
Caches

Giorgio Richelli



The Memory Bottleneck

• Typical CPU clock rate
– >2GHz (0.5 ns cycle time)

• Typical DRAM access time
– 30ns (about 60 cycles)

• Typical main memory 
access
– 100ns (200 cycles)

• DRAM (60), precharge 
(20), chip crossings (60), 
overhead (60).

• This problem gets worse
– CPUs get faster
– Memories get bigger

• Memory delay is mostly 
communication time
– reading/writing a bit is fast
– it takes time to

• select the right bit
• route the data to/from 

the bit
• Big memories are slow
• Small memories can be 

made fast



Cache Memory

• Small fast memory + big 
slow memory

• Looks like a big fast 
memory

Cache

Small
Fast

Memory

Big
Slow

Big
Fast



The Memory Hierarchy

Registers

Level 1 Cache

1 cyc 3-10 words/cycle compiler managed
< 1KB

1-5cy 1-2 words/cycle hardware managed
32KB -1MB

6-15cy 1 word/cycle hardware managed
1MB - 4MB

60-200cy 0.5 words/cycle OS managed
64MB - 4GB

106-107cy 0.01 words/cycle OS managed
4GB+

Level 2 Cache

CPU
Chip

DRAM

Chips

Mechanical Disk

Tape

Latency Bandwidth



Typical Cache Organization

Pentium2: 16+16KB I+D L1
 512 KB L2

POWER6: 64+64KB I+D L1
  4 MB L2
32 MB L3 (offchip)

Montecito: 16+16KB I+D L1
  1024+256KB I+D L2
  12 MB L3 (onchip)

POWER7: 32+32 KB I+D L1
  256 KB L2
  4-32 MB L3 fluid eDRAM Processor

Core

I- C
ac

heD-Cache

L2 Bus Interface

L2 Cache

MAIN MEMORY



Locality of Reference

• Spatial Locality
– likely to reference data 

near recent references

• Temporal Locality
– likely to reference the 

same data that was 
referenced recently

P

Location

Code

Stack

Array P

t



Program Behavior

• Locality depends on type of program
• Some programs ‘behave’ well

– small loop operating on data on stack

• Some programs don’t
– frequent calls to nearly random subroutines
– traversal of large, sparse data set

• essentially random data references with no 
reuse

• Most programs exhibit some degree of 
locality



Example

MC

Small
Fast

MM

Big
Slow

MM

Big
Slow

What is the average memory access time?

• 95% of references hit in cache
• Cache hits take 10 cycles
• Main memory references take 250 cycles

Tacc = Thit * hit_ratio + Tmiss * (1-hit_ratio)Tacc = 10 * 0.95 + 250 * 0.05 = 22 cycles



Impact of Hit Rate

Average Access Time

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Hit Rate



Taking advantage of Spatial Locality

• Instead of each block in cache being just 1 
word, what if we made it 4 words?  

• When we get our 1 word instruction or 1 word 
of data from memory to put in the cache, get 
the next 3 as well, because they are likely to 
be used soon!  

• Need to add a way to choose which of the 4 
words in the block we want when we go to 
cache…  called block offset.



Cache Definitions

Cache block (= cache line)

Index, Tag, Offset:
 Index identifies the cache line 

corresponding to the data 
address

 Offset gives a byte in a cache 
line

 Tag compares with high order 
bits of the address to see if 
they match

Miss rate, Miss penalty

0x0000
0x0010

0x0 0x4 0x8 0xc

0x0020

0x00f0



Cache Organization

27

Address (tag)

15

42

86

95

11

75

33

Data

Valid
bits

90

12

74

35

99

13

73

31

96

14

72

37

 Issues:
•Where does a block get placed?
• How do we find it?
• Which one do we replace when a new one is brought in?
• What happens on a write?

valid bit ⇒ is cache block good?
index ⇒ which block in cache
tag ⇒ which addresses in block
block offset ⇒ which word in block

Offset

Index



Block Placement

• Mapping function from Big 
Memory to Small memory

• On block-by-block basis
– Direct Mapped: 1 place
– Fully Associative: Anywhere
– Set Associative: Subset of cache

• Use address to do mapping and 
lookup

Cache MM

Main Memory



Direct Mapped

 Each address has 3 fields: Tag, Index, Offset
 Index: which line is mapped to
 Offset: which byte within cache line
 Tag: rest of address (to be compared)

• Example:
– Main memory address space = 32 bits (= 4GBytes)
– Block size = 4 words = 16 bytes (4 bits)
– Cache capacity (index) = 8 blocks (3 bits) = 128 bytes (7 

bits)

32 bit Address block offset

4 bits

tag index

block address

28 bits



Where Does a Block Go in the Cache?

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Where do we put block 12?

Cache

Main Memory

• Size    = 8 word
• Block = 1 word



Direct Mapped

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)



Finding a Block: Direct-Mapped

S 
Entries

Tag Index

Address

=

Hit Data

3

25



Hardware for a Direct Mapped Cache



Fully Associative

• Direct-mapped cache has high conflict misses
• Why not place a block at any free location?
• Fully associative cache:

– No restriction as to where to place a cache line
– each address has 2 fields: Tag & Offset

• Cache is accessed by associative search, 
matching tags

– No line interferences, only capacity misses



Fully Associative

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to any cache location

Cache location = any



Finding A Block: Fully Associative

Tag

Address

=

=

===

= = =

28



Fully Associative



Set Associative

• A compromise/hybrid of the previous two: 
associative map within a set and direct-map 
among sets

• Flexibility with a set to place data
– Simple indexing logic to identify a set
– d-way associative means d lines in a set
– Cache lines are divided into groups => sets

• Reduce conflict misses and less 
complicated/faster than fully associative



Set Associative Cache

• S - sets
• A - elements in each set 

– A-way associative

• E.g: S=4, A=2
– 2-way associative 8-entry 

cache (4 sets)

• All of main memory is 
divided into S sets
– All addresses in set N map 

to same set of the cache 
• Addr = N mod S
• “A” locations available 

in each set

• Shares costly comparators 
across sets

• Lower address bits select set
– 2 in example

• Higher address bits are tag, 
used to associatively search 
the selected set

• Extreme cases
– A=1:  Direct mapped cache
– S=1:  Fully associative

• A need not be a power of 2



Set Associative

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0Set 1 2 3

2-way set associative = 2 blocks in set
This example: 4 sets



Finding A Block: 2-Way Set-Associative

2 elements per set

4 
Sets

Tag Index

Address

= =

Data

Hit

2

26



Set Associative



Which Block Should Be Replaced on Miss?

• Direct Mapped
– Choice is easy - only one option

• Associative
– Randomly select block in set to replace (easy)
– Least-Recently used (LRU) (hard)
– Least-Recently entered
– Pseudo LRU



What Happens on a Store?

• Need to keep cache consistent with main memory
– Reads are easy - no modifications
– Writes - when do we update main memory?

• Write-Through
– On cache write - always update main memory as well
– Use a write buffer to enqueue writes to main memory 

• Write-Back
– On cache write - remember that block is modified (dirty bit)
– Update main memory when dirty block is replaced
– Sometimes need to flush cache (I/O, multiprocessing)



If Store Causes Miss

• Write-Allocate
– Bring written block into cache
– Update word in block
– Anticipate further use of block

• No-write Allocate
– Main memory is updated
– Cache contents unmodified
– Useful with with Write-Through caches



Miss Classifications

• Compulsory misses
– First time data is accessed

• Capacity misses
– When working set is larger than cache size

• Conflict misses
– One set fills up, but room in other sets



How Do We Improve Cache Performance?

• Reduce miss rate
• Reduce miss penalty
• Reduce hit time

missmisshitaccess penaltyratetT ×+=



Reducing Miss Rate: Increase Block Size

• Fetch more data with each cache miss
– 16 bytes ⇒ 64, 128, 256, 512 bytes
– Works because of Locality (spatial)

0

5

10

15

20

25

16 32 64 128 256

Block Size

M
is

s 
R

at
e

1K 4K
16K 64K
256K



Reducing Miss Rate: Increase Associativity

• Reduce conflict misses
• Rules of thumb

– 8-way = fully associative
– Direct mapped size N = 2-way set associative size 

N/2

• However:
– Size N associative is larger than Size N direct 

mapped

– Associative typically slower that direct mapped (thit 
larger)



Reduce Miss Penalty: More Cache Levels

Average access time = HitTimeL1 + MissRateL1 * 
MissPenaltyL1

MissPenaltyL1 = HitTimeL2 + MissRateL2 * MissPenaltyL2

… etc …

• Size/Associativity of higher level caches ?

L1 L3L2



Reduce Miss Penalty: Transfer Time

• Can increase the width of memory and the bus 
in order to decrease access times and transfer 
times to move things into cache.

• Interleaving: multiple memory “banks” allow 
to read or write multiple words in 1 access 
time

• The critical word can be forwarded to CPU 
while fetching the rest of the line



Reducing Hit Time

• Make Caches small and simple
– Hit Time = few cycles is good 
– L1 - low associativity, relatively small

• Even L2 caches can be broken into sub-banks
– Can exploit this for faster hit time in L2


	 Caches
	The Memory Bottleneck
	Cache Memory
	The Memory Hierarchy
	Typical Cache Organization
	Locality of Reference
	Program Behavior
	Example
	Impact of Hit Rate
	Taking advantage of Spatial Locality
	Cache Definitions
	Cache Organization
	Block Placement
	Direct Mapped
	Where Does a Block Go in the Cache?
	Slide 16
	Finding a Block: Direct-Mapped
	Hardware for a Direct Mapped Cache
	Fully Associative
	Slide 20
	Finding A Block: Fully Associative
	Slide 22
	Set Associative
	Set Associative Cache
	Slide 25
	Finding A Block: 2-Way Set-Associative
	Slide 27
	Which Block Should Be Replaced on Miss?
	What Happens on a Store?
	If Store Causes Miss
	Miss Classifications
	How Do We Improve Cache Performance?
	Reducing Miss Rate: Increase Block Size
	Reducing Miss Rate: Increase Associativity
	Reduce Miss Penalty: More Cache Levels
	Reduce Miss Penalty: Transfer Time
	Reducing Hit Time

