches are accessible via some 

broadcast medium (a bus or switch) 
• All cache controllers monitor or snoop on 

the medium to determine whether or not 
they have copy of a block that is requested 
on bus or switch access



Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on the 
shared medium (bus or switch)
– Relevant transaction if is for a block the cache contains
– Take action to ensure coherence

• Invalidate, update, or supply value
– Depends on state of block and on protocol

• Either get exclusive access before write (via write 
invalidate), or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction



Example: Write-Thru Invalidate

• Must invalidate after step 3
• Write update uses more broadcast medium 

BW
⇒ All recent CPUs use write invalidate

I/O devices
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Locate Up-to-Date Copy of Data

• Write-through: get up-to-date copy from memory
– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache 

block, it provides it in response to a read 
request and aborts the memory access

– Complexity from retrieving cache block from a 
processor cache, which can take longer than 
retrieving it from memory 

• Write-back needs lower memory bandwidth 
⇒ Support larger numbers of faster processors 
⇒ Most multiprocessors use write-back



Example Protocol

• Snooping coherence protocol is usually 
implemented by incorporating finite-state 
controller in each node

• Logically, think of separate controller 
associated with each cache block
– So snooping operations or cache requests for 

different blocks can proceed independently

• In reality, single controller allows multiple 
operations to distinct blocks to be interleaved
– One operation may be initiated before another is 

completed even through only one cache or bus 
access allowed at a time 



Example Write Back Snoopy Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If has dirty copy of requested block, provides it in 

response to read request and aborts the memory access
• Each memory block is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR dirty in exactly one cache (Exclusive)
– OR not in any caches

• Each cache block is in one state:
– Shared : block can be read
– OR Exclusive : cache has only copy, it’s writable and dirty
– OR Invalid : block contains no data (in uniprocessor 

cache too)
• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses



CPU Read hit

Write-Back State Machine - CPU

• State 
machine
for CPU 
requests
for each 
cache block

• Non-resident 
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write 
Miss on bus

CPU Write
Place Write Miss on Bus

CPU read hit
CPU write hit

Cache Block
State



Write-Back State Machine- Bus request

• State machine
for bus 
requests
 for each 
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss 
for this block

Read miss 
for this block

Write miss 
for this block

Write Back
Block; (abort
memory access)



Block Replacement

• State 
machine
for CPU 
requests
for each 
cache 
block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State



Place read miss
on bus

Write-back State Machine-III 

• State 
machine
for CPU 
and
 for bus 
requests
 for each 
cache 
block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Write miss 
for this block

Write Back
Block; (abort
memory access)

Write miss 
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 !=  A2



MOESI

• A protocol that encompasses all of the possible states 
commonly used in other protocols. Each cache line is in one of 
five states:

– Modified: A cache line in the modified state holds the most recent, correct 
copy of the data. The copy in main memory is stale (incorrect), and no 
other processor holds a copy.

– Owned: A cache line in the owned state holds the most recent, correct 
copy of the data. The owned state is similar to the shared state in that 
other processors can hold a copy of the most recent, correct data. Unlike 
the shared state, however, the copy in main memory can be stale (incorrect
). Only one processor can hold the data in the owned state—all other 
processors must hold the data in the shared state.

– Exclusive: A cache line in the exclusive state holds the most recent, 
correct copy of the data. The copy in main memory is also the most recent, 
correct copy of the data. No other processor holds a copy of the data.

– Shared: A cache line in the shared state holds the most recent, correct 
copy of the data. Other processors in the system may hold copies of the 
data in the shared state, as well. The copy in main memory is also the most 
recent, correct copy of the data, if no other processor holds it in owned 
state.

– Invalid: A cache line in the invalid state does not hold a valid copy of the 
data. Valid copies of the data can be either in main memory or another 
processor cache.
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