
z/OS Basic Skills Information Center

z/OS concepts

���

z/OS Basic Skills Information Center

z/OS concepts

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 107.

This edition applies to z/OS (product number 5694-A01).

We appreciate your comments about this publication. Comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Send your comments through this Web site: http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/
index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

© Copyright International Business Machines Corporation 2006, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

Contents

Introduction to z/OS v

Chapter 1. z/OS operating system:

Providing virtual environments since the

1960s 1

Hardware resources used by z/OS 1

Multiprogramming and multiprocessing 3

z/OS programming constructs: Modules, macros,

components and control blocks 3

Physical storage used by z/OS 4

What is virtual storage? 5

What is an address space? 6

What is dynamic address translation? 7

How z/OS uses physical and virtual storage . . 7

The role of storage managers 12

A brief history of virtual storage and 64-bit

addressability 13

What is meant by “below-the-line” storage? . . 17

What’s in an address space? 17

System address spaces and the master scheduler 19

What is workload management? 20

I/O and data management 22

Supervising the execution of work in the system . . 22

What is interrupt processing? 23

Dispatchable units of work: Tasks and service

requests 25

Preemptable versus non-preemptable units of

work 26

What does the dispatcher do? 27

Serializing the use of resources 28

Defining characteristics of z/OS 30

Additional software products for z/OS 31

Middleware for z/OS 32

A brief comparison of z/OS and UNIX 32

Chapter 2. z/OS storage constructs:

File systems, data sets, and more . . . 35

What is a data set? 36

Quick reference: Data set structure 37

Where are data sets stored? 38

What are access methods? 38

What are DASD volumes and labels? 39

Allocating a data set 40

Types of data sets 44

What happens when a data set runs out of

space? 47

What is VSAM? 48

What is a VTOC? 49

What is a catalog? 50

What is a generation data group? 53

Role of DFSMS in managing space 53

z/OS UNIX file systems 55

z/OS data sets versus file system files 56

What is a zFS file system? 57

Chapter 3. Interacting with z/OS: TSO,

ISPF, and z/OS UNIX interfaces 59

What is TSO? 59

What is TSO native mode? 60

How are CLISTs and REXX used? 62

What is ISPF? 62

ISPF keyboard keys and functions 66

The ISPF Data Set List utility 68

The ISPF editor 69

The ISPF Settings menu 71

What is z/OS UNIX? 72

ISHELL command (ish) 74

OMVS command shell session 75

Direct login to the z/OS UNIX shell 76

Chapter 4. Processing work on z/OS:

How the system starts and manages

batch jobs 79

What is batch processing? 79

What is JES? 80

What does an initiator do? 82

Batch processing and JES: Scenario 1 83

Batch processing and JES: Scenario 2 88

Job flow through the system 89

JES2 compared to JES3 91

Chapter 5. Doing work on z/OS: How

you submit, control and monitor jobs

using JCL and SDSF 93

What is JCL? 93

How is a job submitted for batch processing? . . . 95

What is the System Display and Search Facility

(SDSF)? 95

Chapter 6. Parallel Sysplex: Worth the

effort for continuous availability . . . 101

Benefits of Parallel Sysplex: No single points of

failure 101

Benefits of Parallel Sysplex: Capacity and scaling 102

Benefits of Parallel Sysplex: Dynamic workload

balancing 102

Benefits of Parallel Sysplex: Ease of use 103

Benefits of Parallel Sysplex: Single system image 104

Benefits of Parallel Sysplex: Compatible change

and non-disruptive growth 105

Benefits of Parallel Sysplex: Application

compatibility 105

Benefits of Parallel Sysplex: Disaster recovery . . 106

Notices 107

Programming interface information 108

Trademarks 109

© Copyright IBM Corp. 2006, 2008 iii

iv z/OS Basic Skills Information Center: z/OS concepts

Introduction to z/OS

As a technical professional, you need a general understanding of the mainframe

computer and its place in today’s information technology (IT) organization. z/OS

concepts is a collection of articles that provides the background knowledge and

skills necessary to begin using the basic facilities of a mainframe computer.

For optimal learning, readers are assumed to have successfully completed an

introductory course in computer system concepts, such as computer organization

and architecture, operating systems, data management, or data communications.

They should also have successfully completed courses in one or more

programming languages, and be PC literate.

Readers who will benefit from this collection of articles include data processing

professionals who have experience with non-mainframe platforms, or who are

familiar with some aspects of the mainframe but want to become knowledgeable

with other facilities and benefits of the mainframe environment. After reading this

collection, readers will have:

v A comprehensive overview of z/OS, a widely used mainframe operating system

v An understanding of mainframe workloads and an overview of the major

middleware applications in use on mainframes today

v The basis for subsequent course work in more advanced, specialized areas of

z/OS, such as system administration or application programming

© Copyright IBM Corp. 2006, 2008 v

vi z/OS Basic Skills Information Center: z/OS concepts

Chapter 1. z/OS operating system: Providing virtual

environments since the 1960s

z/OS® is known for its ability to serve thousands of users concurrently and for

processing very large workloads in a secure, reliable, and expedient manner. Its

use of multiprogramming and multiprocessing, and its ability to access and

manage enormous amounts of virtual and physical storage as well as I/O

operations, makes it ideally suited for running mainframe workloads.

The concept of virtual storage is central to z/OS. Virtual storage is an illusion

created by the architecture, in that the system seems to have more storage than it

really has. Virtual storage is created through the use of tables to map virtual

storage pages to frames in central storage or slots in auxiliary storage. Only those

portions of a program that are needed are actually loaded into central storage.

z/OS keeps the inactive pieces of address spaces in auxiliary storage.

z/OS is structured around address spaces, which are ranges of addresses in virtual

storage. Each user of z/OS gets an address space containing the same range of

storage addresses. The use of address spaces in z/OS allows for isolation of private

areas in different address spaces for system security, yet also allows for

inter-address space sharing of programs and data through a common area

accessible to every address space.

In common usage, the terms central storage, real storage, real memory, and main

storage are used interchangeably. Likewise, virtual memory and virtual storage are

synonymous. The amount of central storage needed to support the virtual storage

in an address space depends on the working set of the application being used, and

this varies over time. A user does not automatically have access to all the virtual

storage in the address space. Requests to use a range of virtual storage are checked

for size limitations and then the necessary paging table entries are constructed to

create the requested virtual storage. Programs running on z/OS and System z™

mainframes can run with 24-, 31-, or 64-bit addressing (and can switch between

these modes if needed). Programs can use a mixture of instructions with 16-bit,

32-bit, or 64-bit operands, and can switch between these if needed.

Mainframe operating systems seldom provide complete operational environments.

They depend on licensed programs for middleware and other functions. Many

vendors, including IBM®, provide middleware and various utility products.

Middleware is a relatively recent term that can embody several concepts at the

same time. A common characteristic of middleware is that it provides a

programming interface, and applications are written (or partially written) to this

interface.

Hardware resources used by z/OS

Mainframe hardware consists of processors and a multitude of peripheral devices

such as disk drives (called direct access storage devices or DASD), magnetic tape

drives, and various types of user consoles.

Tape and DASD are used for system functions and by user programs executed by

z/OS.

© Copyright IBM Corp. 2006, 2008 1

The z/OS operating system executes in a processor and resides in processor

storage during execution. z/OS is commonly referred to as the system software.

To fulfill a new order for a z/OS system, IBM ships the system code to the

customer through the Internet or (depending on customer preference) on physical

tape cartridges. At the customer site, a person such as the z/OS system

programmer receives the order and copies the new system to DASD volumes.

After the system is customized and ready for operation, system consoles are

required to start and operate the z/OS system.

The z/OS operating system is designed to make full use of the latest IBM

mainframe hardware and its many sophisticated peripheral devices. Figure 1

presents a simplified view of these mainframe concepts:

Software

The z/OS operating system consists of load modules or executable code.

During the install process, the system programmer copies these load

modules to load libraries residing on DASD volumes.

Hardware

The system hardware consists of all the devices, controllers, and processors

that constitute a mainframe environment.

Peripheral devices

These include tape drives, DASD, consoles, and many other types of

devices.

Processor storage

Often called real or central storage (or memory), this is where the z/OS

operating system executes. Also, all user programs share the use of

processor storage with the operating system.

 As a ″Big Picture″ of a typical mainframe hardware configuration, Figure 1 is far

from complete. Not shown, for example, are the hardware control units that

connect the mainframe to the other tape drives, DASD, and consoles.

Figure 1. Hardware resources used by z/OS

2 z/OS Basic Skills Information Center: z/OS concepts

Multiprogramming and multiprocessing

z/OS is capable of multiprogramming, or executing many programs concurrently,

and of multiprocessing, which is the simultaneous operation of two or more

processors that share the various hardware resources.

The earliest operating systems were used to control single-user computer systems.

In those days, the operating system would read in one job, find the data and

devices the job needed, let the job run to completion, and then read in another job.

In contrast, the computer systems that z/OS manages are capable of

multiprogramming, or executing many programs concurrently. With

multiprogramming, when a job cannot use the processor, the system can suspend,

or interrupt, the job, freeing the processor to work on another job.

z/OS makes multiprogramming possible by capturing and saving all the relevant

information about the interrupted program before allowing another program to

execute. When the interrupted program is ready to begin executing again, it can

resume execution just where it left off. Multiprogramming allows z/OS to run

thousands of programs simultaneously for users who might be working on

different projects at different physical locations around the world.

z/OS can also perform multiprocessing, which is the simultaneous operation of

two or more processors that share the various hardware resources, such as memory

and external disk storage devices.

The techniques of multiprogramming and multiprocessing make z/OS ideally

suited for processing workloads that require many input/output (I/O) operations.

Typical mainframe workloads include long-running applications that write updates

to millions of records in a database, and online applications for thousands of

interactive users at any given time.

By way of contrast, consider the operating system that might be used for a

single-user computer system. Such an operating system would need to execute

programs on behalf of one user only. In the case of a personal computer (PC), for

example, the entire resources of the machine are often at the disposal of one user.

Many users running many separate programs means that, along with large

amounts of complex hardware, z/OS needs large amounts of memory to ensure

suitable system performance. Large companies run sophisticated business

applications that access large databases and industry-strength middleware

products. Such applications require the operating system to protect privacy among

users, as well as enable the sharing of databases and software services.

Thus, multiprogramming, multiprocessing, and the need for a large amount of

memory mean that z/OS must provide function beyond simple, single-user

applications. The related concepts listed below explain the attributes that enable

z/OS to manage complex computer configurations.

z/OS programming constructs: Modules, macros, components and

control blocks

z/OS is made up of programming instructions that control the operation of the

computer system.

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 3

These instructions ensure that the computer hardware is being used efficiently and

is allowing application programs to run. z/OS includes sets of instructions that, for

example, accept work, convert work to a form that the computer can recognize,

keep track of work, allocate resources for work, execute work, monitor work, and

handle output. A group of related instructions is called a routine or module. A set

of related modules that make a particular system function possible is called a

system component. The workload management (WLM) component of z/OS, for

instance, controls system resources, while the recovery termination manager (RTM)

handles system recovery.

Sequences of instructions that perform frequently used system functions can be

invoked with executable macro instructions, or macros. z/OS macros exist for

functions such as opening and closing data files, loading and deleting programs,

and sending messages to the computer operator.

As programs execute the work of a z/OS system, they keep track of this work in

storage areas known as control block. In general, there are four types of z/OS

control blocks:

v System-related control blocks

v Resource-related control blocks

v Job-related control blocks

v Task-related control blocks

Each system-related control block represents one z/OS system and contains

system-wide information, such as how many processors are in use. Each

resource-related control block represents one resource, such as a processor or

storage device. Each job-related control block represents one job executing on the

system. Each task-related control block represents one unit of work.

Control blocks serve as vehicles for communication throughout z/OS. Such

communication is possible because the structure of a control block is known to the

programs that use it, and thus these programs can find needed information about

the unit of work or resource. Control blocks representing many units of the same

type may be chained together on queues, with each control block pointing to the

next one in the chain. The operating system can search the queue to find

information about a particular unit of work or resource, which might be:

v An address of a control block or a required routine

v Actual data, such as a value, a quantity, a parameter, or a name

v Status flags (usually single bits in a byte, where each bit has a specific meaning)

z/OS uses a huge variety of control blocks, many with very specialized purposes.

The three most commonly used control blocks are:

v Task control block (TCB), which represents a unit of work or task

v Service request block (SRB), which represents a request for a system service

v Address space control block (ASCB), which represents an address space

Physical storage used by z/OS

Conceptually, mainframes and all other computers have two types of physical

storage: Internal and external.

v Physical storage located on the mainframe processor itself. This is called

processor storage, real storage or central storage; think of it as memory for the

mainframe.

4 z/OS Basic Skills Information Center: z/OS concepts

v Physical storage external to the mainframe, including storage on direct access

devices, such as disk drives and tape drives. This storage is called paging

storage or auxiliary storage.

The primary difference between the two kinds of storage relates to the way in

which it is accessed, as follows:

v Central storage is accessed synchronously with the processor. That is, the

processor must wait while data is retrieved from central storage.

v Auxiliary storage is accessed asynchronously. The processor accesses auxiliary

storage through an input/output (I/O) request, which is scheduled to run amid

other work requests in the system. During an I/O request, the processor is free

to execute other, unrelated work.

As with memory for a personal computer, mainframe central storage is tightly

coupled with the processor itself, whereas mainframe auxiliary storage is located

on (comparatively) slower, external disk and tape drives. Because central storage is

more closely integrated with the processor, it takes the processor much less time to

access data from central storage than from auxiliary storage. Auxiliary storage,

however, is less expensive than central storage. Most z/OS installations use large

amounts of both.

What is virtual storage?

z/OS uses both types of physical storage (central and auxiliary) to enable another

kind of storage called virtual storage. In z/OS, each user has access to virtual

storage, rather than physical storage. This use of virtual storage is central to the

unique ability of z/OS to interact with large numbers of users concurrently, while

processing the largest workloads.

Virtual storage means that each running program can assume it has access to all of

the storage defined by the architecture’s addressing scheme. The only limit is the

number of bits in a storage address. This ability to use a large number of storage

locations is important because a program may be long and complex, and both the

program’s code and the data it requires must be in central storage for the processor

to access them.

z/OS supports 64-bit long addresses, which allows a program to address up to

18,446,744,073,709,600,000 bytes (16 exabytes) of storage locations. In reality, the

mainframe might have much less central storage installed. How much less

depends on the model of the computer and the system configuration.

To allow each user to act as though this much storage really exists in the computer

system, z/OS keeps only the active portions of each program in central storage. It

keeps the rest of the code and data in files called page data sets on auxiliary

storage, which usually consists of a number of high-speed direct access storage

devices (DASD).

Virtual storage, then, is this combination of real and auxiliary storage. z/OS uses a

series of tables and indexes to relate locations on auxiliary storage to locations in

central storage. It uses special settings (bit settings) to keep track of the identity

and authority of each user or program. z/OS uses a variety of storage manager

components to manage virtual storage.

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 5

Mainframe workers use the terms central storage, real memory, real storage, and

main storage interchangeably. Likewise, they use the terms virtual memory and

virtual storage synonymously.

What is an address space?

The range of virtual addresses that the operating system assigns to a user or

separately running program is called an address space. This is the area of

contiguous virtual addresses available for executing instructions and storing data.

The range of virtual addresses in an address space starts at zero and can extend to

the highest address permitted by the operating system architecture.

z/OS provides each user with a unique address space and maintains the

distinction between the programs and data belonging to each address space.

Within each address space, the user can start multiple tasks, using task control

blocks or TCBs that allow multiprogramming.

In some ways a z/OS address space is like a UNIX® process, and the address space

identifier (ASID) is like a process ID (PID). Further, TCBs are like UNIX threads in

that each operating system supports processing multiple instances of work

concurrently.

However, the use of multiple virtual address spaces in z/OS holds some special

advantages. Virtual addressing permits an addressing range that is greater than the

central storage capabilities of the system. The use of multiple virtual address

spaces provides this virtual addressing capability to each job in the system by

assigning each job its own separate virtual address space. The potentially large

number of address spaces provides the system with a large virtual addressing

capacity.

With multiple virtual address spaces, errors are confined to one address space,

except for errors in commonly addressable storage, thus improving system

reliability and making error recovery easier. Programs in separate address spaces

are protected from each other. Isolating data in its own address space also protects

the data.

z/OS uses many address spaces. There is at least one address space for each job in

progress and one address space for each user logged on through TSO, telnet, rlogin

or FTP (users logged on z/OS through a major subsystem, such as CICS® or IMS™,

are using an address space belonging to the subsystem, not their own address

spaces). There are many address spaces for operating system functions, such as

operator communication, automation, networking, security, and so on.

The use of address spaces allows z/OS to maintain the distinction between the

programs and data belonging to each address space. The private areas in one

user’s address space are isolated from the private areas in other address spaces,

and this address space isolation provides much of the operating system’s security.

Yet, each address space also contains a common area that is accessible to every

other address space. Because it maps all of the available addresses, an address

space includes system code and data as well as user code and data. Thus, not all of

the mapped addresses are available for user code and data.

The ability of many users to share the same resources implies the need to protect

users from one another and to protect the operating system itself. Along with such

6 z/OS Basic Skills Information Center: z/OS concepts

methods as ″keys″ for protecting central storage and code words for protecting

data files and programs, separate address spaces ensure that users’ programs and

data do not overlap.

In a multiple virtual address space environment, applications need ways to

communicate between address spaces. z/OS provides two methods of

inter-address space communication:

v Scheduling a service request block (SRB), an asynchronous process

v Using cross-memory services and access registers, a synchronous process

A program uses an SRB to initiate a process in another address space or in the

same address space. The SRB is asynchronous in nature and runs independently of

the program that issues it, thereby improving the availability of resources in a

multiprocessing environment.

A program uses cross-memory services to access another user’s address spaces

directly. You might compare z/OS cross-memory services to the UNIX Shared

Memory functions, which can be used on UNIX without special authority. Unlike

UNIX, however, z/OS cross-memory services require the issuing program to have

special authority, controlled by the authorized program facility (APF). This method

allows efficient and secure access to data owned by others, data owned by the user

but stored in another address space for convenience, and for rapid and secure

communication with services like transaction managers and database managers.

What is dynamic address translation?

Dynamic address translation, or DAT, is the process of translating a virtual address

during a storage reference into the corresponding real address.

If the virtual address is already in central storage, the DAT process may be

accelerated through the use of a translation lookaside buffer. If the virtual address

is not in central storage, a page fault interrupt occurs, z/OS is notified and brings

the page in from auxiliary storage.

Looking at this process more closely reveals that the machine can present any one

of a number of different types of faults. A type, region, segment, or page fault will

be presented depending on at which point in the DAT structure invalid entries are

found. The faults repeat down the DAT structure until ultimately a page fault is

presented and the virtual page is brought into central storage either for the first

time (there is no copy on auxiliary storage) or by bringing the page in from

auxiliary storage.

DAT is implemented by both hardware and software through the use of page

tables, segment tables, region tables and translation lookaside buffers. DAT allows

different address spaces to share the same program or other data that is for read

only. This is because virtual addresses in different address spaces can be made to

translate to the same frame of central storage. Otherwise, there would have to be

many copies of the program or data, one for each address space.

How z/OS uses physical and virtual storage

By bringing pieces of the program into central storage only when the processor is

ready to execute them, z/OS can execute more and larger programs concurrently.

For a processor to execute a program instruction, both the instruction and the data

it references must be in central storage. The convention of early operating systems

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 7

was to have the entire program reside in central storage when its instructions were

executing. However, the entire program does not really need to be in central

storage when an instruction executes. Instead, by bringing pieces of the program

into central storage only when the processor is ready to execute them--moving

them out to auxiliary storage when it doesn’t need them, an operating system can

execute more and larger programs concurrently.

How does the operating system keep track of each program piece? How does it

know whether it is in central storage or auxiliary storage, and where? It is

important for z/OS professionals to understand how the operating system makes

this happen.

Physical storage is divided into areas, each the same size and accessible by a

unique address. In central storage, these areas are called frames; in auxiliary

storage, they are called slots. Similarly, the operating system can divide a program

into pieces the size of frames or slots and assign each piece a unique address. This

arrangement allows the operating system to keep track of these pieces. In z/OS,

the program pieces are called pages.

Pages are referenced by their virtual addresses and not by their real addresses.

From the time a program enters the system until it completes, the virtual address

of the page remains the same, regardless of whether the page is in central storage

or auxiliary storage. Each page consists of individual locations called bytes, each of

which has a unique virtual address.

How virtual storage addressing works in z/OS

z/OS manages address spaces in units of various sizes; these units are tracked in a

virtual address.

Virtual storage is an illusion created by the architecture, in that the system seems

to have more memory than it really has. Each user or program gets an address

space, and each address space contains the same range of storage addresses. Only

those portions of the address space that are needed at any point in time are

actually loaded into central storage. z/OS keeps the inactive pieces of address

spaces in auxiliary storage. z/OS manages address spaces in units of various sizes,

as follows:

v Page address spaces are divided into 4-kilobyte units of virtual storage called

pages.

v Segment address spaces are divided into 1-megabyte units called segments. A

segment is a block of sequential virtual addresses spanning megabytes,

beginning at a 1-megabyte boundary. A 2-gigabyte address space, for example,

consists of 2048 segments.

v Region address spaces are divided into 2-8 gigabyte units called regions. A

region is a block of sequential virtual addresses spanning 2-8 gigabytes,

beginning at a 2-gigabyte boundary. A 2-terabyte address space, for example,

consists of 2048 regions.

v A virtual address, accordingly, is divided into four principal fields: Bits 0-32 are

called the region index (RX), bits 33-43 are called the segment index (SX), bits

44-51 are called the page index (PX), and bits 52-63 are called the byte index

(BX).

A virtual address has the format shown in Figure 2 on page 9.

8 z/OS Basic Skills Information Center: z/OS concepts

As determined by its address-space-control element, a virtual address space can be

a 2-gigabyte space consisting of one region, or as large as a 16-exabyte space. The

RX part of a virtual address for a 2-gigabyte address space must be all zeros;

otherwise, an exception is recognized.

The RX part of a virtual address is itself divided into three fields. Bits 0-10 are

called the region first index (RFX), bits 11-21 are called the region second index

(RSX), and bits 22-32 are called the region third index (RTX). Bits 0-32 of the virtual

address have the format shown in Figure 3.

 A virtual address in which the RTX is the left most significant part (a 42-bit

address) is capable of addressing 4 terabytes (4096 regions), one in which the RSX

is the left most significant part (a 53-bit address) is capable of addressing 8

petabytes (four million regions), and one in which the RFX is the left most

significant part (a 64-bit address) is capable of addressing 16 exabytes (8 billion

regions).

What is paging?

When a program is selected for execution, the system brings it into virtual storage,

divides it into pages of four kilobytes, transfers the pages into central storage for

execution. To the programmer, the entire program appears to occupy contiguous

space in storage at all times. Actually, not all pages of a program are necessarily in

central storage, and the pages that are in central storage do not necessarily occupy

contiguous space.

The pieces of a program executing in virtual storage must be moved between real

and auxiliary storage. To allow this, z/OS manages storage in units, or blocks, of

four kilobytes. The following blocks are defined:

v A block of central storage is a frame.

v A block of virtual storage is a page.

Figure 2. Virtual address format

Figure 3. RX field format

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 9

v A block of auxiliary storage is a slot.

A page, a frame, and a slot are all the same size: Four kilobytes. An active virtual

storage page resides in a central storage frame. A virtual storage page that becomes

inactive resides in an auxiliary storage slot (in a paging data set). Figure 4 shows

the relationship of pages, frames, and slots.

In Figure 4, z/OS is performing paging for a program running in virtual storage.

The lettered boxes represent parts of the program. In this simplified view, program

parts A, E, F, and H are active and running in central storage frames, while parts

B, C, D, and G are inactive and have been moved to auxiliary storage slots. All of

the program parts, however, reside in virtual storage and have virtual storage

addresses.

 z/OS uses a series of tables to determine whether a page is in real or auxiliary

storage, and where. To find a page of a program, z/OS checks the table for the

virtual address of the page, rather than searching through all of physical storage

for it. z/OS then transfers the page into central storage or out to auxiliary storage

as needed. This movement of pages between auxiliary storage slots and central

storage frames is called paging. Paging is key to understanding the use of virtual

storage in z/OS.

z/OS paging is transparent to the user. During job execution, only those pieces of

the application that are required are brought in, or paged in, to central storage.

The pages remain in central storage until no longer needed, or until another page

is required by the same application or a higher-priority application and no empty

central storage is available. To select pages for paging out to auxiliary storage,

z/OS follows a ″Least Used″ algorithm. That is, z/OS assumes that a page that has

not been used for some time will probably not be used in the near future.

How paging works in z/OS

In addition to the DAT hardware and the segment and page tables required for

address translation, paging activity involves a number of system components to

handle the movement of pages and several additional tables to keep track of the

most current version of each page.

To understand how paging works, assume that DAT encounters an invalid page

table entry during address translation, indicating that a page is required that is not

in a central storage frame. To resolve this page fault, the system must bring the

page in from auxiliary storage. First, however, it must locate an available central

storage frame. If none is available, the request must be saved and an assigned

frame freed. To free a frame, the system copies its contents to auxiliary storage and

marks its corresponding page table entry as invalid. This operation is called a

page-out.

Figure 4. Frames, pages, and slots

10 z/OS Basic Skills Information Center: z/OS concepts

After a frame is located for the required page, the contents of the page are copied

from auxiliary storage to central storage and the page table invalid bit is set off.

This operation is called a page-in.

Paging can also take place when z/OS loads an entire program into virtual

storage. z/OS obtains virtual storage for the user program and allocates a central

storage frame to each page. Each page is then active and subject to the normal

paging activity; that is, the most active pages are retained in central storage while

the pages not currently active might be paged out to auxiliary storage.

z/OS tries to keep an adequate supply of available central storage frames on hand.

When a program refers to a page that is not in central storage, z/OS uses a central

storage page frame from a supply of available frames.

When this supply becomes low, z/OS uses page stealing to replenish it, that is, it

takes a frame assigned to an active user and makes it available for other work. The

decision to steal a particular page is based on the activity history of each page

currently residing in a central storage frame. Pages that have not been active for a

relatively long time are good candidates for page stealing.

z/OS uses a sophisticated paging algorithm to efficiently manage virtual storage

based on which pages were most recently used. An unreferenced interval count

indicates how long it has been since a program referenced the page. At regular

intervals, the system checks the reference bit for each page frame. If the reference

bit is off– that is, the frame has not been referenced– the system adds to the

frame’s unreferenced interval count. It adds the number of seconds since this

address space last had the reference count checked. If the reference bit is on, the

frame has been referenced and the system turns it off and sets the unreferenced

interval count for the frame to zero. Frames with the highest unreferenced interval

counts are the ones most likely to be stolen.

Swapping and the working set

Swapping is the process of transferring all of the pages of an address space

between central storage and auxiliary storage.

A swapped-in address space is active, having pages in central storage frames and

pages in auxiliary storage slots. A swapped-out address space is inactive; the

address space resides on auxiliary storage and cannot execute until it is swapped

in.

While only a subset of the address space’s pages (known as its working set) would

likely be in central storage at any time, swapping effectively moves the entire

address space. It is one of several methods that z/OS uses to balance the system

workload and ensure that an adequate supply of available central storage frames is

maintained.

Swapping is performed by the System Resource Manager (SRM) component, in

response to recommendations from the Workload Manager (WLM) component.

What is storage protection?

Many programs and users are competing for the use of the system. So how does

z/OS preserves the integrity of each user’s work? One technique is through the use

of multiple storage protect keys.

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 11

Under z/OS, the information in central storage is protected from unauthorized use

by means of multiple storage protect keys. A control field in storage called a key is

associated with each 4K frame of central storage.

When a request is made to modify the contents of a central storage location, the

key associated with the request is compared to the storage protect key. If the keys

match or the program is executing in key 0, the request is satisfied. If the key

associated with the request does not match the storage key, the system rejects the

request and issues a program exception interruption.

When a request is made to read (or fetch) the contents of a central storage location,

the request is automatically satisfied unless the fetch protect bit is on, indicating

that the frame is fetch-protected. When a request is made to access the contents of

a fetch-protected central storage location, the key in storage is compared to the key

associated with the request. If the keys match, or the requestor is in key 0, the

request is satisfied. If the keys do not match, and the requestor is not in key 0, the

system rejects the request and issues a program exception interruption.

z/OS uses 16 storage protect keys. A specific key is assigned according to the type

of work being performed. The key is stored in bits 8 through 11 of the program

status word (PSW). A PSW is assigned to each job in the system.

Storage protect keys 0 through 7 are used by the z/OS base control program (BCP)

and various subsystems and middleware products. Storage protect key 0 is the

master key. Its use is restricted to those parts of the BCP that require almost

unlimited store and fetch capabilities. In almost any situation, a storage protect key

of 0 associated with a request to access or modify the contents of a central storage

location means that the request will be satisfied.

Storage protect keys 8 through 15 are assigned to users. Because all users are

isolated in private address spaces, most users– those whose programs run in a

virtual region– can use the same storage protect key. These users are called V=V

(virtual = virtual) users and are assigned a key of 8.

The role of storage managers

Central storage frames and auxiliary storage slots, and the virtual storage pages

that they support, are managed by separate components of z/OS. These

components are known as the real storage manager (not central storage manager),

the auxiliary storage manager, and the virtual storage manager.

Real storage manager

The real storage manager or RSM keeps track of the contents of central

storage. It manages the paging activities– such as page-in, page-out, and

page stealing– and helps with swapping an address space in or out. RSM

also performs page fixing, which is marking pages as unavailable for

stealing.

Auxiliary storage manager

The auxiliary storage manager or ASM uses the system’s page data sets to

keep track of auxiliary storage slots. Specifically:

v Slots for virtual storage pages that are not in central storage frames

v Slots for pages that do not occupy frames but, because the frame’s

contents have not been changed, the slots are still valid.

When a page-in or page-out is required, ASM works with RSM to locate

the proper central storage frames and auxiliary storage slots.

12 z/OS Basic Skills Information Center: z/OS concepts

Virtual storage manager

The virtual storage manager or VSM responds to requests to obtain and

free virtual storage. VSM also manages storage allocation for any program

that must run in real, rather than virtual storage. Real storage is allocated

to code and data when they are loaded in virtual storage. As they run,

programs can request more storage by means of a system service, such as

the GETMAIN macro. Programs can release storage with the FREEMAIN

macro.

 VSM keeps track of the map of virtual storage for each address space. In

so doing, it sees an address space as a collection of 256 subpools, which

are logically related areas of virtual storage identified by the numbers 0 to

255. Being logically related means the storage areas within a subpool share

characteristics such as:

v Storage protect key

v Whether they are fetch protected, pageable, or swappable

v Where they must reside in virtual storage (above or below 16

megabytes)

v Whether they can be shared by more than one task

Some subpools (numbers 128 to 255) are predefined by use by system

programs. Subpool 252, for example, is for programs from authorized

libraries. Others (numbered 0 to 127) are defined by user programs.

A brief history of virtual storage and 64-bit addressability

In 1970, IBM introduced System/370™, the first of its architectures to use virtual

storage and address spaces. Since that time, the operating system has changed in

many ways. One key area of growth and change is addressability.

A program running in an address space can reference all of the storage associated

with that address space. A program’s ability to reference all of the storage

associated with an address space is called addressability.

System/370 defined storage addresses as 24 bits in length, which meant that the

highest accessible address was 16,777,215 bytes (or 224-1 bytes). The use of 24-bit

addressability allowed MVS/370, the operating system at that time, to allot to each

user an address space of 16 megabytes. Over the years, as MVS/370 gained more

functions and was asked to handle more complex applications, even access to 16

megabytes of virtual storage fell short of user needs.

With the release of the System/370-XA architecture in 1983, IBM extended the

addressability of the architecture to 31 bits. With 31-bit addressing, the operating

system (now called MVS™ Extended Architecture or MVS/XA™) increased the

addressability of virtual storage from 16 MB to 2 gigabytes (2 GB). In other words,

MVS/XA provided an address space for users that was 128 times larger than the

address space provided by MVS/370. The 16 MB address became the dividing

point between the two architectures and is commonly called the line (see Figure 5

on page 14).

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 13

The new architecture did not require customers to change existing application

programs. To maintain compatibility for existing programs, MVS/XA remained

compatible for programs originally designed to run with 24-bit addressing on

MVS/370, while allowing application developers to write new programs to exploit

the 31-bit technology.

To preserve compatibility between the different addressing schemes, MVS/XA did

not use the high-order bit of the address (Bit 0) for addressing. Instead, MVS/XA

reserved this bit to indicate how many bits would be used to resolve an address:

31-bit addressing (Bit 0 on) or 24-bit addressing (Bit 0 off).

With the release of zSeries® mainframes in 2000, IBM further extended the

addressability of the architecture to 64 bits. With 64-bit addressing, the potential

size of a z/OS address space expands to a size so vast we need new terms to

describe it. Each address space, called a 64-bit address space, is 16 exabytes (EB) in

size; an exabyte is slightly more than one billion gigabytes. The new address space

has logically 264 addresses. It is 8 billion times the size of the former 2-gigabyte

address space, or 18,446,744,073,709,600,000 bytes (Figure 6 on page 15).

Figure 5. 31-bit addressability allows for 2-gigabyte address spaces in MVS/XA

14 z/OS Basic Skills Information Center: z/OS concepts

We say that the potential size is 16 exabytes because z/OS, by default, continues to

create address spaces with a size of 2 gigabytes. The address space exceeds this

limit only if a program running in it allocates virtual storage above the 2-gigabyte

address. If so, z/OS increases the storage available to the user from two gigabytes

to 16 exabytes.

A program running on z/OS and the zSeries mainframe can run with 24-, 31-, or

64-bit addressing (and can switch among these if needed). To address the high

virtual storage available with the 64-bit architecture, the program uses

64-bit-specific instructions. Although the architecture introduces unique 64-bit

exploitation instructions, the program can use both 31-bit and 64-bit instructions,

as needed.

For compatibility, the layout of the storage areas for an address space is the same

below 2 gigabytes, providing an environment that can support both 24-bit and

31-bit addressing. The area that separates the virtual storage area below the

2-gigabyte address from the user private area is called the bar, as shown in

Figure 7 on page 16. The user private area is allocated for application code rather

than operating system code.

Figure 6. 64-bit addressability allows for 16 exabytes of addressable storage

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 15

0 to 231

The layout is the same; see Figure 7.

231 to 232

From 2 GB to 4 GB is considered the bar. Below the bar can be addressed

with a 31-bit address. Above the bar requires a 64-bit address.

232 - 241

The low non-shared area (user private area) starts at 4 GB and extends to

241 .

241 - 250

Shared area (for storage sharing) starts at 241 and extends to 250 or higher,

if requested.

250 - 264

High non-shared area (user private area) starts at 250 or wherever the

shared area ends, and goes to 264.

 In a 16-exabyte address space with 64-bit virtual storage addressing, there are three

additional levels of translation tables, called region tables: Region third table (R3T),

region second table (R2T), and region first table (R1T). The region tables are 16 KB

in length, and there are 2048 entries per table. Each region has 2 GB.

Segment tables and page table formats remain the same as for virtual addresses

below the bar. When translating a 64-bit virtual address, once the system has

identified the corresponding 2-GB region entry that points to the segment table, the

process is the same as that described previously.

Figure 7. Storage map for a 64-bit address space

16 z/OS Basic Skills Information Center: z/OS concepts

What is meant by “below-the-line” storage?

z/OS programs and data reside in virtual storage that, when necessary, is backed

by central storage. Most programs and data do not depend on their real addresses.

Some z/OS programs, however, do depend on real addresses and some require

these real addresses to be less than 16 megabytes. z/OS programmers refer to this

storage as being ″below the 16-megabyte line.″

In z/OS, a program’s attributes include one called residence mode or RMODE,

which specifies whether the program must reside (be loaded) in storage below 16

megabytes. A program with RMODE(24) must reside below 16 megabytes, while a

program with RMODE(31) can reside anywhere in virtual storage.

Examples of programs that require below-the-line storage include any program

that allocates a data control block (DCB). Those programs, however, often can be

31-bit residency mode or RMODE(31) as they can run in 31-bit addressing mode or

AMODE(31). z/OS reserves as much central storage below 16 megabytes as it can

for such programs and, for the most part, handles their central storage

dependencies without requiring them to make any changes.

Thousands of programs in use today are AMODE(24) and therefore RMODE(24).

Every program written before MVS/XA was available, and not subsequently

changed, has that characteristic. There are relatively few reasons these days why a

new program might need to be AMODE(24), so a new application likely has next

to nothing that is RMODE(24).

What’s in an address space?

One way of thinking of an address space is as a programmer’s map of the virtual

storage available for code and data. An address space provides each programmer

with access to all of the addresses available through the computer architecture.

z/OS provides each user with a unique address space and maintains the

distinction between the programs and data belonging to each address space.

Because it maps all of the available addresses, however, an address space includes

system code and data as well as user code and data. Thus, not all of the mapped

addresses are available for user code and data.

Understanding the division of storage areas in an address space is made easier

with a diagram. The diagram shown in Storage areas in an address space shows

how an address space maintains the distinction between programs and data

belonging to the user, and those belonging to the operating system.

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 17

Figure 8 shows the major storage areas in each address space. These are described

briefly as follows:

All storage above 2 GB

This area is called high virtual storage and is addressable only by

programs running in 64-bit mode. It is divided by the high virtual shared

area, which is an area of installation-defined size that can be used to

establish cross-address space viewable connections to obtained areas within

this area.

Extended areas above 16 MB

This range of areas, which lies above the 16 MB line but below the 2 GB

bar, is a kind of ″mirror image″ of the common area below 16 MB. They

have the same attributes as their equivalent areas below the line, but

because of the additional storage above the 16 MB line, their sizes are

much larger.

Nucleus

This is a key 0, read-only area of common storage that contains operating

system control programs.

SQA This area contains system level (key 0) data accessed by multiple address

spaces. The SQA area is not pageable (fixed), which means that it resides in

central storage until it is freed by the requesting program. The size of the

SQA area is predefined by the installation and cannot change while the

operating system is active. Yet it has the unique ability to ″overflow″ into

the CSA area as long as there is unused CSA storage that can be converted

to SQA.

PLPA/FLPA/MLPA

This area contains the link pack areas (the pageable link pack area, fixed

Figure 8. Storage areas in an address space

18 z/OS Basic Skills Information Center: z/OS concepts

link pack area, and modified link pack area), which contain system level

programs that are often run by multiple address spaces. For this reason,

the link pack areas reside in the common area which is addressable by

every address space, therefore eliminating the need for each address space

to have its own copy of the program. This storage area is below the 16 MB

line and is therefore addressable by programs running in 24-bit mode.

CSA This portion of common area storage (addressable by all address spaces) is

available to all applications. The CSA is often used to contain data

frequently accessed by multiple address spaces. The size of the CSA area is

established at system initialization time (IPL) and cannot change while the

operating system is active.

LSQA/SWA/subpool 228/subpool 230

This assortment of subpools, each with specific attributes, is used primarily

by system functions when the functions require address space level storage

isolation. Being below the line, these areas are addressable by programs

running in 24-bit mode.

User Region

This area is obtainable by any program running in the user’s address

space, including user key programs. It resides below the 16 MB line and is

therefore addressable by programs running in 24-bit mode.

System Region

This small area (usually only four pages) is reserved for use by the region

control task of each address space.

Prefixed Save Area (PSA)

This area is often referred to as ″low core.″ The PSA is a common area of

virtual storage from address zero through 8191 in every address space.

There is one unique PSA for every processor installed in a system. The

PSA maps architecturally fixed hardware and software storage locations for

the processor. Because there is a unique PSA for each processor, from the

view of a program running on z/OS, the contents of the PSA can change

any time the program is dispatched on a different processor. This feature is

unique to the PSA area and is accomplished through a unique DAT

manipulation technique called prefixing.

 Given the vast range of addressable storage in an address space, the drawing in

Figure 8 on page 18 is not to scale.

Each address space in the system is represented by an address space control block

or ASCB. To represent an address space, the system creates an ASCB in common

storage (system queue area or SQA), which makes it accessible to other address

spaces.

System address spaces and the master scheduler

Many z/OS system functions run in their own address spaces. The master

scheduler subsystem, for example, runs in the address space called *MASTER* and

is used to establish communication between z/OS and its own address spaces.

When you start z/OS, master initialization routines initialize system services, such

as the system log and communication task, and start the master scheduler address

space. Then, the master scheduler may start the job entry subsystem (JES2 or JES3).

JES is the primary job entry subsystem. On many production systems JES is not

started immediately; instead, the automation package starts all tasks in a controlled

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 19

sequence. Then other subsystems are started. Subsystems are defined in a special

file of system settings called a parameter library or PARMLIB. These subsystems

are secondary subsystems.

Each address space created has a number associated with it, called the address

space ID (or ASID). Because the master scheduler is the first address space created

in the system, it becomes address space number 1 (ASID=1). Other system address

spaces are then started during the initialization process of z/OS.

At this point, you need only understand that z/OS and its related subsystems

require address spaces of their own to provide a functioning operating system. A

short description of each type of address space follows:

System

z/OS system address spaces are started after initialization of the master

scheduler. These address spaces perform functions for all the other types of

address spaces that start in z/OS.

Subsystem

z/OS requires the use of various subsystems, such as a primary job entry

subsystem or JES. Also, there are address spaces for middleware products

such as DB2®, CICS, and IMS.

 Besides system address spaces, there are, of course, typically many address spaces

for users and separately running programs; for example:

v TSO/E address spaces are created for every user who logs on to z/OS.

v An address space is created for every batch job that runs on z/OS. Batch job

address spaces are started by JES.

What is workload management?

For z/OS, the management of system resources is the responsibility of the

workload management (WLM) component. WLM manages the processing of

workloads in the system according to the company’s business goals, such as

response time. WLM also manages the use of system resources, such as processors

and storage, to accomplish these goals.

In simple terms, WLM has three objectives:

v To achieve the business goals that are defined by the installation, by

automatically assigning sysplex resources to workloads based on their

importance and goals. This objective is known as goal achievement.

v To achieve optimal use of the system resources from the system point of view.

This objective is known as throughput.

v To achieve optimal use of system resources from the point of view of the

individual address space. This objective is known as response and turnaround

time.

Goal achievement is the first and most important task of WLM. Optimizing

throughput and minimizing turnaround times of address spaces come after that.

Often, these latter two objectives are contradictory. Optimizing throughput means

keeping resources busy. Optimizing response and turnaround time, however,

requires resources to be available when they are needed. Achieving the goal of an

important address space might result in worsening the turnaround time of a less

important address space. Thus, WLM must make decisions that represent trade-offs

between conflicting objectives.

20 z/OS Basic Skills Information Center: z/OS concepts

To balance throughput with response and turnaround time, WLM does the

following:

v Monitors the use of resources by the various address spaces.

v Monitors the system-wide use of resources to determine whether they are fully

utilized.

v Determines which address spaces to swap out (and when).

v Inhibits the creation of new address spaces or steals pages when certain

shortages of central storage exist.

v Changes the dispatching priority of address spaces, which controls the rate at

which the address spaces are allowed to consume system resources.

v Selects the devices to be allocated, if a choice of devices exists, to balance the use

of I/O devices.

Other z/OS components, transaction managers, and database managers can

communicate to WLM a change in status for a particular address space (or for the

system as a whole), or to invoke WLM’s decision-making power.

For example, WLM is notified when:

v Central storage is configured into or out of the system.

v An address space is to be created.

v An address space is deleted.

v A swap-out starts or completes.

v Allocation routines can choose the devices to be allocated to a request.

Up to this point, we have discussed WLM only in the context of a single z/OS

system. In real life, customer installations often use clusters of multiple z/OS

systems in concert to process complex workloads. Parallel Sysplex® is the term

used to refer to clustered z/OS systems.

WLM is particularly well-suited to a sysplex environment. It keeps track of system

utilization and workload goal achievement across all the systems in the Parallel

Sysplex and data sharing environments. For example, WLM can decide the z/OS

system on which a batch job should run, based on the availability of resources to

process the job quickly.

A mainframe installation can influence almost all decisions made by WLM by

establishing a set of policies that allow an installation to closely link system

performance to its business needs. Workloads are assigned goals (for example, a

target average response time) and an importance (that is, how important it is to the

business that a workload meet its goals).

Before the introduction of WLM, the only way to inform z/OS about the

company’s business goals was for the system programmer to translate from

high-level objectives into the extremely technical terms that the system can

understand. This translation required highly skilled staff, and could be protracted,

error-prone, and eventually in conflict with the original business goals.

Further, it was often difficult to predict the effects of changing a system setting,

which might be required, for example, following a system capacity increase. This

difficulty could result in unbalanced resource allocation, in which work is deprived

of a critical system resource. This way of operating, called compatibility mode, was

becoming unmanageable as new workloads were introduced, and as multiple

systems were being managed together.

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 21

When in goal mode system operation, WLM provides fewer, simpler, and more

consistent system externals that reflect goals for work expressed in terms

commonly used in business objectives, and WLM and System Resource Manager

(SRM) match resources to meet those goals by constantly monitoring and adapting

the system. Workload Manager provides a solution for managing workload

distribution, workload balancing, and distributing resources to competing

workloads.

WLM policies are often based on a service level agreement (SLA), which is a

written agreement of the information systems (I/S) service to be provided to the

users of a computing installation. WLM tries to achieve the needs of workloads

(response time) as described in an SLA by attempting the appropriate distribution

of resources without over-committing them. Equally important, WLM maximizes

system use (throughput) to deliver maximum benefit from the installed hardware

and software platform.

I/O and data management

Nearly all work in the system involves data input or data output. In a mainframe,

the channel subsystem manages the use of I/O devices, such as disks, tapes, and

printers.

The operating system must associate the data for a given task with a device, and

manage file allocation, placement, monitoring, migration, backup, recall, recovery,

and deletion.

These data management activities can be done either manually or through the use

of automated processes. When data management is automated, the system

determines object placement, and automatically manages object backup, movement,

space, and security. A typical z/OS production system includes both manual and

automated processes for managing data.

Depending on how a z/OS system and its storage devices are configured, a user or

program can directly control many aspects of data management, and in the early

days of the operating system, users were required to do so. Increasingly, however,

z/OS installations rely on installation-specific settings for data and resource

management, and add-on storage management products to automate the use of

storage. The primary means of managing storage in z/OS is with the Data Facility

Storage Management Subsystem (DFSMS™), which comprises a suite of related

data and storage management products.

Supervising the execution of work in the system

z/OS uses several types of supervisor controls to enable multiprogramming.

These supervisor controls include:

Interrupt processing

Multiprogramming requires that there be some technique for switching

control from one routine to another so that, for example, when routine A

must wait for an I/O request to be satisfied, routine B can execute. In

z/OS, this switch is achieved by interrupts, which are events that alter the

sequence in which the processor executes instructions. When an interrupt

occurs, the system saves the execution status of the interrupted routine and

analyzes and processes the interrupt.

22 z/OS Basic Skills Information Center: z/OS concepts

Creating dispatchable units of work

To identify and keep track of its work, the z/OS operating system

represents each unit of work with a control block. Two types of control

blocks represent dispatchable units of work: Task control blocks or TCBs

represent tasks executing within an address space; service request blocks

or SRBs represent higher priority system services.

Dispatching work

After interrupts are processed, the operating system determines which unit

of work (of all the units of work in the system) is ready to run and has the

highest priority, and passes control to that unit of work.

Serializing the use of resources

In a multiprogramming system, almost any sequence of instructions can be

interrupted, to be resumed later. If that set of instructions manipulates or

modifies a resource (for example, a control block or a data file), the

operating system must prevent other programs from using the resource

until the interrupted program has completed its processing of the resource.

 Several techniques exist for serializing the use of resources; enqueuing and

locking are the most common (a third technique is called latching). All

users can use enqueuing, but only authorized routines can use locking to

serialize the use of resources.

What is interrupt processing?

An interrupt is an event that alters the sequence in which the processor executes

instructions.

An interrupt might be planned (specifically requested by the currently running

program) or unplanned (caused by an event that might or might not be related to

the currently running program). z/OS uses six types of interrupts, as follows:

Supervisor calls or SVC interrupts

These interrupts occur when the program issues an SVC to request a

particular system service. An SVC interrupts the program being executed

and passes control to the supervisor so that it can perform the service.

Programs request these services through macros such as OPEN (open a

file), GETMAIN (obtain storage), or WTO (write a message to the system

operator).

I/O interrupts

These interrupts occur when the channel subsystem signals a change of

status, such as an input/output (I/O) operation completing, an error

occurring, or an I/O device such as a printer has become ready for work.

External interrupts

These interrupts can indicate any of several events, such as a time interval

expiring, the operator pressing the interrupt key on the console, or the

processor receiving a signal from another processor.

Restart interrupts

These interrupts occur when the operator selects the restart function at the

console or when a restart SIGP (signal processor) instruction is received

from another processor.

Program interrupts

These interrupts are caused by program errors (for example, the program

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 23

attempts to perform an invalid operation), page faults (the program

references a page that is not in central storage), or requests to monitor an

event.

Machine check interrupts

These interrupts are caused by machine malfunctions.

 When an interrupt occurs, the hardware saves pertinent information about

the program that was interrupted and, if possible, disables the processor

for further interrupts of the same type. The hardware then routes control to

the appropriate interrupt handler routine. The program status word or

PSW is a key resource in this process.

 The program status word (PSW) is a 128-bit data area in the processor that, along

with a variety of other types of registers (control registers, timing registers, and

prefix registers) provides details crucial to both the hardware and the software. The

current PSW includes the address of the next program instruction and control

information about the program that is running. Each processor has only one

current PSW. Thus, only one task can execute on a processor at a time.

The PSW controls the order in which instructions are fed to the processor, and

indicates the status of the system in relation to the currently running program.

Although each processor has only one PSW, it is useful to think of three types of

PSWs to understand interrupt processing:

v Current PSW

v New PSW

v Old PSW

The current PSW indicates the next instruction to be executed. It also indicates

whether the processor is enabled or disabled for I/O interrupts, external interrupts,

machine check interrupts, and certain program interrupts. When the processor is

enabled, these interrupts can occur. When the processor is disabled, these

interrupts are ignored or remain pending.

There is a new PSW and an old PSW associated with each of the six types of

interrupts. The new PSW contains the address of the routine that can process its

associated interrupt. If the processor is enabled for interrupts when an interrupt

occurs, PSWs are switched using the following technique:

1. Storing the current PSW in the old PSW associated with the type of interrupt

that occurred.

2. Loading the contents of the new PSW for the type of interrupt that occurred

into the current PSW.

The current PSW, which indicates the next instruction to be executed, now contains

the address of the appropriate routine to handle the interrupt. This switch has the

effect of transferring control to the appropriate interrupt handling routine.

Mainframe architecture provides registers to keep track of things. The PSW, for

example, is a register used to contain information that is required for the execution

of the currently active program.

Mainframes provide other registers, as follows:

Access registers

These registers specify the address space in which data is found.

24 z/OS Basic Skills Information Center: z/OS concepts

General registers

These registers address data in storage, and also hold user data.

Floating point registers

These registers hold numeric data in floating point form.

Control registers

These registers are used by the operating system itself, for example, as

references to translation tables.

 Figure 9 shows the use of registers and the PSW.

Dispatchable units of work: Tasks and service requests

In z/OS, dispatchable units of work are represented by two kinds of control

blocks: Task and service request blocks.

Task control blocks (TCBs)

These control blocks represent tasks executing within an address space,

such as user programs and system programs that support the user

programs.

 A TCB contains information about the running task, such as the address of

any storage areas it has created. Do not confuse the z/OS term TCB with

the UNIX data structure called a process control block or PCB.

TCBs are created in response to an ATTACH macro. By issuing the

ATTACH macro, a user program or system routine begins the execution of

the program specified on the ATTACH macro, as a subtask of the attacher’s

task. As a subtask, the specified program can compete for processor time

and can use certain resources already allocated to the attacher’s task.

Figure 9. Registers and the PSW

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 25

The region control task (RCT), which is responsible for preparing an

address space for swap-in and swap-out, is the highest priority task in an

address space. All tasks within an address space are subtasks of the RCT.

Service request blocks (SRBs)

These control blocks represent requests to execute a system service routine.

SRBs are typically created when one address space detects an event that

affects a different address space; they provide one mechanism for

communication between address spaces.

 The routine that performs the function or service is called the SRB routine

; initiating the process is called scheduling an SRB; the SRB routine runs

in the operating mode known as SRB mode.

An SRB is similar to a TCB in that it identifies a unit of work to the

system. Unlike a TCB, an SRB cannot ″own″ storage areas. SRB routines

can obtain, reference, use, and free storage areas, but the areas must be

owned by a TCB. In a multiprocessor environment, the SRB routine, after

being scheduled, can be dispatched on another processor and can run

concurrently with the scheduling program. The scheduling program can

continue to do other processing in parallel with the SRB routine. As

mentioned earlier, an SRB provides a means of asynchronous inter-address

space communication for programs running on z/OS.

Only programs running in a mode of higher authority called supervisor

state can create an SRB. These authorized programs obtain storage and

initialize the control block with things such as the identity of the target

address space and pointers to the code that will process the request. The

program creating the SRB then issues the SCHEDULE macro and indicates

whether the SRB has global (system-wide) or local (address space-wide)

priority. The system places the SRB on the appropriate dispatching queue

where it will remain until it becomes the highest priority work on the

queue.

SRBs with a global priority have a higher priority than that of any address

space, regardless of the actual address space in which they will be

executed. SRBs with a local priority have a priority equal to that of the

address space in which they will be executed, but higher than any TCB

within that address space. The assignment of global or local priority

depends on the ″importance″ of the request; for example, SRBs for I/O

interrupts are scheduled at a global priority, to minimize I/O delays.

Preemptable versus non-preemptable units of work

Which routine receives control after an interrupt is processed depends on whether

the interrupted unit of work was preemptable.

If so, the operating system determines which unit of work should be performed

next. That is, the system determines which unit or work, of all the work in the

system, has the highest priority, and passes control to that unit of work.

A non-preemptable unit of work can be interrupted, but must receive control after

the interrupt is processed. For example, SRBs are often non-preemptable. Thus, if a

routine represented by a non-preemptable SRB is interrupted, it will receive control

after the interrupt has been processed. In contrast, a routine represented by a TCB,

such as a user program, is usually preemptable. If it is interrupted, control returns

to the operating system when the interrupt handling completes. z/OS then

determines which task, of all the ready tasks, will execute next.

26 z/OS Basic Skills Information Center: z/OS concepts

What does the dispatcher do?

In z/OS, the dispatcher component is responsible for routing control to the highest

priority unit of work that is ready to execute.

New work is selected, for example, when a task is interrupted or becomes

non-dispatchable, or after an SRB completes or is suspended (that is, an SRB is

delayed because a required resource is not available).

The dispatcher processes work in the following order:

1. Special exits

These are exits to routines that have a high priority because of specific

conditions in the system. For example, if one processor in a multiprocessing

system fails, alternate CPU recovery is invoked by means of a special exit to

recover work that was being executed on the failing processor.

2. SRBs that have a global priority

3. Ready address spaces in order of priority

An address space is ready to execute if it is swapped in and not waiting for

some event to complete. An address spaces’s priority is determined by the

dispatching priority specified by the user or the installation.

After selecting the highest priority address space, z/OS (through the

dispatcher) first dispatches SRBs with a local priority that are scheduled for

that address space and then TCBs in that address space.

If there is no ready work in the system, z/OS assumes a state called an enabled

wait until fresh work enters the system.

Different models of the z/Series hardware can have from one to 54 central

processors (CPs). Each and every CP can be executing instructions at the same

time. Dispatching priorities determine when ready-to-execute address spaces get

dispatched.

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 27

An address space can be in any one of four queues:

v IN-READY - In central storage and waiting to be dispatched

v IN-WAIT - In central storage but waiting for some event to complete

v OUT-READY - Ready to execute but swapped out

v OUT-WAIT - Swapped out and waiting for some event to complete

Only IN-READY work can be selected for dispatching.

Serializing the use of resources

In a multitasking, multiprocessing environment, resource serialization is the

technique used to coordinate access to resources that are used by more than one

application.

Programs that change data need exclusive access to the data. Otherwise, if several

programs were to update the same data at the same time, the data could be

corrupted (also referred to as a loss of data integrity). On the other hand, programs

that need only to read data can safely share access to the same data at the same

time.

The most common techniques for serializing the use of resources are enqueuing

and locking. These techniques allow for orderly access to system resources needed

by more than one user in a multiprogramming or multiprocessing environment. In

z/OS, enqueuing is managed by the global resource serialization component and

locking is managed by various lock manager programs in the supervisor

component.

Global resource serialization

The global resource serialization component processes requests for

resources from programs running on z/OS. Global resource serialization

serializes access to resources to protect their integrity. An installation can

Figure 10. Dispatching work

28 z/OS Basic Skills Information Center: z/OS concepts

connect two or more z/OS systems with channel-to-channel (CTC)

adapters to form a GRS complex to serialize access to resources shared

among the systems.

 When a program requests access to a reusable resource, the access can be

requested as exclusive or shared. When global resource serialization grants

shared access to a resource, exclusive users cannot obtain access to the

resource. Likewise, when global resource serialization grants exclusive

access to a resource, all other requestors for the resource wait until the

exclusive requestor frees the resource.

Enqueuing

Enqueuing is the means by which a program running on z/OS requests

control of a serially reusable resource. Enqueuing is accomplished by

means of the ENQ (enqueue) and DEQ (dequeue) macros, which are

available to all programs running on the system. For devices that are

shared between multiple z/OS systems, enqueuing is accomplished

through the RESERVE and DEQ macros.

 On ENQ and RESERVE, a program specifies the names of one or more

resources and requests shared or exclusive control of those resources. If the

resources are to be modified, the program must request exclusive control; if

the resources are not to be modified, the program should request shared

control, which allows the resource to be shared by other programs that do

not require exclusive control. If the resource is not available, the system

suspends the requesting program until the resource becomes available.

When the program no longer requires control of a resource, the program

uses the DEQ macro to release it.

Locking

Through locking, the system serializes the use of system resources by

authorized routines and, in a Parallel Sysplex, by processors. A lock is

simply a named field in storage that indicates whether a resource is being

used and who is using it. In z/OS, there are two kinds of locks: Global

locks, for resources related to more than one address space, and local locks,

for resources assigned to a particular address space. Global locks are

provided for nonreusable or nonsharable routines and various resources.

 To use a resource protected by a lock, a routine must first request the lock

for that resource. If the lock is unavailable (that is, it is already held by

another program or processor), the action taken by the program or

processor that requested the lock depends on whether the lock is a spin

lock or a suspend lock:

v If a spin lock is unavailable, the requesting processor continues testing

the lock until the other processor releases it. As soon as the lock is

released, the requesting processor can obtain the lock and, thus, control

of the protected resource. Most global locks are spin locks. The holder of

a spin lock should be disabled for most interrupts (if the holder were to

be interrupted, it might never be able to gain control to give up the

lock).

v If a suspend lock is unavailable, the unit of work requesting the lock is

delayed until the lock is available. Other work is dispatched on the

requesting processor. All local locks are suspend locks.

You might wonder what would happen if two users each request a lock

that is held by the other? Would they both wait forever for the other to

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 29

release the lock first, in a kind of stalemate? In z/OS, such an occurrence

would be known as a deadlock. Fortunately, the z/OS locking

methodology prevents deadlocks.

To avoid deadlocks, locks are arranged in a hierarchy, and a processor or

routine can unconditionally request only locks higher in the hierarchy than

locks it currently holds. For example, a deadlock could occur if processor 1

held lock A and required lock B; and processor 2 held lock B and required

lock A. This situation cannot occur because locks must be acquired in

hierarchical sequence. Assume, in this example, that lock A precedes lock B

is the hierarchy. Processor 2, then, cannot unconditionally request lock A

while holding lock B. It must, instead, release lock B, request lock A, and

then request lock B. Because of this hierarchy, a deadlock cannot occur.

Defining characteristics of z/OS

z/OS has several characteristics that distinguish it from other mainframe operating

systems.

The defining characteristics of z/OS are summarized as follows:

v The use of address spaces in z/OS holds many advantages: Isolation of private

areas in different address spaces provides for system security, yet each address

space also provides a common area that is accessible to every address space.

v The system is designed to preserve data integrity, regardless of how large the

user population might be. z/OS prevents users from accessing or changing any

objects on the system, including user data, except by the system-provided

interfaces that enforce authority rules.

v The system is designed to manage a large number of concurrent batch jobs, with

no need for the customer to externally manage workload balancing or integrity

problems that might otherwise occur due to simultaneous and conflicting use of

a given set of data.

v The security design extends to system functions as well as simple files. Security

can be incorporated into applications, resources, and user profiles.

v The system allows multiple communications subsystems at the same time,

permitting unusual flexibility in running disparate communications-oriented

applications (with mixtures of test, production, and fall-back versions of each) at

the same time. For example, multiple TCP/IP stacks can be operational at the

same time, each with different IP addresses and serving different applications.

v The system provides extensive software recovery levels, making unplanned

system restarts very rare in a production environment. System interfaces allow

application programs to provide their own layers of recovery. These interfaces

are seldom used by simple applications– they are normally used by

sophisticated applications.

v The system is designed to routinely manage very disparate workloads, with

automatic balancing of resources to meet production requirements established by

the system administrator.

v The system is designed to routinely manage large I/O configurations that might

extend to thousands of disk drives, multiple automated tape libraries, many

large printers, large networks of terminals, and so forth.

v The system is controlled from one or more operator terminals, or from

application programming interfaces (APIs) that allow automation of routine

operator functions.

30 z/OS Basic Skills Information Center: z/OS concepts

v The operator interface is a critical function of z/OS. It provides status

information, messages for exception situations, control of job flow, hardware

device control, and allows the operator to manage unusual recovery situations.

Additional software products for z/OS

A z/OS system usually contains additional, priced products that are needed to

create a practical working system.

For example, a production z/OS system usually includes a security manager

product and a database manager product. When talking about z/OS, people often

assume the inclusion of these additional products. This assumption is normally

apparent from the context of a discussion, but it might sometimes be necessary to

ask whether a particular function is part of ″the base z/OS″ or whether it is an

add-on product. IBM refers to its own add-on products as IBM licensed programs.

With a multitude of independent software vendors (ISVs) offering a large number

of products with varying but similar functionality, such as security managers and

database managers, the ability to choose from a variety of licensed programs to

accomplish a task considerably increases the flexibility of the z/OS operating

system and allows the mainframe IT group to tailor the products it runs to meet

their company’s specific needs.

We won’t attempt to list all of the IBM licensed programs for z/OS (hundreds

exist); some common choices include:

Security system

z/OS provides a framework for customers to add security through the

addition of a security management product (IBM’s licensed program is

Resource Access Control Facility or RACF®). Non-IBM security system

licensed programs are also available.

Compilers

z/OS includes an assembler and a C compiler. Other compilers, such as the

COBOL compiler, and the PL/1 compiler are offered as separate products.

Relational database

One example is DB2. Other types of database products, such as hierarchical

databases, are also available.

Transaction processing facility

IBM offers several, including:

v Customer Information Control System (CICS)

v Information Management System (IMS)

v WebSphere® Application Server for z/OS

Sort program

Fast, efficient sorting of large amounts of data is highly desirable in batch

processing. IBM and other vendors offer sophisticated sorting products.

A large variety of utility programs

For example, the System Display and Search Facility (SDSF) program that

is used to view output from batch jobs is a licensed program. Not every

installation purchases SDSF; alternative products are available.

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 31

Middleware for z/OS

Middleware is typically something between the operating system and an end user

or end-user applications. It supplies major functions not provided by the operating

system.

As commonly used, the term usually applies to major software products such as

database managers, transaction monitors, Web servers, and so forth. Subsystem is

another term often used for this type of software. These software products are

usually licensed programs, although there are notable exceptions, such as the

HTTP Server.

z/OS is a base for using many middleware products and functions. It is

commonplace to run a variety of diverse middleware functions, with multiple

instances of some. The routine use of wide-ranging workloads (mixtures of batch,

transactions, Web serving, database queries and updates, and so on) is

characteristic of z/OS.

Typical z/OS middleware includes:

v Database systems

v Web servers

v Message queueing and routing functions

v Transaction managers

v Java™ virtual machines

v Extensible Markup Language (XML) processing functions

A middleware product often includes an application programming interface (API).

In some cases, applications are written to run completely under the control of this

middleware API, while in other cases it is used only for unique purposes. Some

examples of mainframe middleware APIs include:

v The WebSphere suite of products, which provides a complete API that is

portable across multiple operating systems. Among these products, WebSphere

MQ provides cross-platform APIs and inter-platform messaging.

v The DB2 database management product, which provides an API (expressed in

the SQL language) that is used with many different languages and applications.

A Web server is considered to be middleware and Web programming (Web pages,

CGIs, and so forth) is largely coded to the interfaces and standards presented by

the Web server instead of the interfaces presented by the operating system. Java is

another example in which applications are written to run under a Java Virtual

Machine (JVM) and are largely independent of the operating system being used.

A brief comparison of z/OS and UNIX

What would we find if we compared z/OS and UNIX? In many cases, we’d find

that quite a few concepts would be mutually understandable to users of either

operating system, despite the differences in terminology.

For experienced UNIX users, Mapping UNIX to z/OS terms and concepts provides

a small sampling of familiar computing terms and concepts. As a new user of

z/OS, many of the z/OS terms will sound unfamiliar to you. As you work through

this information center, however, the z/OS meanings will be explained and you

will find that many elements of UNIX have analogs in z/OS.

32 z/OS Basic Skills Information Center: z/OS concepts

A major difference for UNIX users moving to z/OS is the idea that the user is just

one of many other users. In moving from a UNIX system to the z/OS

environment, users typically ask questions such as ″Can I have the root password

because I need to do...″ or ″Would you change this or that and restart the system?″

It is important for new z/OS users to understand that potentially thousands of

other users are active on the same system, and so the scope of user actions and

system restarts in z/OS and z/OS UNIX are carefully controlled to avoid

negatively affecting other users and applications.

Under z/OS, there does not exist a single root password or root user. User IDs are

external to z/OS UNIX System Services. User IDs are maintained in a security

database that is shared with both UNIX and non-UNIX functions in the z/OS

system, and possibly even shared with other z/OS systems. Typically, some user

IDs have root authority, but these remain individual user IDs with individual

passwords. Also, some user IDs do not normally have root authority, but can

switch to ″root″ when circumstances require it.

Both z/OS and UNIX provide APIs to allow in-memory data to be shared between

processes. In z/OS, a user can access another user’s address spaces directly

through cross-memory services. Similarly, UNIX has the concept of Shared

Memory functions, and these can be used on UNIX without special authority.

z/OS cross-memory services, however, require the issuing program to have special

authority, controlled by the authorized program facility (APF). This method allows

efficient and secure access to data owned by others, data owned by the user but

stored in another address space for convenience, and for rapid and secure

communication with services like transaction managers and database managers.

 Table 1. Mapping UNIX to z/OS terms and concepts

Term or concept UNIX z/OS

Start the operating system Boot the system IPL (initial program load) the

system.

Virtual storage given to each

user of the system

Users get whatever virtual

storage they need to

reference, within the limits of

the hardware and operating

system.

Users each get an address

space, a range of addresses

extending to 2 GB (or even

16 EB) of virtual storage,

though some of this storage

contains system code that is

common for all users.

Data storage Files Data sets (sometimes called

files)

Data format Byte orientation; organization

of the data is provided by

the application

Record orientation; often an

80-byte record, reflecting the

traditional punched card

image

System configuration data The /etc file system controls

characteristics.

Parameters in PARMLIB

control how the system IPLs

and how address spaces

behave.

Scripting languages Shell scripts, Perl, awk, and

other languages

CLISTS (command lists) and

REXX™ execs

Chapter 1. z/OS operating system: Providing virtual environments since the 1960s 33

Table 1. Mapping UNIX to z/OS terms and concepts (continued)

Term or concept UNIX z/OS

Smallest element that

performs work

A thread. The kernel

supports multiple threads.

A task or a service request

block (SRB). The z/OS base

control program (BCP)

supports multiple tasks and

SRBs.

A long-running unit of work A daemon A started task or a

long-running job; often this

is a subsystem of z/OS.

Order in which the system

searches for programs to run

Programs are loaded from

the file system according to

the user’s PATH

environmental variable (a list

of directories to be searched).

The system searches the

following libraries for the

program to be loaded:

TASKLIB, STEPLIB, JOBLIB,

LPALST, and the linklist.

Using the system

interactively

Users log in to systems and

execute shell sessions in the

shell environment. They can

issue the rlogin or telnet

commands to connect to the

system. Each user can have

many login sessions open at

once.

Users log on to the system

through TSO/E and its

panel-driven interface, ISPF.

A user ID is limited to

having only one TSO/E

logon session active at a

time.

Users can also log in to a

z/OS UNIX shell

environment using telnet,

rlogin, or ssh.

Editing data or code Many editors exist, such as

vi, ed, sed, and emacs.

ISPF editor

Source and destination for

input and output data

stdin and stdout SYSIN and SYSOUT

v SYSUT1 and SYSUT2 are

used for utilities.

v SYSTSIN and SYSTSPRT

are used for TSO/E users.

Managing programs The ps shell command

allows users to view

processes and threads, and

kill jobs with the kill

command.

SDSF allows users to view

and terminate their jobs.

34 z/OS Basic Skills Information Center: z/OS concepts

Chapter 2. z/OS storage constructs: File systems, data sets,

and more

In working with the z/OS operating system, you must understand data sets, the

files that contain programs and data. The characteristics of traditional z/OS data

sets differ considerably from the file systems used in UNIX and PC systems. To

make matters even more interesting, you can also create UNIX file systems on

z/OS, with the common characteristics of UNIX systems.

z/OS manages data by means of data sets. The term data set refers to a file that

contains one or more records. A data set can be a source program, a library of

programs, or a file of data records used by a processing program. Data set records

are the basic unit of information used by a processing program.

Users must define the amount of space to be allocated for a data set (before it is

used), or these allocations must be automated through the use of DFSMS. With

DFSMS, the z/OS system programmer or storage administrator can define

performance goals and data availability requirements, create model data definitions

for typical data sets, and automate data backup. DFSMS can automatically assign,

based on installation policy, those services and data definition attributes to data

sets when they are created. Other storage management-related products can be

used to determine data placement, manage data backup, control space usage, and

provide data security.

Almost all z/OS data processing is record-oriented. Byte-stream files are not

present in traditional processing, although they are a standard part of z/OS UNIX.

z/OS records and physical blocks follow one of several well-defined formats. Most

data sets have DCB attributes that include the record format (RECFM), the

maximum logical record length (LRECL), and the maximum block size (BLKSIZE).

z/OS libraries are known as partitioned data sets (PDS or PDSE) and contain

members. Source programs, system and application control parameters, JCL, and

executable modules are almost always contained in libraries.

Virtual storage access method (VSAM) is an access method that provides much

more complex functions than other disk access methods. VSAM is primarily for

applications and cannot be edited with ISPF.

z/OS data sets have names with a maximum of 44 uppercase characters, divided

by periods into qualifiers with a maximum of 8 bytes per qualifier name. The

high-level qualifier (HLQ) may be fixed by system security controls, but the rest of

a data set name is assigned by the user. A number of conventions exist for these

names.

An existing data set can be located when the data set name, volume, and device

type are known. These requirements can be shortened to knowing only the data set

name if the data set is cataloged. The system catalog is a single logical function,

although its data may be spread across the master catalog and many user catalogs.

In practice, almost all disk data sets are cataloged. One side effect of this is that all

(cataloged) data sets must have unique names.

© Copyright IBM Corp. 2006, 2008 35

A file in the UNIX file system can be either a text file or a binary file. In a text file

each line of text is separated by a newline delimiter. A binary file consists of

sequences of binary words (byte stream), and no record concept other than the

structure defined by an application exists. An application reading the file is

responsible for interpreting the format of the data. z/OS treats an entire UNIX file

system hierarchy as a collection of data sets. Each data set is a mountable file

system.

What is a data set?

z/OS manages data by means of data sets. The term data set refers to a file that

contains one or more records. The record is the basic unit of information used by a

program running on z/OS.

Any named group of records is called a data set. Data sets can hold information

such as medical records or insurance records, to be used by a program running on

the system. Data sets are also used to store information needed by applications or

the operating system itself, such as source programs, macro libraries, or system

variables or parameters. For data sets that contain readable text, you can print

them or display them on a console (many data sets contain load modules or other

binary data that is not really printable). Data sets can be cataloged, which permits

the data set to be referred to by name without specifying where it is stored.

In simplest terms, a record is a fixed number of bytes containing data. Often, a

record collects related information that is treated as a unit, such as one item in a

database or personnel data about one member of a department. The term field

refers to a specific portion of a record used for a particular category of data, such

as an employee’s name or department.

The records in a data set can be organized in various ways, depending on how we

plan to access the information. If you write an application program that processes

things like personnel data, for example, your program can define a record format

for each person’s data.

There are many different types of data sets in z/OS, and different methods for

accessing them. Among the most commonly used types are:

Sequential

In a sequential data set, records are data items that are stored

consecutively. To retrieve the tenth item in the data set, for example, the

system must first pass the preceding nine items. Data items that must all

be used in sequence, like the alphabetical list of names in a classroom

roster, are best stored in a sequential data set.

Partitioned

A partitioned data set or PDS consists of a directory and members. The

directory holds the address of each member and thus makes it possible for

programs or the operating system to access each member directly. Each

member, however, consists of sequentially stored records. Partitioned data

sets are often called libraries. Programs are stored as members of

partitioned data sets. Generally, the operating system loads the members of

a PDS into storage sequentially, but it can access members directly when

selecting a program for execution.

VSAM

In a Virtual Storage Access Method (VSAM) key sequenced data set

(KSDS), records are data items that are stored with control information

36 z/OS Basic Skills Information Center: z/OS concepts

(keys) so that the system can retrieve an item without searching all

preceding items in the data set. VSAM KSDS data sets are ideal for data

items that are used frequently and in an unpredictable order.

Quick reference: Data set structure

Working with data sets requires an understanding of the physical and logical

structure of a data set, and how z/OS accesses information in the data set.

Data set

In z/OS, a data set is a named collection of related data records that is

stored and retrieved by an assigned name. A data set is equivalent to a file

in other operating systems. Data sets are stored on tape or disks.

Direct Access Storage Device (DASD)

DASD is another name for a disk drive. Additional synonyms include: disk

volume, disk pack, or Head Disk Assembly (HDA).

Space Disk space is allocated in units called cylinders, tracks, or blocks.

Cylinder

A disk drive contains cylinders. A cylinder is a unit of storage on a

count-key-data (CKD) device with a fixed number of tracks.

Track Cylinders contain tracks, which are circular paths on the surface of a disk

or diskette on which information is magnetically recorded and from which

recorded information is read. Tracks are in count-key-data (CKD) format,

which means that each track contains fields that indicate the start of the

track and the space used, followed by records containing three fields:

v The count field defines the length of the record

v The key field contains optional accounting information

v The data field contains the user data

Record

Tracks contain records. A record is some number of bytes containing data.

The record is the basic unit of information used by a program running on

z/OS.

v Records have a logical record length (abbreviated as LRECL); different

types of DASD impose different maximum lengths for records.

v Records are either fixed length or variable length in a given data set.

Traditional z/OS data sets have one of five record formats (abbreviated

as RECFM): Fixed (F), fixed blocked (FB), variable (V), variable blocked

(VB), or undefined (U).

Blocks

Records can be grouped into data blocks, which are the units of recording

on disk. Blocking makes processing more efficient because z/OS can access

an entire block at once instead of reading or writing records individually.

 Block size (abbreviated as BLKSIZE) is the physical block size written on

the disk for fixed (F) and fixed block (FB) records. For variable and

undefined (V, VB, and U) records, block size is the maximum physical

block size that can be used for the data set.

Extents

Space for a disk data set is assigned in primary and secondary extents. An

extent is a contiguous number of disk drive tracks, cylinders, or blocks.

Data sets can increase in extents as they grow. As with blocking, the use of

extents is more efficient because reading or writing contiguous tracks is

faster than reading or writing data that is scattered over the disk.

Chapter 2. z/OS storage constructs: File systems, data sets, and more 37

Volume

The term volume is often used to refer to a disk.

Volume serial

The six-character name of a disk or tape volume, such as TEST01.

Device type

A model or type of disk device, such as 3390.

Organization

The method of processing a data set, such as sequential.

Where are data sets stored?

z/OS supports many different devices for data storage. Disks or tape are most

frequently used for storing data sets on a long-term basis.

Disk drives are known as direct access storage devices (DASDs) because, although

some data sets on them might be stored sequentially, these devices can handle

direct access. Tape drives are known as sequential access devices because data sets

on tape must be accessed sequentially.

The term DASD applies to disks or simulated equivalents of disks. All types of

data sets can be stored on DASD (only sequential data sets can be stored on

magnetic tape). You use DASD volumes for storing data and executable programs,

including the operating system itself, and for temporary working storage. You can

use one DASD volume for many different data sets, and reallocate or reuse space

on the volume.

To enable the system to locate a specific data set quickly, z/OS includes a data set

known as the master catalog that permits access to any of the data sets in the

computer system or to other catalogs of data sets. z/OS requires that the master

catalog reside on a DASD that is always mounted on a drive that is online to the

system.

What are access methods?

An access method defines the technique that is used to store and retrieve data.

Access methods have their own data set structures to organize data,

system-provided programs (or macros) to define data sets, and utility programs to

process data sets.

Access methods are identified primarily by the data set organization. z/OS users,

for example, use the basic sequential access method (BSAM) or queued sequential

access method (QSAM) with sequential data sets.

There are times when an access method identified with one organization can be

used to process a data set organized in a different manner. For example, a

sequential data set (not extended-format data set) created using BSAM can be

processed by the basic direct access method (BDAM), and vice versa. Another

example is UNIX files, which you can process using BSAM, QSAM, basic

partitioned access method (BPAM), or virtual storage access method (VSAM).

Commonly used access methods include the following:

QSAM

QSAM (Queued Sequential Access Method) is a heavily used access

method. QSAM arranges records sequentially in the order that they are

entered to form sequential data sets, and anticipates the need for records

38 z/OS Basic Skills Information Center: z/OS concepts

based on their order. The system organizes records with other records. To

improve performance, QSAM reads these records into storage before they

are requested, a technique known as queued access.

BSAM

BSAM (Basic Sequential Access Method) is used for special cases. BSAM

arranges records sequentially in the order in which they are entered.

Unlike QSAM, however, the user– rather than the system– organizes

records with other records into blocks.

BDAM

BDAM (Basic Direct Access Method), which is becoming obsolete, arranges

records in any sequence your program indicates, and retrieves records by

actual or relative address. If you do not know the exact location of a

record, you can specify a point in the data set where a search for the

record is to begin. Data sets organized this way are called direct data sets.

BPAM BPAM (Basic Partitioned Access Method) arranges records as members of a

partitioned data set (PDS) or a partitioned data set extended (PDSE) on

DASD. You can use BPAM to view a UNIX directory and its files as if it

were a PDS. (You can view each PDS, PDSE, or UNIX member sequentially

with BSAM or QSAM.)

VSAM

VSAM (Virtual Sequential Access Method) is used for more complex

applications. VSAM arranges records by an index key, relative record

number, or relative byte addressing. VSAM is used for direct or sequential

processing of fixed-length and variable-length records on DASD. Data that

is organized by VSAM is cataloged for easy retrieval.

What are DASD volumes and labels?

DASD volumes are used for storing data and executable programs (including the

operating system itself), and for temporary working storage. DASD labels identify

DASD volumes and the data sets they contain.

One DASD volume can be used for many different data sets, and space on it can

be reallocated and reused. On a volume, the name of a data set must be unique. A

data set can be located by device type, volume serial number, and data set name.

This structure is unlike the file tree of a UNIX system. The basic z/OS file

structure is not hierarchical. z/OS data sets have no equivalent to a path name.

Although DASD volumes differ in physical appearance, capacity, and speed, they

are similar in data recording, data checking, data format, and programming. The

recording surface of each volume is divided into many concentric tracks. The

number of tracks and their capacity vary with the device. Each device has an

access mechanism that contains read/write heads to transfer data as the recording

surface rotates past them.

The operating system uses groups of labels to identify DASD volumes and the

data sets they contain. Customer application programs generally do not use these

labels directly. DASD volumes must use standard labels. Standard labels include a

volume label, a data set label for each data set, and optional user labels. A volume

label, stored at track 0 of cylinder 0, identifies each DASD volume.

The z/OS system programmer or storage administrator uses the ICKDSF utility

program to initialize each DASD volume before it is used on the system. ICKDSF

generates the volume label and builds the volume table of contents (VTOC), a

Chapter 2. z/OS storage constructs: File systems, data sets, and more 39

structure that contains the data set labels. The system programmer can also use

ICKDSF to scan a volume to ensure that it is usable and to reformat all the tracks.

Allocating a data set

To use a data set, you first allocate it (establish a link to it), then access the data

using macros for the access method that you have chosen.

The allocation of a data set means either or both of two things:

v To set aside (create) space for a new data set on a disk.

v To establish a logical link between a job step and any data set.

You can allocate a data set using ISPF panel option 3.2. Other ways to allocate a

data set include the following methods:

Access method services

You can allocate data sets through a multifunction services program called

access method services. Access method services include commonly used

commands for working with data sets, as ALLOCATE, ALTER, DELETE,

and PRINT.

ALLOCATE

You can use the TSO ALLOCATE command to create data sets. The

command actually guides you through the allocation values that you must

specify.

ISPF menus

One menu guides the user through allocation of a data set.

JCL You can use specific job control language (JCL) statements to allocate data

sets.

How are data sets named?

When you allocate a new data set, you must give the data set a unique name.

A data set name can be one name segment, or a series of joined name segments.

Each name segment represents a level of qualification. For example, the data set

name VERA.LUZ.DATA is composed of three name segments. The first name on

the left is called the high-level qualifier (HLQ), the last name on the right is the

lowest-level qualifier (LLQ).

Segments or qualifiers are limited to eight characters, the first of which must be

alphabetic (A to Z) or special (# @ $). The remaining seven characters are either

alphabetic, numeric (0 - 9), special, a hyphen (-). Name segments are separated by

a period (.).

Including all name segments and periods, the length of the data set name must not

exceed 44 characters. Thus, a maximum of 22 name segments can make up a data

set name.

For example, the following names are not valid data set names:

v Name with a qualifier that is longer than eight characters

(HLQ.ABCDEFGHI.XYZ)

v Name containing two successive periods (HLQ..ABC)

v Name that ends with a period (HLQ.ABC.)

v Name that contains a qualifier that does not start with an alphabetic or special

character (HLQ.123.XYZ)

40 z/OS Basic Skills Information Center: z/OS concepts

The HLQ for a user’s data sets is typically controlled by the security system. There

are a number of conventions for the remainder of the name. These are

conventions, not rules, but are widely used. They include the following:

v The letters LIB somewhere in the name indicate that the data set is a library. The

letters PDS are a lesser-used alternative for this convention.

v The letters CNTL, JCL, or JOB somewhere in the name typically indicate the

data set contains JCL (but might not be exclusively devoted to JCL).

v The letters LOAD, LOADLIB, or LINKLIB in the name indicate that the data set

contains executables. (A library with z/OS executable modules must be devoted

solely to executable modules.)

v The letters PROC, PRC, or PROCLIB indicate a library of JCL procedures.

v Various combinations are used to indicate source code for a specific language,

for example COBOL, Assembler, FORTRAN, PL/I, JAVA, C, or C++.

v A portion of a data set name may indicate a specific project, such as PAYROLL.

v Using too many qualifiers is considered poor practice. For example, the

following name is a valid data set name (upper case, does not exceed 44 bytes,

no special characters) but it is not very meaningful.

P390A.A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.S

A good practice is for a data set name to contain three or four qualifiers.

How is space allocated on DASD volumes?

To allocate a data set using JCL, you specify the amount of space required in

blocks, records, tracks, or cylinders.

When creating a DASD data set, you specify the amount of space needed explicitly

through the SPACE parameter, or implicitly by using the information available in a

data class. The system can use a data class if SMS is active even if the data set is

not SMS-managed. For system-managed data sets, the system selects the volumes,

saving you from having to specify a volume when you allocate a data set.

If you specify your space request by average record length, space allocation is

independent of device type. Device independence is especially important to

system-managed storage. A logical record length (LRECL) is a unit of information

about a unit of processing (for example, a customer, an account, a payroll

employee, and so on). It is the smallest amount of data to be processed, and it is

comprised of fields that contain information recognized by the processing

application. The maximum length of a logical record (LRECL) is limited by the

physical size of the used media.

Logical records, when located on DASD, tape, or optical devices, are grouped

within physical records named blocks. BLKSIZE indicates the length of those

blocks. Each block of data on a DASD volume has a distinct location and a unique

address, thus making it possible to find any block without extensive searching.

Logical records can be stored and retrieved either directly or sequentially.

When the amount of space required is expressed in blocks, you must specify the

number and average length of the blocks within the data set.

Let us take an example of a request for disk storage as follows:

v Average block length in bytes = 300

v Primary quantity (number) of blocks = 5000

v Secondary quantity of blocks, to be allocated if the primary quantity gets filled

with data = 100

Chapter 2. z/OS storage constructs: File systems, data sets, and more 41

From this information, the operating system estimates and allocates the amount of

disk space required.

Space for a disk data set is assigned in extents. An extent is a contiguous number

of disk drive tracks, cylinders, or blocks. Data sets can increase in extents as they

grow. Older types of data sets can have up to 16 extents per volume. Newer types

of data sets can have up to 128 extents per volume or 255 extents total on multiple

volumes.

Extents are relevant when you are not using PDSEs and have to manage the space

yourself, rather than through DFSMS. Here, you want the data set to fit into a

single extent to maximize disk performance. Reading or writing contiguous tracks

is faster than reading or writing tracks scattered over the disk, as might be the case

if tracks were allocated dynamically. But if there is not sufficient contiguous space,

a data set goes into extents.

Data set record formats

Traditional z/OS data sets are record oriented, and have one of five possible

formats.

In normal usage, there are no byte stream files such as are found in PC and UNIX

systems. (z/OS UNIX has byte stream files, and byte stream functions exist in

other specialized areas. These are not considered to be traditional data sets.)

In z/OS, there are no new line (NL) or carriage return and line feed (CR+LF)

characters to denote the end of a record. Records are either fixed length or variable

length in a given data set. When editing a data set with ISPF, for example, each

line is a record.

Traditional z/OS data sets have one of five record formats, as follows:

F (Fixed)

Fixed means that one physical block on disk is one logical record and all

the blocks and records are the same size. This format is seldom used.

FB (Fixed Blocked)

This format designation means that several logical records are combined

into one physical block. This format can provide efficient space utilization

and operation. This format is commonly used for fixed-length records.

V (Variable)

This format has one logical record as one physical block. A variable-length

logical record consists of a record descriptor word (RDW) followed by the

data. The record descriptor word is a 4-byte field describing the record.

The first 2 bytes contain the length of the logical record (including the

4-byte RDW). The length can be from 4 to 32,760 bytes. All bits of the third

and fourth bytes must be 0, because other values are used for spanned

records. This format is seldom used.

VB (Variable Blocked)

This format places several variable-length logical records (each with an

RDW) in one physical block. The software must place an additional Block

Descriptor Word (BDW) at the beginning of the block, containing the total

length of the block.

U (Undefined)

This format consists of variable-length physical records and blocks with no

predefined structure. Although this format may appear attractive for many

unusual applications, it is normally used only for executable modules.

42 z/OS Basic Skills Information Center: z/OS concepts

We must stress the difference between a block and a record: a block is what is

written on disk, while a record is a logical entity.

The terminology here is pervasive throughout z/OS literature. The key terms are:

v Block Size (BLKSIZE) is the physical block size written on the disk for F and FB

records. For V, VB, and U records, it is the maximum physical block size that can

be used for the data set.

v Logical Record Size (LRECL) is the logical record size (for formats F and FB) or

the maximum allowed logical record size (for formats V and VB) for the data

set. Format U records have no LRECL.

v Record Format (RECFM) is F, FB, V, VB, or U as just described.

These terms are known as data control block (DCB) characteristics, named for the

control block where they may be defined in an assembly language program. The

user is often expected to specify these parameters when creating a new data set.

The type and length of a data set are defined by its record format (RECFM) and

logical record length (LRECL). Fixed-length data sets have a RECFM of F, FB, FBS,

and so on. Variable-length data sets have a RECFM of V, VB, VBS, and so on.

A data set with RECFM=FB and LRECL=25 is a fixed-length (FB) data set with a

record length of 25 bytes (the B is for blocked). For an FB data set, the LRECL tells

you the length of each record in the data set; all of the records are the same length.

The first data byte of an FB record is in position 1. A record in an FB data set with

LRECL=25 might look like this:

Positions 1-3: Country Code = ’USA’

Positions 4-5: State Code = ’CA’

Positions 6-25: City = ’San Jose’ padded with 12 blanks on the right

A data set with RECFM=VB and LRECL=25 is a variable-length (VB) data set with

a maximum record length of 25 bytes. In a VB data set, the records can have

different lengths. The first four bytes of each record contain the RDW, and the first

two bytes of the RDW contain the length of that record (in binary). The first data

byte of a VB record is in position 5, after the 4-byte RDW in positions 1-4. A record

in a VB data set with LRECL=25 might look like this:

Positions 1-2: Length in RDW = hex 0011 = decimal 17

Positions 3-4: Zeros in RDW = hex 0000 = decimal 0

Positions 5-7: Country Code = ’USA’

Positions 8-9: State Code = ’CA’

Positions 10-17: City = ’San Jose’

Figure 11 on page 44 shows the relationship between records and blocks for each of

the five record formats.

Chapter 2. z/OS storage constructs: File systems, data sets, and more 43

Types of data sets

z/OS has many different types of data sets.

Data sets can be sequential or partitioned:

v In a sequential data set, records are data items that are stored consecutively.

v A partitioned data set consists of a directory and members. The directory holds

the address of each member and thus makes it possible to access each member

directly. Each member consists of sequentially stored records.

Partitioned data sets are often called libraries. By convention, libraries often have

the letters “LIB” in the data set name. Also by convention, programs and

procedures are stored in separate libraries; within a library, each program or

procedure is stored as a separate member of the partitioned data set.

Data sets can be permanent or temporary:

v Most permanent data sets exist before a job starts and persist after a job step

completes. Some permanent data sets are created during a job step and persist

after the job completes.

v Temporary data sets generally are used to pass data from one job step to

another, and exist only during the life cycle of the job.

Figure 11. Basic record formats

44 z/OS Basic Skills Information Center: z/OS concepts

Data sets can be cataloged, which permits the data set to be referred to by name

without specifying where the data set is stored. A catalog describes data set

attributes and indicates the devices on which a data set is located. In z/OS, the

master catalog and user catalogs store the locations of data sets.

Why is a PDS structured like that?

A PDS data set offers a simple and efficient way to organize related groups of

sequential files. As for most things, the PDS structure offers advantages but also

has some disadvantages.

The PDS structure was designed to provide efficient access to libraries of related

members, whether they be load modules, program source modules, JCL or many

other types of content. Many system data sets are also kept in PDS data sets,

especially when they consist of many small, related files. For example, the

definitions for ISPF panels are kept in PDS data sets.

A primary use of ISPF is to create and manipulate PDS data sets. These data sets

typically consist of source code for programs, text for manuals or help screens, or

JCL to allocate data sets and run programs.

A PDS has the following advantages for z/OS users:

v Grouping of related data sets under a single name makes z/OS data

management easier. Files stored as members of a PDS can be processed either

individually or all the members can be processed as a unit.

v Because the space allocated for z/OS data sets always starts at a track boundary

on disk, using a PDS is a way to store more than one small data set on a track.

This method saves you disk space if you have many data sets that are much

smaller than a track. A track is 56,664 bytes for a 3390 disk device.

v Members of a PDS can be used as sequential data sets, and they can be

appended (or concatenated) to sequential data sets.

v Multiple PDS data sets can be concatenated to form large libraries.

v PDS data sets are easy to create with JCL or ISPF; they are easy to manipulate

with ISPF utilities or TSO commands.

PDS data sets are simple, flexible, and widely used. However, some aspects of the

PDS design affect both performance and the efficient use of disk storage, as

follows:

v Wasted space

When a member in a PDS is replaced, the new data area is written to a new

section within the storage allocated to the PDS. When a member is deleted, its

pointer is deleted too, so there is no mechanism to reuse its space. This wasted

space is often called gas and must be periodically removed by reorganizing the

PDS, for example, by using the utility IEBCOPY to compress it.

v Limited directory size

The size of a PDS directory is set at allocation time. As the data set grows, it can

acquire more space in units of the amount you specified as its secondary space.

These extra units are called secondary extents.

However, you can store only a fixed number of member entries in the PDS

directory because its size is fixed when the data set is allocated. If you need to

store more entries than the existing directory space will hold, you have to

allocate a new PDS with more directory blocks and copy the members from the

old data set into it. This fact means that when you allocate a PDS, you must

calculate the amount of directory space you need.

Chapter 2. z/OS storage constructs: File systems, data sets, and more 45

v Lengthy directory searches

An entry in a PDS directory consists of a name and a pointer to the location of

the member. Entries are stored in alphabetical order of the member names.

Inserting an entry near the front of a large directory can cause a large amount of

I/O activity, as all the entries behind the new one are moved along to make

room for it.

Also, entries are searched sequentially in alphabetical order. If the directory is

very large and the members small, it might take longer to search the directory

than to retrieve the member when its location is found.

What is a PDSE?

The acronym PDSE stands for partitioned data set extended. A PDSE consists of a

directory and zero or more members, just like a PDS... But there are some

differences between the two.

A PDSE can be created with JCL, TSO/E, and ISPF, just like a PDS, and can be

processed with the same access methods. PDSE data sets are stored only on DASD,

not on tape.

The directory can expand automatically as needed, up to the addressing limit of

522,236 members. It also has an index, which provides a fast search for member

names. Space from deleted or moved members is automatically reused for new

members, so you do not have to compress a PDSE to remove wasted space. Each

member of a PDSE can have up to 15,728,639 records. A PDSE can have a

maximum of 123 extents, but it cannot extend beyond one volume. When a

directory of a PDSE is in use, it is kept in processor storage for fast access.

PDSE data sets can be used in place of nearly all PDS data sets that are used to

store data. But the PDSE format is not intended as a PDS replacement. When a

PDSE is used to store load modules, it stores them in structures called program

objects.

In many ways, a PDSE is similar to a PDS. Each member name can be eight bytes

long. For accessing a PDS directory or member, most PDSE interfaces are

indistinguishable from PDS interfaces. PDS and PDSE data sets are processed using

the same access methods (for example, BSAM, QSAM and BPAM). Within a given

PDS or PDSE, the members must use the same access method.

However, PDSE data sets have a different internal format, which gives them

increased usability. You can use a PDSE in place of a PDS to store data or

programs. In a PDS, you store programs as load modules. In a PDSE, you store

programs as program objects. If you want to store a load module in a PDSE, you

must first convert it into a program object (using the IEBCOPY utility).

PDSE data sets have several features that can improve user productivity and

system performance. The main advantage of using a PDSE over a PDS is that a

PDSE automatically reuses space within the data set without the need for anyone

to periodically run a utility to reorganize it. The system reclaims space

automatically whenever a member is deleted or replaced, and returns it to the pool

of space available for allocation to other members of the same PDSE. The space

can be reused without having to do an IEBCOPY compress.

Also, the size of a PDS directory is fixed regardless of the number of members in

it, while the size of a PDSE directory is flexible and expands to fit the members

stored in it.

46 z/OS Basic Skills Information Center: z/OS concepts

Other advantages of PDSE data sets follow:

v PDSE members can be shared. This characteristic makes it easier to maintain the

integrity of the PDSE when modifying separate members of the PDSE at the

same time.

v The system requires less time to search a PDSE directory. The PDSE directory,

which is indexed, is searched using that index. The PDS directory, which is

organized alphabetically, is searched sequentially. The system might cache in

storage directories of frequently used PDSE data sets.

v You may create multiple PDSE members at the same time. For example, you can

open two data control blocks (DCBs) to the same PDSE and write two members

at the same time.

v PDSE data sets contain up to 123 extents. An extent is a continuous area of space

on a DASD storage volume, occupied by or reserved for a specific data set.

v When written to DASD, logical records are extracted from the user’s blocks and

reblocked. When read, records in a PDSE are reblocked into the block size

specified in the DCB. The block size used for the reblocking can differ from the

original block size.

What happens when a data set runs out of space?

When you allocate a data set, you reserve a certain amount of space in units of

blocks, tracks, or cylinders on a storage disk. If you use up that space, the system

displays the message SYSTEM ABEND ’0D37,’ or possibly B37 or E37.

This situation is something you will have to deal with if it occurs. If you are in an

edit session, you will not be able to exit the session until you resolve the problem.

Among the things you can do to resolve a space shortage abend are:

v If the data set is a PDS, you can compress it by doing the following:

1. Split (PF 2) the screen and select UTILITIES (option 3).

2. Select LIBRARIES (option 1) on the Utility Selection Menu.

3. Specify the name of the data set and enter C on the option line.

4. When the data set is compressed, you should see the message COMPRESS

SUCCESSFUL.

5. You can then swap (PF 9) to the edit session and save the new material.
v Allocate a larger data set and copy into it by doing the following:

 1. Split (PF 2) the screen and select UTILITIES (option 3), then DATASET

(option 2) from the other side of the split.

 2. Specify the name of the data set that received the abend to display its

characteristics.

 3. Allocate another data set with more space.

 4. Select MOVE/COPY (option 3) on the Utility Selection Menu to copy

members from the old data set to the new larger data set.

 5. Browse (option 1) the new data set to make sure everything was copied

correctly.

 6. Swap (PF 9) back to the abending edit session, enter CC on the top line of

input and the bottom line of input, enter CREATE on the command line, and

press the Enter key.

 7. Enter the new, larger data set name and a member name to receive the

copied information.

Chapter 2. z/OS storage constructs: File systems, data sets, and more 47

8. You again see the abending edit session. Enter CANCEL on the command line.

Press the RETURN key (PF 4) key to exit the edit session.

 9. Select DATASET (option 2) from the Utility Selection Menu to delete the old

data set.

10. Rename the new data set to the old name.
v Cancel the new material entered in the edit session by entering CANCEL on the

command line. You should then be able to exit without abending; however, all

information that was not previously saved is lost.

What is VSAM?

The term Virtual Storage Access Method (VSAM) applies to both a data set type

and the access method used to manage various user data types.

As an access method, VSAM provides much more complex functions than other

disk access methods. VSAM keeps disk records in a unique format that is not

understandable by other access methods.

VSAM is used primarily for applications. It is not used for source programs, JCL,

or executable modules. VSAM files cannot be routinely displayed or edited with

ISPF.

You can use VSAM to organize records into four types of data sets: key-sequenced,

entry-sequenced, linear, or relative record. The primary difference among these

types of data sets is the way their records are stored and accessed.

VSAM data sets are briefly described as follows:

Key Sequence Data Set (KSDS)

This type is the most common use for VSAM. Each record has one or more

key fields and a record can be retrieved (or inserted) by key value. This

provides random access to data. Records are of variable length.

Entry Sequence Data Set (ESDS)

This form of VSAM keeps records in sequential order. Records can be

accessed sequentially. It is used by IMS, DB2, and z/OS UNIX.

Relative Record Data Set (RRDS)

This VSAM format allows retrieval of records by number; record 1, record

2, and so forth. This provides random access and assumes the application

program has a way to derive the desired record numbers.

Linear Data Set (LDS)

This type is, in effect, a byte-stream data set and is the only form of a

byte-stream data set in traditional z/OS files (as opposed to z/OS UNIX

files). A number of z/OS system functions use this format heavily, but it is

rarely used by application programs.

Several additional methods of accessing data in VSAM are not listed here. Most

applications use VSAM for keyed data.

VSAM works with a logical data area known as a control interval (CI) that is

diagrammed in Figure 12 on page 49. The default CI size is 4K bytes, but it can be

up to 32K bytes. The CI contains data records, unused space, record descriptor

fields (RDFs), and a CI descriptor field.

48 z/OS Basic Skills Information Center: z/OS concepts

Multiple CIs are placed in a control area (CA). A VSAM data set consists of control

areas and index records. One form of index record is the sequence set, which is the

lowest-level index pointing to a control interval.

VSAM data is always variable-length and records are automatically blocked in

control intervals. The RECFM attributes (F, FB, V, VB, U) do not apply to VSAM,

nor does the BLKSIZE attribute. You can use the Access Method Services (AMS)

utility to define and delete VSAM structures, such as files and indexes. Defining a

VSAM KSDS using AMS shows an example.

DEFINE CLUSTER -

(NAME(VWX.MYDATA) -

VOLUMES(VSER02) -

RECORDS(1000 500)) -

DATA -

(NAME(VWX.KSDATA) -

 KEYS(15 0) -

RECORDSIZE(250 250) -

BUFFERSPACE(25000)) -

INDEX -

(NAME(VWX.KSINDEX) -

CATALOG (UCAT1)

Many details of VSAM processing are not included in this brief description. Most

processing is handled transparently by VSAM; the application program merely

retrieves, updates, deletes or adds records based on key values.

What is a VTOC?

z/OS uses a catalog and a volume table of contents (VTOC) on each DASD to

manage the storage and placement of data sets.

z/OS requires a particular format for disks, which is shown in Figure 13 on page

50. Record 1 on the first track of the first cylinder provides the label for the disk. It

contains the 6-character volume serial (volser) number and a pointer to the volume

table of contents (VTOC), which can be located anywhere on the disk.

Figure 12. Simple VSAM control interval

Chapter 2. z/OS storage constructs: File systems, data sets, and more 49

The VTOC lists the data sets that reside on its volume, along with information

about the location and size of each data set, and other data set attributes. A

standard z/OS utility program, ICKDSF, is used to create the label and VTOC.

When a disk volume is initialized with ICKDSF, the owner can specify the location

and size of the VTOC. The size can be quite variable, ranging from a few tracks to

perhaps 100 tracks, depending on the expected use of the volume. More data sets

on the disk volume require more space in the VTOC.

The VTOC also has entries for all the free space on the volume. Allocating space

for a data set causes system routines to examine the free space records, update

them, and create a new VTOC entry. Data sets are always an integral number of

tracks (or cylinders) and start at the beginning of a track (or cylinder).

You can also create a VTOC with an index. The VTOC index is actually a data set

with the name SYS1.VTOCIX.volser, which has entries arranged alphabetically by

data set name with pointers to the VTOC entries. It also has bitmaps of the free

space on the volume. A VTOC index allows the user to find the data set much

faster.

What is a catalog?

A catalog describes data set attributes and indicates the volumes on which a data

set is located.

When a data set is cataloged, it can be referred to by name without the user

needing to specify where the data set is stored. Data sets can be cataloged,

uncataloged, or recataloged. All system-managed DASD data sets are cataloged

automatically in a catalog. Cataloging of data sets on magnetic tape is not required,

but doing so can simplify users’ jobs.

In z/OS, the master catalog and user catalogs store the locations of data sets. Both

disk and tape data sets can be cataloged.

To find a data set that you have requested, z/OS must know three pieces of

information:

v Data set name

v Volume name

v Unit (the volume device type, such as a 3390 disk or 3590 tape)

You can specify all three values on ISPF panels or in JCL. However, the unit device

type and the volume are often not relevant to an end user or application program.

Figure 13. Disk label, VTOC, and extents

50 z/OS Basic Skills Information Center: z/OS concepts

A system catalog is used to store and retrieve UNIT and VOLUME location of a

data set. In its most basic form, a catalog can provide the unit device type and

volume name for any data set that is cataloged. A system catalog provides a simple

look-up function. With this facility the user need only provide a data set name.

A z/OS system always has at least one master catalog. If it has a single catalog,

this catalog would be the master catalog and the location entries for all data sets

would be stored in it. A single catalog, however, would be neither efficient nor

flexible, so a typical z/OS system uses a master catalog and numerous user

catalogs connected to it as shown in Figure 14 on page 52.

A user catalog stores the name and location of a data set (dsn/volume/unit). The

master catalog usually stores only a data set high-level qualifier (HLQ) with the

name of the user catalog, which contains the location of all data sets prefixed by

this HLQ. The HLQ is called an alias.

In Figure 14 on page 52, SYSTEM.MASTER.CATALOG is the data set name of the

master catalog. This master catalog stores the full data set name and location of all

data sets with a SYS1 prefix such as SYS1.A1. Two HLQ (alias) entries were

defined to the master catalog, IBMUSER and USER. The statement that defined

IBMUSER included the data set name of the user catalog containing all the fully

qualified IBMUSER data sets with their respective location. The same is true for

USER HLQ (alias).

When SYS1.A1 is requested, the master catalog returns the location information,

volume(WRK001) and unit(3390), to the requestor. When IBMUSER.A1 is

requested, the master catalog redirects the request to USERCAT.IBM, then

USERCAT.IBM returns the location information to the requestor.

Chapter 2. z/OS storage constructs: File systems, data sets, and more 51

Take, as a further example, the following DEFINE statements:

DEFINE ALIAS (NAME (IBMUSER) RELATE (USERCAT.IBM))

DEFINE ALIAS (NAME (USER) RELATE (USERCAT.COMPANY))

These statements are used to place IBMUSER and USER alias names in the master

catalog with the name of the user catalog that will store the fully qualified data set

names and location information. If IBMUSER.A1 is cataloged, a JCL statement to

allocate it to the job would be:

//INPUT DD DSN=IBMUSER.A1,DISP=SHR

If IBMUSER.A1 is not cataloged, a JCL statement to allocate it to the job would be:

//INPUT DD DSN=IBMUSER.A1,DISP=SHR,VOL=SER=WRK001,UNIT=3390

As a general rule, all user data sets in a z/OS installation are cataloged.

Uncataloged data sets are rarely needed and their use is often related to recovery

problems or installation of new software. Data sets created through ISPF are

automatically cataloged.

So, what happens if an installation loses its master catalog, or the master catalog

somehow becomes corrupted? Such an occurrence would pose a serious problem

and require swift recovery actions. To save this potential headache, most system

Figure 14. Catalog concept

52 z/OS Basic Skills Information Center: z/OS concepts

programmers define a back-up for the master catalog. The system programmer

specifies this alternate master catalog during system start-up. In this case, it’s

recommended that the system programmer keep the alternate on a volume

separate from that of the master catalog (to protect against a situation in which the

volume becomes unavailable).

What is a generation data group?

In z/OS, it is possible to catalog successive updates or generations of related data,

which are called generation data groups (GDGs).

Each data set within a GDG is called a generation or generation data set (GDS). A

generation data group (GDG) is a collection of historically related non-VSAM data

sets that are arranged in chronological order. That is, each data set is historically

related to the others in the group.

Within a GDG, the generations can have like or unlike DCB attributes and data set

organizations. If the attributes and organizations of all generations in a group are

identical, the generations can be retrieved together as a single data set.

Advantages to grouping related data sets include:

v All of the data sets in the group can be referred to by a common name.

v The operating system is able to keep the generations in chronological order.

v Outdated or obsolete generations can be automatically deleted by the operating

system.

Generation data sets have sequentially ordered absolute and relative names that

represent their age. The operating system’s catalog management routines use the

absolute generation name. Older data sets have smaller absolute numbers. The

relative name is a signed integer used to refer to the latest (0), the next to the latest

(-1), and so forth, generation.

For example, the data set name LAB.PAYROLL(0) refers to the most recent data set

of the group; LAB.PAYROLL(-1) refers to the second most recent data set; and so

forth. The relative number can also be used to catalog a new generation (+1). A

generation data group (GDG) base is allocated in a catalog before the generation

data sets are cataloged. Each GDG is represented by a GDG base entry.

For new non-system-managed data sets, if you do not specify a volume and the

data set is not opened, the system does not catalog the data set. New

system-managed data sets are always cataloged when allocated, with the volume

assigned from a storage group.

Role of DFSMS in managing space

The primary means of managing space in z/OS is through the Data Facility

Storage Management Subsystem (DFSMS), which comprises a suite of related data

and storage management products. DFSMS performs the essential data, storage,

program, and device management functions of the system.

In a z/OS system, space management involves the allocation, placement,

monitoring, migration, backup, recall, recovery, and deletion of data sets. These

activities can be done either manually or through the use of automated processes.

When data management is automated, the operating system determines object

Chapter 2. z/OS storage constructs: File systems, data sets, and more 53

placement and automatically manages data set backup, movement, space, and

security. A typical z/OS production system includes both manual and automated

processes for managing data sets.

Depending on how a z/OS system and its storage devices are configured, a user or

program can directly control many aspects of data set usage, and in the early days

of the operating system, users were required to do so. Increasingly, however, z/OS

customers rely on installation-specified settings for data and resource management,

and space management products, such as DFSMS, to automate the use of storage

for data sets.

Data management includes these main tasks:

v Setting aside (allocating) space on DASD volumes.

v Automatically retrieving cataloged data sets by name.

v Mounting magnetic tape volumes in the drive.

v Establishing a logical connection between the application program and the

medium.

v Controlling access to data.

v Transferring data between the application program and the medium.

DFSMS, together with hardware products and installation-specific settings for data

and resource management, provides system-managed storage in a z/OS

environment.

The heart of DFSMS is the Storage Management Subsystem (SMS). Using SMS, the

system programmer or storage administrator defines policies that automate the

management of storage and hardware devices. These policies describe data

allocation characteristics, performance and availability goals, backup and retention

requirements, and storage requirements for the system. SMS governs these policies

for the system, and the Interactive Storage Management Facility (ISMF) provides

the user interface for defining and maintaining the policies.

The data sets allocated through SMS are called system-managed data sets or

SMS-managed data sets. When you allocate or define a data set to use SMS, you

specify the data set requirements through a data class, a storage class, and a

management class. Typically, you do not need to specify these classes because a

storage administrator has set up automatic class selection (ACS) routines to

determine which classes are used for a given data set.

DFSMS provides a set of constructs, user interfaces, and routines (using the DFSMS

products) to help the storage administrator. The core logic of DFSMS, such as the

ACS routines, ISMF code, and constructs, resides in DFSMSdfp™. DFSMShsm™ and

DFSMSdss™ are involved in the management class construct. With DFSMS, the

z/OS system programmer or storage administrator can define performance goals

and data availability requirements, create model data definitions for typical data

sets, and automate data backup. DFSMS can automatically assign, based on

installation policy, those services and data definition attributes to data sets when

they are created. IBM storage management-related products determine data

placement, manage data backup, control space usage, and provide data security.

54 z/OS Basic Skills Information Center: z/OS concepts

z/OS UNIX file systems

z/OS UNIX System Services (z/OS UNIX) allows z/OS users to create UNIX file

systems and file system directory trees on z/OS, and to access UNIX files on z/OS

and other systems.

Think of a UNIX file system as a container that holds part of the entire UNIX

directory tree. Unlike a traditional z/OS library, a UNIX file system is hierarchical

and byte-oriented. To find a file in a UNIX file system, you search one or more

directories (see Figure 15). There is no concept of a z/OS catalog that points

directly to a file.

 In z/OS, a UNIX file system is mounted over an empty directory by the system

programmer (or a user with mount authority).

You can use the following file system types with z/OS UNIX:

v zSeries File System (zFS), which is a file system that stores files in VSAM linear

data sets.

v Hierarchical file system (HFS), a mountable file system, which is being phased

out by zFS.

v z/OS Network File System (z/OS NFS), which allows a z/OS system to access a

remote UNIX (z/OS or non-z/OS) file system over TCP/IP, as if it were part of

the local z/OS directory tree.

v Temporary file system (TFS), which is a temporary, in-memory physical file

system that supports in-storage mountable file systems.

As with other UNIX file systems, a path name identifies a file and consists of

directory names and a file name. A fully qualified file name, which consists of the

name of each directory in the path to a file plus the file name itself, can be up to

1023 bytes long.

Figure 15. A hierarchical file system structure

Chapter 2. z/OS storage constructs: File systems, data sets, and more 55

The path name is constructed of individual directory names and a file name

separated by the forward-slash character, for example:

/dir1/dir2/dir3/MyFile

Like UNIX, z/OS UNIX is case-sensitive for file and directory names. For example,

in the same directory, the file MYFILE is a different file than MyFile.

The files in a hierarchical file system are sequential files, and are accessed as byte

streams. A record concept does not exist with these files other than the structure

defined by an application.

The zFS data set that contains the UNIX file system is a z/OS data set type (a

VSAM linear data set). zFS data sets and z/OS data sets can reside on the same

DASD volume. z/OS provides commands for managing zFS space utilization.

The integration of the zFS file system with existing z/OS file system management

services provides automated file system management capabilities that might not be

available on other UNIX platforms. This integration allows file owners to spend

less time on tasks such as backup and restore of entire file systems.

z/OS data sets versus file system files

Many elements of UNIX have analogs in the z/OS operating system. Consider, for

example, that the organization of a user catalog is analogous to a user directory

(/u/ibmuser) in the file system.

In z/OS, the user prefix assigned to z/OS data sets points to a user catalog.

Typically, one user owns all the data sets whose names begin with his user prefix.

For example, the data sets belonging to the TSO/E user ID IBMUSER all begin

with the high-level qualifier (prefix) IBMUSER. There could be different data sets

named IBMUSER.C, IBMUSER.C.OTHER and IBMUSER.TEST.

In the UNIX file system, ibmuser would have a user directory named /u/ibmuser.

Under that directory there could be a subdirectory named /u/ibmuser/c, and

/u/ibmuser/c/pgma would point to the file pgma (see Figure 16 on page 57).

Of the various types of z/OS data sets, a partitioned data set (PDS) is most like a

user directory in the file system. In a partitioned data set such as IBMUSER.C, you

could have members (files) PGMA, PGMB, and so on. For example, you might

have IBMUSER.C(PGMA) and IBMUSER.C(PGMB). Along the same lines, a

subdirectory such as /u/ibmuser/c can hold many files, such as pgma, pgmb, and

so on.

56 z/OS Basic Skills Information Center: z/OS concepts

All data written to a hierarchical file system can be read by all programs as soon

as it is written. Data is written to a disk when a program issues an fsync() .

What is a zFS file system?

The z/OS Distributed File Service (DFS™) zSeries File System (zFS) is a z/OS

UNIX System Services (z/OS UNIX) file system that can be used in addition to the

hierarchical file system (HFS).

zFS file systems contain files and directories that can be accessed with z/OS UNIX

application programming interfaces (APIs). These file systems can support access

control lists (ACLs). zFS file systems can be mounted into the z/OS UNIX

hierarchy along with other local (or remote) file system types (for example, HFS,

TFS, AUTOMNT and NFS).

The Distributed File Service server message block (SMB) provides a server that

makes z/OS UNIX files and data sets available to SMB clients. The data sets

supported include sequential data sets (on DASD), PDS and PDSE, and VSAM

data sets. The data set support is usually referred to as record file system (RFS)

support. The SMB protocol is supported through the use of TCP/IP on z/OS. This

communication protocol allows clients to access shared directory paths and shared

printers. Personal computer (PC) clients on the network can use the file and print

sharing functions that are included in their operating systems.

Supported SMB clients include Windows® XP Professional, Windows Terminal

Server on Windows 2000 server, Windows Terminal Server on Windows 2003, and

Linux®. At the same time, these files can be shared with local z/OS UNIX

applications and with DCE DFS clients.

Figure 16. Comparison of z/OS data sets and file system files

Chapter 2. z/OS storage constructs: File systems, data sets, and more 57

58 z/OS Basic Skills Information Center: z/OS concepts

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX

interfaces

z/OS is ideal for processing batch jobs– workloads that run in the background

with little or no human interaction. However, z/OS is just as much an interactive

operating system as it is a batch processing system. By interactive we mean that

end users (sometimes tens of thousands of them concurrently) can use the system

through direct interaction, such as commands and menu style user interfaces.

In z/OS, the facility known as Time Sharing Option/Extensions or TSO allows

multiple users to log on and interactively share the resources of the mainframe.

TSO also provides users with a limited set of basic commands; using this set is

sometimes called using TSO in its native mode.

ISPF is a menu-driven interface for user interaction with a z/OS system. The ISPF

environment is executed from native TSO. ISPF provides utilities, an editor and

ISPF applications to the user. To the extent permitted by various security controls,

an ISPF user has full access to most z/OS system functions.

TSO/ISPF serves as both a system management interface and a development

interface for traditional z/OS programming.

The z/OS UNIX shell and utilities provide a command interface to the z/OS UNIX

environment. You can access the shell either by logging on to TSO/E or by using

the remote login facilities of TCP/IP (rlogin).

If you use TSO/E, a command called OMVS creates a shell for you. You can work

in the shell environment until exiting or temporarily switching back to the TSO/E

environment.

What is TSO?

Time Sharing Option/Extensions (TSO/E) allows users to create an interactive

session with the z/OS system. TSO provides a single-user logon capability and a

basic command prompt interface to z/OS.

Most users work with TSO through its menu-driven interface, Interactive System

Productivity Facility (ISPF). This collection of menus and panels offers a wide

range of functions to assist users in working with data files on the system. ISPF

users include system programmers, application programmers, administrators, and

others who access z/OS. In general, TSO and ISPF make it easier for people with

varying levels of experience to interact with the z/OS system.

In a z/OS system, each user is granted a user ID and a password authorized for

TSO logon. Logging on to TSO requires a 3270 display device or, more commonly,

a TN3270 emulator running on a PC.

During TSO logon, the system displays the TSO logon screen on the user’s 3270

display device or TN3270 emulator. The logon screen serves the same purpose as a

Windows logon panel.

© Copyright IBM Corp. 2006, 2008 59

z/OS system programmers often modify the particular text layout and information

of the TSO logon panel to better suit the needs of the system’s users. Therefore, the

screen captures used in examples will likely differ from what you might see on an

actual production system.

Figure 17 shows a typical example of a TSO logon screen.

Many of the screen capture examples also show program function (PF) key

settings. Because it is common practice for z/OS sites to customize the PF key

assignments to suit their needs, the key assignments shown in examples might not

match the PF key settings in use at your site.

What is TSO native mode?

Most z/OS sites prefer to have the TSO user session automatically switch to the

ISPF interface after TSO logon. It is possible, however, to use a limited set of basic

TSO commands independent of other complementary programs, such as ISPF.

Using TSO in this way is called using TSO in its native mode.

When a user logs on to TSO, the z/OS system responds by displaying the READY

prompt, and waits for input, such as in Figure 18.

 The READY prompt accepts simple line commands such as HELP, RENAME,

ALLOCATE, and CALL. Figure 19 on page 61 shows an example of an ALLOCATE

command that creates a data set (a file) on disk.

------------------------------- TSO/E LOGON-----------------------------------

Enter LOGON parameters below: RACF LOGON parameters:

Userid ===> ZUSER

Password ===> New Password ===>

Procedure ===> IKJACCNT Group Ident ===>

Acct Nmbr ===> ACCNT#

Size ===> 860000

Perform ===>

Command ===>

Enter an ’S’ before each option desired below:

-Nomail -Nonotice -Reconnect -OIDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==>

Attention PA2 ==> Reshow

You may request specific help information by entering a ’?’ in any

entry field

Figure 17. Typical TSO/E logon screen

ICH70001I ZUSER LAST ACCESS AT 17:12:12 ON THURSDAY, OCTOBER 7, 2004

ZUSER LOGON IN PROGRESS AT 17:12:45 ON OCTOBER 7, 2004

You have no messages or data sets to receive.

READY

Figure 18. TSO logon READY prompt

60 z/OS Basic Skills Information Center: z/OS concepts

Native TSO is similar to the interface offered by the native DOS prompt. TSO also

includes a very basic line mode editor, in contrast to the full screen editor offered

by ISPF.

Figure 20 is another example of the line commands a user might enter at the

READY prompt. Here, the user is entering commands to sort data.

 In this example, the user entered several TSO ALLOCATE commands to assign

inputs and outputs to the workstation for the sort program. The user then entered

a single CALL command to run the sort program, DFSORT™, an optional software

product from IBM.

Each ALLOCATE command requires content (specified with the DATASET

operand) associated with the following:

v SORTIN - in this case AREA.CODES

v SORTOUT - in this case *, which means the terminal screen

v SYSOUT

v SYSPRINT

v SYSIN

READY

 alloc dataset(zuser.test.cntl) volume(test01) unit(3390) tracks space(2,1)

recfm(f) lrecl(80) dsorg(ps)

READY

listds

 ENTER DATA SET NAME -

zuser.test.cntl

 ZUSER.TEST.CNTL

 --RECFM-LRECL-BLKSIZE-DSORG

 F 80 80 PS

 --VOLUMES--

 TEST01

READY

Figure 19. Allocating a data set from the TSO command line

 READY

ALLOCATE DATASET(AREA.CODES) FILE(SORTIN) SHR

 READY

ALLOCATE DATASET(*) FILE(SORTOUT) SHR

 READY

ALLOCATE DATASET(*) FILE(SYSOUT) SHR

 READY

ALLOCATE DATASET(*) FILE(SYSPRINT) SHR

 READY

ALLOCATE DATASET(SORT.CNTL) FILE(SYSIN) SHR

 READY

CALL `SYS1.SICELINK(SORT)’

 ICE143I 0 BLOCKSET SORT TECHNIQUE SELECTED

 ICE000I 1 - CONTROL STATEMENTS FOR Z/OS DFSORT V1R5

 SORT FIELDS=(1,3,CH,A)

 201 NJ

 202 DC

 203 CT

 204 Manitoba

 205 AL

 206 WA

 207 ME

 208 ID

Figure 20. Using native TSO commands to sort data

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 61

Following the input and output allocations and the user-entered CALL command,

the sort program displays the results on the user’s screen. As shown in Figure 20

on page 61, the SORT FIELDS control statement causes the results to be sorted by

area code. For example, NJ (New Jersey) has the lowest number telephone area

code, 201.

Native TSO screen control is very basic. For example, when a screen fills up with

data, three asterisks (***) are displayed to indicate a full screen. Here, you must

press the Enter key to clear the screen of data and allow the screen to display the

remainder of the data.

How are CLISTs and REXX used?

The CLIST and REXX command languages shell script-type processing for TSO

users.

With native TSO, it is possible to place a list of commands, called a command list

or CLIST (pronounced ″see list″) in a file, and execute the list as if it were one

command. When you invoke a CLIST, it issues the TSO/E commands in sequence.

CLISTs are used for performing routine tasks; they enable users to work more

efficiently with TSO.

For example, suppose that a file called AREA.COMMND contained the following

sort commands:

ALLOCATE DATASET(AREA.CODES) FILE(SORTIN) SHR

ALLOCATE DATASET(*) FILE(SORTOUT) SHR

ALLOCATE DATASET(*) FILE(SYSOUT) SHR

ALLOCATE DATASET(*) FILE(SYSPRINT) SHR

ALLOCATE DATASET(SORT.CNTL) FILE(SYSIN) SHR

CALL `SYS1.SICELINK(SORT)’

Instead of issuing each command individually, the user can achieve the same

results by using just a single command to execute the CLIST, as follows:

EXEC ’CLIST AREA.COMMND’

TSO users create CLISTs with the CLIST command language. Another command

language used with TSO is called Restructured Extended Executor or REXX. Both

CLIST and REXX offer shell script-type processing. These command languages are

interpretive languages, as opposed to compiled languages (although REXX can be

compiled as well).

Some TSO users write functions directly as CLISTs or REXX programs, but these

are more commonly implemented as ISPF functions, or by various software

products. CLIST programming is unique to z/OS, while the REXX language is

used on many platforms.

What is ISPF?

ISPF is a full panel application navigated by keyboard. ISPF includes a text editor

and browser, and functions for locating and listing files and performing other

utility functions.

After logging on to TSO, users typically access the ISPF menu. In fact, many use

ISPF exclusively for performing work on z/OS. ISPF menus list the functions that

are most frequently needed by online users.

62 z/OS Basic Skills Information Center: z/OS concepts

Figure 21 shows the allocate procedure to create a data set using ISPF.

 Figure 22 shows the results of allocating a data set using ISPF panels.

 Figure 23 on page 64 shows the ISPF menu structure.

Menu RefList Utilities Help

Allocate New Data Set

 Command ===>

Data Set Name . . . : ZUSER.TEST.CNTL

Management class . . . (Blank for default management class)

 Storage class (Blank for default storage class)

 Volume serial TEST01 (Blank for system default volume) **

 Device type (Generic unit or device address) **

 Data class (Blank for default data class)

 Space units TRACK (BLKS, TRKS, CYLS, KB, MB, BYTES

 or RECORDS)

 Average record unit (M, K, or U)

 Primary quantity . . 2 (In above units)

 Secondary quantity 1 (In above units)

 Directory blocks . . 0 (Zero for sequential data set)*

 Record format F

 Record length 80

 Block size

 Data set name type : (LIBRARY, HFS, PDS, or blank)*

 (YY/MM/DD, YYYY/MM/DD

 Expiration date . . . YY.DDD, YYYY.DDD in Julian form

 Enter "/" to select option DDDD for retention period in days

 Allocate Multiple Volumes or blank)

(* Specifying LIBRARY may override zero directory block)

(** Only one of these fields may be specified)

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel

Figure 21. Allocating a data set using ISPF panels

Data Set Information

Command ===>

Data Set Name . . . : ZUSER.TEST.CNTL

General Data Current Allocation

 Volume serial . . . : TEST01 Allocated tracks . : 2

 Device type : 3390 Allocated extents . : 1

 Organization . . . : PS

 Record format . . . : F

 Record length . . . : 80

 Block size : 80 Current Utilization

 1st extent tracks . : 2 Used tracks : 0

 Secondary tracks . : 1 Used extents . . . : 0

 Creation date . . . : 2005/01/31

 Referenced date . . : 2005/01/31

 Expiration date . . : ***None***

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F12=Cancel

Figure 22. Result of data set allocation using ISPF

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 63

To access ISPF under TSO, the user enters a command such as ISPPDF from the

READY prompt to display the ISPF Primary Option Menu.

Figure 24 shows an example of the ISPF Primary Menu.

Figure 23. ISPF menu structure

Menu Utilities Compilers Options Status Help

--

 ISPF Primary Option Menu

Option ===>

0 Settings Terminal and user parameters User ID .: ZUSER

1 View Display source data or listings Time. . .: 17:29

2 Edit Create or change source data Terminal.: 3278

3 Utilities Perform utility functions Screen. .: 1

4 Foreground Interactive language processing Language.: ENGLISH

5 Batch Submit job for language processing Appl ID .: PDF

6 Command Enter TSO or Workstation commands TSO logon: IKJACCT

7 Dialog Test Perform dialog testing TSOprefix: ZUSER

8 LM Facility Library administrator functions System ID: SC04

9 IBM Products IBM program development products MVS acct.: ACCNT#

10 SCLM SW Configuration Library Manager Release .: ISPF 5.2

11 Workplace ISPF Object/Action Workplace

M More Additional IBM Products

Enter X to Terminate using log/list defaults

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel

Figure 24. ISPF Primary Option Menu

64 z/OS Basic Skills Information Center: z/OS concepts

The ISPF panel can be customized with additional options by the local system

programmer. Therefore, it can vary in features and content from site to site.

To reach the ISPF menu selections shown in Figure 25, you enter M on the option

line.

 In Figure 25, DFSORT is offered as option 9 on this panel. We will select it now as

a useful example of the ISPF panel-driven applications.

Figure 26 on page 66 shows the panel that would be displayed for option 9 of ISPF.

Menu Help

--

 IBM Products Panel

 More: +

1 SMP/E System Modification Program/Extended

2 ISMF Integrated Storage Management Facility

3 RACF Resource Access Control Facility

4 HCD Hardware Configuration Dialogs

5 SDSF Spool Search and Display Facility

6 IPCS Interactive Problem Control System

7 DITTO DITTO/ESA for MVS Version 1

8 RMF Resource Measurement Facility

9 DFSORT Data Facility Sort

10 OMVS MVS OpenEdition

11 DB2 Data Base Products

12 RRS Resource Recovery Services

13 DB2ADM Data Base Admin Tool

14 QMF Query Management Facility

15 MQ WMQ Series Operations and Control

16 FMN File Manager 3.1 Operations and Control

17 WLM Workload Manager

18 PE Performance Expert

Option ===> 9__

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 25. More ISPF options displayed

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 65

The TSO sort function is available through ISPF as a menu-selectable option.

Through the SORT option, the user can allow ISPF to handle the TSO allocations,

create the SORT control statement, and call the SORT program to produce the

results of the sort.

Notice the keyboard program function key (PF key) selections at the bottom of

each panel; using PF3 (END) returns the user to the previous panel.

Although ISPF is a full panel application navigated by keyboard, you may

download and install a variety of ISPF graphical user interface (GUI) clients to

include with a z/OS system. After installing the ISPF GUI client, it is possible to

use the mouse.

ISPF keyboard keys and functions

Many screen capture examples show ISPF program function (PF) key settings at

the bottom of the panel. Because it is common for z/OS users to customize the PF

key assignments to suit their needs, the key assignments shown might not match

the PF key settings in use on your system. Actual function key settings vary from

customer to customer.

Keyboard mapping lists some of the most frequently used PF keys and other

keyboard functions and their corresponding keys.

The examples in this section use these keyboard settings. For example, directions to

press Enter mean that you should press the keyboard’s control key (Ctrl) at the

lower right. If the keyboard locks up, press the control key at the lower left.

 Table 2. Keyboard mapping

Function Key

Enter Ctrl (right side)

Exit, end, or return PF3

DFSORT PRIMARY OPTION MENU

ENTER SELECTION OR COMMAND ===>

SELECT ONE OF THE FOLLOWING:

0 DFSORT PROFILE - Change DFSORT user profile

1 SORT - Perform Sort Application

2 COPY - Perform Copy Application

3 MERGE - Perform Merge Application

X EXIT - Terminate DFSORT

 \--/

 | \--/ |

 | | Licensed Materials - Property of IBM | |

 | | | |

 | | 5740-SM1 (C) Copyright IBM Corp. 1988, 1992. | |

 | | All rights reserved. US Government Users | |

 | | Restricted Rights - Use, duplication or | |

 | | disclosure restricted by GSA ADP Schedule | |

 | | Contract with IBM Corp. | |

 | /--\ |

 /--\

USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT.

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=CURSOR

Figure 26. SORT panel

66 z/OS Basic Skills Information Center: z/OS concepts

Table 2. Keyboard mapping (continued)

Function Key

Help PF1

PA1 or Attention Alt-Ins or Esc

PA2 Alt-Home

Cursor movement Tab or Enter

Clear Pause

Page up PF7

Page down PF8

Scroll left PF10

Scroll right PF11

Reset locked keyboard Ctrl (left side)

From the ISPF Primary Menu, press the PF1 HELP key to display the ISPF tutorial.

New users of ISPF should acquaint themselves with the tutorial (Figure 27) and

with the extensive online help facilities of ISPF.

Besides the tutorial, you can access online help from any of the ISPF panels. When

you invoke help, you can scroll through information. Press the PF1-Help key for

explanations of common ISPF entry mistakes, and examples of valid entries. ISPF

Help also contains help for the various functions found in the primary option

menu.

 PA1 is a very important key for TSO users and every user should know how to

find it on the keyboard. Back in the early days, the ″real″ 3270 terminals had keys

labeled PA1, PA2, and PA3. These were called Program Action keys or PA keys. In

practice, only PA1 is still widely used and it functions as a break key for TSO. In

TSO terminology, this is an attention interrupt. That is, pressing the PA1 key will

end the current task.

Tutorial --------------------- Table of Contents-------------------- Tutorial

 ISPF Program Development Facility Tutorial

The following topics are presented in sequence, or may be selected by entering

a selection code in the option field:

 G General - General information about ISPF

 0 Settings - Specify terminal and user parameters

 1 View - Display source data or output listings

 2 Edit - Create or change source data

 3 Utilities - Perform utility functions

 4 Foreground - Invoke language processors in foreground

 5 Batch - Submit job for language processing

 6 Command - Enter TSO command, CLIST, or REXX exec

 7 Dialog Test - Perform dialog testing

 9 IBM Products - Use additional IBM program development products

 10 SCLM - Software Configuration and Library Manager

 11 Workplace - ISPF Object/Action Workplace

 X Exit - Terminate ISPF using log and list defaults

 The following topics will be presented only if selected by number:

 A Appendices - Dynamic allocation errors and ISPF listing formats

 I Index - Alphabetical index of tutorial topics

F1=Help F2=Split F3=Exit F4=Resize F5=Exhelp F6=Keyshelp

F7=PrvTopic F8=NxtTopic F9=Swap F10=PrvPage F11=NxtPage F12=Cancel

Figure 27. ISPF Tutorial main menu

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 67

Finding the PA1 key on the keyboard of a 3270 terminal emulator such as TN3270

emulator can be a challenge. A 3270 emulator can be customized to many different

key combinations. On an unmodified x3270 session, the PA1 key is Left Alt-1.

The ISPF Data Set List utility

z/OS users typically use the ISPF Data Set List utility to work with data sets.

To access this utility from the ISPF Primary Option Menu, select Utilities, then

select Dslist to display the Utility Selection Panel, which is shown in Figure 28.

 In the panel, you can use the Dsname Level data entry field to locate and list data

sets. To search for one data set in particular, enter the complete (or fully qualified)

data set name. To search for a range of data sets, such as all data sets sharing a

common HLQ, enter only the HLQ in the Dsname Level field.

Qualifiers can be specified fully, partially, or defaulted. At least one qualifier must

be partially specified. To search for a portion of a name, specify an asterisk (*)

before or after part of a data set name. Doing so will cause the utility to return all

data sets that match the search criteria. Avoid searching on * alone, because TSO

has many places to search in z/OS so this could take quite awhile.

In the majority of ISPF panels, a fully qualified data set name needs to be enclosed

in single quotes. Data set names not enclosed in single quotes will, by default, be

prefixed with a high level qualifier specified in the TSO PROFILE. This default can

be changed using the PROFILE PREFIX command. In addition, an exception is

ISPF option 3.4 DSLIST; do not enclose Dsname Level in quotes on this panel.

For example, if you enter ZUSER in the Dsname field, the utility lists all data sets

with ZUSER as a high-level qualifier. The resulting list of data set names (see

Figure 29 on page 69) allows the user to edit or browse the contents of any data set

in the list.

Menu RefList RefMode Utilities Help

--

 Data Set List Utility

Option ===> __

 blank Display data set list P Print data set list

 V Display VTOC information PV Print VTOC information

Enter one or both of the parameters below:

 Dsname Level . . . ZUSER_______________________________

 Volume serial . . ______

Data set list options

 Initial View . . . 1 1. Volume Enter "/" to select option

 2. Space / Confirm Data Set Delete

 3. Attrib / Confirm Member Delete

 4. Total / Include Additional Qualifiers

When the data set list is displayed, enter either:

 "/" on the data set list command field for the command promptpop-up,

 an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or

 "=" to execute the previous command.

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel

Figure 28. Using the Data Set List utility

68 z/OS Basic Skills Information Center: z/OS concepts

To see all of the possible actions you might take for a given data set, specify a

forward slash (/) in the command column to the left of the data set name. ISPF

will display a list of possible actions, as shown in Figure 30.

The ISPF editor

z/OS users typically use the ISPF editor to create or modify data set members.

To access the editor, select 2 from the ISPF Primary Option Menu and, on the Edit

Entry panel, enter the name of the data set that you want to create or modify.

In edit mode, each line of text in the data set is known as a record. You can

perform the following tasks:

v To edit the contents of a data set, move the cursor to the area of the record to be

changed and type over the existing text.

v To find and change text, you can enter commands on the editor command line.

Menu Options View Utilities Compilers Help

--

DSLIST - Data Sets Matching ZUSER Row 1 of 4

Command ===> Scroll ===> PAGE

Command - Enter "/" to select action Message Volume

 ZUSER *ALIAS

 ZUSER.JCL.CNTL SMITH1

 ZUSER.LIB.SOURCE SMITH1

 ZUSER.PROGRAM.CNTL SMITH1

 ZUSER.PROGRAM.LOAD SMITH1

 ZUSER.PROGRAM.SRC SMITH1

***************************** End of Data Set list****************************

F1=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Figure 29. Data Set List results for dsname ZUSER

Menu Options View Utilities Compilers Help

- +---+----------

D ! Data Set List Actions ! Row 1 of 4

C ! ! ===> PAGE

 ! Data Set: ZUSER.PROGRAM.CNTL !

C ! ! Volume

- ! DSLIST Action !-----------

 ! __ 1. Edit 12. Compress ! *ALIAS

/ ! 2. View 13. Free ! SMITH1

 ! 3. Browse 14. Print Index ! SMITH1

 ! 4. Member List 15. Reset ! SMITH1

* ! 5. Delete 16. Move !***********

 ! 6. Rename 17. Copy !

 ! 7. Info 18. Refadd !

 ! 8. Short Info 19. Exclude !

 ! 9. Print 20. Unexclude ’NX’ !

 ! 10. Catalog 21. Unexclude first ’NXF’ !

 ! 11. Uncatalog 22. Unexclude last ’NXL’ !

 ! !

 ! Select a choice and press ENTER to process data set action. !

 ! F1=Help F2=Split F3=Exit F7=Backward !

 ! F8=Forward F9=Swap F12=Cancel !

 +---+

F1=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Figure 30. Displaying the Data Set List actions

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 69

v To insert, copy, delete, or move text, place these commands directly on the line

numbers where the action should occur.

To commit your changes, use PF3 or save. To exit the data set without saving your

changes, enter Cancel on the edit command line.

Figure 31 shows the contents of data set ZUSER.PROGRAM.CNTL(SORTCNTL)

opened in edit mode.

 Take a look at the line numbers, the text area, and the editor command line.

Primary command line, line commands placed on the line numbers, and text

overtype are three different ways in which you can modify the contents of the data

set. Line numbers increment by 10 with the TSO editor so that the programmer can

insert nine additional lines between each current line without having to renumber

the program.

PF1 in edit mode displays the entire editor tutorial (Figure 32).

 A subset of the line commands includes:

i Insert a line

Enter Press Enter without entering anything to escape insert mode

File Edit Edit_Settings Menu Utilities Compilers Test Help

--

EDIT ZUSER.PROGRAM.CNTL(SORTCNTL) - 01.00 Columns 00001 00072

Command ===> Scroll ===> CSR

**************************** Top of Data *****************************

000010 SORT FIELDS=(1,3,CH,A)

*************************** Bottom of Data ***************************

Figure 31. Edit a data set

TUTORIAL -------------------------- EDIT ----------------------------- TUTORIAL

OPTION ===>

 | EDIT |

 Edit allows you to create or change source data.

The following topics are presented in sequence, or may be selected by number:

 0 - General introduction 8 - Display modes(CAPS/HEX/NULLS)

 1 - Types of data sets 9 - Tabbing (hardware/software/logical)

 2 - Edit entry panel 10 - Automatic recovery

 3 - SCLM edit entry panel 11 - Edit profiles

 4 - Member selection list 12 - Edit line commands

 5 - Display screen format 13 - Edit primary commands

 6 - Scrolling data 14 - Labels and line ranges

 7 - Sequence numbering 15 - Ending an edit session

The following topics will be presented only if selected by number:

 16 - Edit models

 17 - Miscellaneous notes about edit

F1=Help F2=Split F3=Exit F4=Resize F5=Exhelp F6=Keyshelp

F7=PrvTopic F8=NxtTopic F9=Swap F10=PrvPage F11=NxtPage F12=Cancel

Figure 32. Edit Help panel and tutorial

70 z/OS Basic Skills Information Center: z/OS concepts

i5 Obtain five input lines

d Delete a line

d5 Delete five lines

dd/dd Delete a block of lines

r Repeat a line

rr/rr Repeat a block of lines

c With a or b: Copy a line after or before

c5 With a or b: Copy five lines after or before

cc/cc With a or b: Copy a block of lines after or before

m Move lines. As with copy commands, m5, mm/mm and use with a or b are

also valid commands.

x Exclude a line

The ISPF Settings menu

The ISPF Settings menu and HILITE command allow you to customize the

appearance of your ISPF session.

To access and change ISPF settings, do the following:

1. From the ISPF Primary Option Menu, select option 0 to display the Settings

menu, as shown in Figure 33.

2. In the list of options, type or remove the ″/″ on the line corresponding to the

setting that you want to change. Use the Tab or New line key to move the

cursor.

 The actions in the bar across the top usually vary from site to site.

Another way to customize ISPF panels is with the hilite command, as shown in

Figure 34 on page 72. This command allows you to tailor various ISPF options to

Log/List Function keys Colors Environ Workstation Identifier Help

 ISPF Settings

Command ===>

Options Print Graphics

Enter "/" to select option Family printer type 2

_ Command line at bottom Device name

/ Panel display CUA mode Aspect ratio . . . 0

/ Long message in pop-up

_ Tab to action bar choices

_ Tab to point-and-shoot fields General

/ Restore TEST/TRACE options Input field pad . . B

_ Session Manager mode Command delimiter . ;

/ Jump from leader dots

_ Edit PRINTDS Command

/ Always show split line

_ Enable EURO sign

Terminal Characteristics

 Screen format 2 1. Data 2. Std 3. Max 4. Part

 Terminal Type 3 1. 3277 2. 3277A 3. 3278 4. 3278A

 5. 3290A 6. 3278T 7. 3278CF 8. 3277KN

 9. 3278KN 10. 3278AR 11. 3278CY 12. 3278HN

 13. 3278HO 14. 3278IS 15. 3278L2 16. BE163

 17. BE190 18. 3278TH 19. 3278CU 20. DEU78

 21. DEU78A 22. DEU90A 23. SW116 24. SW131

 25. SW500

Figure 33. ISPF settings

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 71

suit the needs of your environment.

What is z/OS UNIX?

The z/OS UNIX shell and utilities provide an interactive interface to z/OS.

The shell and utilities can be compared to the TSO function in z/OS.

To perform some command requests, the shell calls other programs, known as

utilities. The shell can be used to:

v Invoke shell scripts and utilities.

v Write shell scripts (a named list of shell commands, using the shell

programming language).

v Run shell scripts and C language programs interactively, in the TSO background

or in batch.

File Languages Colors Help

--

 Edit Color Settings

Command ===> (this menu shows up when you type "hilite")

Language: 1. Automatic Coloring: 1. Do not color program

 2. Assembler 2. Color program

 3. BookMaster 3. Both IF and DO logic

 4. C 4. DO logic only

 5. COBOL 5. IF logic only

 6. IDL

 7. ISPF DTL Enter "/" to select option

 8. ISPF Panel Parentheses matching

 9. ISPF Skeleton / Highlight FIND strings

 10. JCL / Highlight cursor phrase

 11. Pascal

 12. PL/I Note: Information from this...

 13. REXX saved in the edit profile.

F1=Help F2=Split F3=Exit F7=Backward F8=Forward

F9=Swap F10=Actions F12=Cancel

Figure 34. Using the HILITE command

72 z/OS Basic Skills Information Center: z/OS concepts

A user can invoke the z/OS UNIX shell in the following ways:

v From a 3270 display or a workstation running a 3270 emulator

v From a TCP/IP-attached terminal, using the rlogin and telnet commands

v From a TSO session, using the OMVS command.

As an alternative to invoking the shell directly, a user can use ISHELL by entering

the command ISHELL from TSO. ISHELL provides an ISPF panel interface to

perform many actions for z/OS UNIX operations.

Figure 36 shows an overview of these interactive interfaces, the z/OS UNIX shell

and ISHELL. Also, there are some TSO/E commands that support z/OS UNIX, but

they are limited to functions such as copying files and creating directories.

 The z/OS UNIX shell is based on the UNIX System V shell and has some of the

features from the UNIX Korn shell. The POSIX standard distinguishes between a

command, which is a directive to the shell to perform a specific task, and a utility,

Figure 35. Shell and utilities

Figure 36. z/OS UNIX interactive interfaces

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 73

which is the name of a program callable by name from the shell. To the user, there

is no difference between a command and a utility.

The z/OS UNIX shell provides the environment that has the most functions and

capabilities. It supports many of the features of a regular programming language.

You can store a sequence of shell commands in a text file that can be executed.

This is called a shell script.

The TSO commands used with z/OS UNIX are:

ISHELL

The ISHELL command invokes the ISPF panel interface to z/OS UNIX

System Services. ISHELL is a good starting point for users familiar with

TSO and ISPF who want to use z/OS UNIX. These users can do much of

their work with ISHELL, which provides panels for working with the

z/OS UNIX file system, including panels for mounting and unmounting

file systems and for doing some z/OS UNIX administration. ISHELL is

often good for system programmers, familiar with z/OS, who need to set

up UNIX resources for the users.

OMVS

The OMVS command is used to invoke the z/OS UNIX shell. Users whose

primary interactive computing environment is a UNIX system should find

the z/OS UNIX shell environment familiar.

ISHELL command (ish)

The ISHELL command invokes the ISPF panel interface to z/OS UNIX System

Services. ISHELL is a good starting point for users familiar with TSO and ISPF

who want to use z/OS UNIX.

Figure 37 shows the ISHELL or ISPF Shell panel displayed as a result of the

ISHELL or ISH command being entered from ISPF Option 6.

 To search a user’s files and directories, type /u/userid and then press Enter. or

example, Figure 38 on page 75 shows the files and directories of user rogers.

 File Directory Special_file Tools File_systems Options Setup Help

--

 UNIX System Services ISPF Shell

Enter a pathname and do one of these:

 - Press Enter

 - Select an action bar choice.

 - Specify an action code or command on the command line.

Return to this panel to work with a different pathname.

 More: +

/u/rogers

Figure 37. Panel displayed after issuing the ISH command

74 z/OS Basic Skills Information Center: z/OS concepts

From here, you use action codes to do any of the following:

b Browse a file or directory

e Edit a file or directory

d Delete a file or directory

r Rename a file or directory

a Show the attributes of a file or directory

c Copy a file or directory

OMVS command shell session

The OMVS command is used to invoke the z/OS UNIX shell. Users whose

primary interactive computing environment is a UNIX system should find the

z/OS UNIX shell environment familiar.

You use the OMVS command to invoke the z/OS UNIX shell.

The shell is a command processor that you use to:

v Invoke shell commands or utilities that request services from the system.

v Write shell scripts using the shell programming language.

v Run shell scripts and C-language programs interactively (in the foreground), in

the background, or in batch.

Shell commands often have options (also known as flags) that you can specify,

and they usually take an argument, such as the name of a file or directory. The

format for specifying the command begins with the command name, then the

option or options, and finally the argument, if any.

For example, in Figure 39 on page 76 the following command is shown:

ls -al /u/rogers

where ls is the command name, and -al are the options.

--

 Directory List

Select one or more files with / or action codes. If / is used also select an

action from the action bar otherwise your default action will be used. Select

with S to use your default action. Cursor select can also be used for quick

navigation. See help for details.

EUID=0 /u/rogers

 Type Perm Changed-EST5EDT Owner -Size Filename Row 1 of 9

 Dir 700 2002-08-01 10:51 ADMIN 8129 .

 Dir 555 2005-02-13 11:14 AAAAAAA 0 ..

 File 755 1996-02-29 18:02 ADMIN 979 .profile

 File 600 1996-03-01 10:29 ADMIN 29 .sh_history

 Dir 755 2001-06-25 17:43 AAAAAAA 8129 data

 File 644 2004-06-26 11:27 AAAAAAA 47848 inventory.export

 File 700 2002-08-01 10:51 AAAAAAA 16 myfile

 File 644 2007-06-22 17:53 AAAAAAA 43387 print.export

 File 644 2007-04-28 18:03 AAAAAAA 84543 Sc.pdf

Figure 38. Display of a user’s files and directories

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 75

This command lists the files and directories of the user. If the pathname is a file, ls

displays information on the file according to the requested options. If it is a

directory, ls displays information on the files and subdirectories therein. You can

get information on a directory itself by using the -d option.

If you do not specify any options, ls displays only the file names. When ls sends

output to a pipe or file, it writes one name per line; when it sends output to the

terminal, it uses the -C (multi-column) format.

Terminology note: z/OS users tend to use the terms data set and file

synonymously, but not when it comes to z/OS UNIX System Services. With the

UNIX support in z/OS, the file system is a data set that contains directories and

files. So file has a very specific definition. z/OS UNIX files are different from other

z/OS data sets because they are byte-oriented rather than record-oriented.

Direct login to the z/OS UNIX shell

You can log in directly to the z/OS UNIX shell from a system that is connected to

z/OS through TCP/IP.

Use one of the following methods:

rlogin You can rlogin (remote log in) to the shell from a system that has rlogin

client support. To log in, use the rlogin command syntax supported at your

site.

telnet You can telnet into the shell. To log in, use the telnet command from your

workstation or from another system with telnet client support.

As shown in Figure 40 on page 77, each of these methods requires the inetd

daemon to be set up and active on the z/OS system.

ROGERS @ SC43:/>ls -al /u/rogers

total 408

drwx------ 3 ADMIN SYS1 8192 Aug 1 2005 .

dr-xr-xr-x 93 AAAAAAA TTY 0 Feb 13 11:14 ..

-rwxr-xr-x 1 ADMIN SYS1 979 Feb 29 1996 .profile

-rw------- 1 ADMIN SYS1 29 Mar 1 1996 .sh_history

-rw-r--r-- 1 AAAAAAA SYS1 84543 Apr 28 2007 Sc.pdf

drwxr-xr-x 2 AAAAAAA SYS1 8192 Jun 25 2001 data

-rw-r--r-- 1 AAAAAAA SYS1 47848 Jun 26 2004 inventory.export

-rwx------ 1 AAAAAAA SYS1 16 Aug 1 2005 myfile

-rw-r--r-- 1 AAAAAAA SYS1 43387 Jun 22 2007 print.export

Figure 39. OMVS shell session display after issuing the OMVS command

76 z/OS Basic Skills Information Center: z/OS concepts

There are some differences between the asynchronous terminal support (direct

shell login) and the 3270 terminal support (OMVS command):

v You cannot switch to TSO/E. However, you can use the TSO SHELL command

to run a TSO/E command from your shell session.

v You cannot use the ISPF editor (this includes the oedit command, which invokes

ISPF edit).

v You can use the UNIX vi editor, and other interactive utilities that depend on

receiving each keystroke, without hitting the Enter key.

v You can use UNIX-style command-line editing.

Figure 40. Diagram of a login to the shell from a terminal

Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces 77

78 z/OS Basic Skills Information Center: z/OS concepts

Chapter 4. Processing work on z/OS: How the system starts

and manages batch jobs

Your company’s core applications, such as payroll, are usually performed through

batch processing, which involves executing one or more batch jobs in a sequential

flow. The job entry subsystem (JES) helps z/OS receive jobs, schedule them for

processing, and determine how job output is processed.

Batch processing is the most fundamental function of z/OS. Many batch jobs are

run in parallel and JCL is used to control the operation of each job. Correct use of

JCL parameters (especially the DISP parameter in DD statements) allows parallel,

asynchronous execution of jobs that may need access to the same data sets.

An initiator is a system program that processes JCL, sets up the necessary

environment in an address space, and runs a batch job in the same address space.

Multiple initiators (each in an address space) permit the parallel execution of batch

jobs.

One goal of an operating system is to process work while making the best use of

system resources. To achieve this goal, resource management is needed during key

phases to do the following:

v Before job processing, reserve input and output resources for jobs.

v During job processing, manage spooled SYSIN and SYSOUT data.

v After job processing, free all resources used by the completed jobs, making the

resources available to other jobs.

z/OS shares with the job entry subsystem (JES) the management of jobs and

resources. JES receives jobs into the system, schedules them for processing by

z/OS, and controls their output processing. JES is the manager of the jobs waiting

in a queue. It manages the priority of the jobs and their associated input data and

output results. The initiator uses the statements in the JCL records to specify the

resources required of each individual job after it is released (dispatched) by JES.

IBM provides two kinds of job entry subsystems: JES2 and JES3. In many cases,

JES2 and JES3 perform similar functions.

During the life of a job, both JES and the z/OS base control program control

different phases of the overall processing. Jobs are managed in queues: Jobs that

are waiting to run (conversion queue), currently running (execution queue),

waiting for their output to be produced (output queue), having their output

produced (hard-copy queue), and waiting to be purged from the system (purge

queue).

What is batch processing?

Jobs that can run without end user interaction, or can be scheduled to run as

resources permit, are called batch jobs. Batch processing is for those frequently

used programs that can be executed with minimal human interaction.

A program that reads a large file and generates a report, for example, is considered

to be a batch job.

© Copyright IBM Corp. 2006, 2008 79

The term batch job originated in the days when punched cards contained the

directions for a computer to follow when running one or more programs. Multiple

card decks representing multiple jobs would often be stacked on top of one

another in the hopper of a card reader, and be run in batches.

As a historical note, Herman Hollerith (1860-1929) created the punched card in

1890 while he worked as a statistician for the United States Census Bureau. To help

tabulate results for the 1890 U.S. census, Hollerith designed a paper card with 80

columns and 12 rows; he made it equal to the size of a U.S. dollar bill of that time.

To represent a series of data values, he punched holes into the card at the

appropriate row/column intersections. Hollerith also designed an

electromechanical device to ″read″ the holes in the card, and the resulting electrical

signal was sorted and tabulated by a computing device. (Mr. Hollerith later

founded the Computing Tabulating Recording Company, which eventually became

IBM.)

There is no direct counterpart to z/OS batch processing in PC or UNIX systems.

Batch jobs are typically executed at a scheduled time or on an as-needed basis.

Perhaps the closest comparison is with processes run by an AT® or CRON

command in UNIX, although the differences are significant. You might also

consider batch processing as being somewhat analogous to the printer queue as it

is typically managed on an Intel-based operating system. Users submit jobs to be

printed, and the print jobs wait to be processed until each is selected by priority

from a queue of work called a print spool.

To enable the processing of a batch job, z/OS professionals use job control

language (JCL) to tell z/OS which programs are to be executed and which files

will be needed by the executing programs. JCL allows the user to describe certain

attributes of a batch job to z/OS, such as:

v Who you are (the submitter of the batch job)

v What program to run

v Where input and output are located

v When a job is to run

After the user submits the job to the system, there is normally no further human

interaction with the job until it is complete.

What is JES?

z/OS uses a job entry subsystem or JES to receive jobs into the operating system,

to schedule them for processing by z/OS, and to control their output processing.

JES is the component of the operating system that provides supplementary job

management, data management, and task management functions such as

scheduling, control of job flow, and the reading and writing of input and output

streams on auxiliary storage devices, concurrently with job execution.

z/OS manages work as tasks and subtasks. Both transactions and batch jobs are

associated with an internal task queue that is managed on a priority basis. JES is a

component of z/OS that works on the front end of program execution to prepare

work to be executed. JES is also active on the back end of program execution to

help clean up after work is performed. This activity includes managing the

printing of output generated by active programs.

More specifically, JES manages the input and output job queues and data.

80 z/OS Basic Skills Information Center: z/OS concepts

For example, JES handles the following aspects of batch processing for z/OS:

v Receiving jobs into the operating system

v Scheduling them for processing by z/OS

v Controlling their output processing

z/OS has two versions of job entry systems: JES2 and JES3. Of these, JES2 is the

most common by far. JES2 and JES3 have many functions and features, but their

most basic functions are as follows:

v Accept jobs submitted in various ways:

– From ISPF through the SUBMIT command

– Over a network

– From a running program, which can submit other jobs through the JES

internal reader

– From a card reader (very rare!)
v Queue jobs waiting to be executed. Multiple queues can be defined for various

purposes.

v Queue jobs for an initiator, which is a system program that requests the next job

in the appropriate queue.

v Accept printed output from a job while it is running and queue the output.

v Optionally, send output to a printer, or save it on spool for PSF, InfoPrint, or

another output manager to retrieve.

JES uses one or more disk data sets for spooling, which is the process of reading

and writing input and output streams on auxiliary storage devices, concurrently

with job execution, in a format convenient for later processing or output

operations. Spool is an acronym that stands for simultaneous peripheral

operations online.

JES combines multiple spool data sets (if present) into a single conceptual data set.

The internal format is not in a standard access-method format and is not written or

read directly by applications. Input jobs and printed output from many jobs are

stored in the single (conceptual) spool data set. In a small z/OS system, the spool

data sets might be a few hundred cylinders of disk space; in a large installation,

they might be many complete volumes of disk space.

The basic elements of batch processing are shown in Figure 41 on page 82.

Chapter 4. Processing work on z/OS: How the system starts and manages batch jobs 81

The initiator is an integral part of z/OS that reads, interprets, and executes the

JCL. It is normally running in several address spaces (as multiple initiators). An

initiator manages the running of batch jobs, one at a time, in the same address

space. If ten initiators are active (in ten address spaces), then ten batch jobs can run

at the same time. JES does some JCL processing, but the initiator does the key JCL

work

The jobs in Basic batch flow represent JCL and perhaps data intermixed with the

JCL. Source code input for a compiler is an example of data (the source statements)

that might be intermixed with JCL. Another example is an accounting job that

prepares the weekly payroll for different divisions of a firm (presumably, the

payroll application program is the same for all divisions, but the input and master

summary files may differ).

The diagram represents the jobs as punched cards (using the conventional symbol

for punched cards) although real punched card input is very rare now. Typically, a

job consists of card images (80-byte fixed-length records) in a member of a

partitioned data set.

What does an initiator do?

An initiator performs several functions to ensure that multiple jobs run at the same

time, without conflicts.

To run multiple jobs asynchronously, the system must perform a number of

functions:

v Select jobs from the input queues (JES does this).

v Ensure that multiple jobs (including TSO users and other interactive

applications) do not conflict in data set usage.

v Ensure that single-user devices, such as tape drives, are allocated correctly.

v Find the executable programs requested for the job.

v Clean up after the job ends and then request the next job.

Figure 41. Basic batch flow

82 z/OS Basic Skills Information Center: z/OS concepts

Most of this work is done by the initiator, based on JCL information for each job.

The most complex function is to ensure there are no conflicts due to data set

utilization. For example, if two jobs try to write in the same data set at the same

time (or one reads while the other writes), there is a conflict. This event would

normally result in corrupted data. The primary purpose of JCL is to tell an initiator

what is needed for the job.

The prevention of conflicting data set usage is critical to z/OS and is one of the

defining characteristics of the operating system. When the JCL is properly

constructed, the prevention of conflicts is automatic. For example, if job A and job

B must both write to a particular data set, the system (through the initiator) does

not permit both jobs to run at the same time. Instead, whichever job starts first

causes an initiator attempting to run the other job to wait until the first job

completes.

Batch processing and JES: Scenario 1

Imagine that you are a z/OS application programmer developing a program for

non-skilled users. Your program is supposed to read a couple of files, write to

another couple of files, and produce a printed report. This program will run as a

batch job on z/OS.

What sorts of functions are needed in the operating system to fulfill the

requirements of your program? And, how will your program access those

functions?

First, you need a sort of special language to inform the operating system about

your needs. On z/OS, this language is job control language (JCL). JCL provides the

means for you to request resources and services from the operating system for a

batch job.

Specifications and requests you might make for a batch job include the functions

you need to compile and execute the program, and allocate storage for the

program to use as it runs.

With JCL, you can specify the following:

v Who you are (important for security reasons).

v Which resources (programs, files, memory) and services are needed from the

system to process your program. You might, for example, need to do the

following:

– Load the compiler code in memory.

– Make accessible to the compiler your source code; that is, when the compiler

asks for a read, your source statements are brought to the compiler memory.

– Allocate some amount of memory to accommodate the compiler code, I/O

buffers, and working areas.

– Make accessible to the compiler an output disk data set to receive the object

code, which is usually referred to as the object deck or simply OBJ.

– Make accessible to the compiler a print file where it will tell you your

eventual mistakes.

– Conditionally, have z/OS load the newly created object deck into memory

(but skip this step if the compilation failed).

– Allocate some amount of memory for your program to use.

– Make accessible to your program all the input and output files.

Chapter 4. Processing work on z/OS: How the system starts and manages batch jobs 83

– Make accessible to your program a printer for eventual messages.

In turn, you require the operating system to:

v Convert JCL to control blocks that describe the required resources.

v Allocate the required resources (programs, memory, files).

v Schedule the execution on a timely basis; for example, your program only runs if

the compilation succeeds.

v Free the resources when the program is done.

The parts of z/OS that perform these tasks are the job entry subsystem (JES) and a

batch initiator program.

Think of JES as the manager of the jobs waiting in a queue. It manages the priority

of the set of jobs and their associated input data and output results. The initiator

uses the statements on the JCL cards to specify the resources required of each

individual job once it has been released (dispatched) by JES.

Your JCL as described is called a job, in this case formed by two sequential steps,

the compilation and execution. The steps in a job are always executed sequentially.

The job must be submitted to JES to be executed. To make your task easier, z/OS

provides a set of procedures in a data set called SYS1.PROCLIB. A procedure is a

set of JCL statements that are ready to be executed.

Figure 42 on page 85 shows a JCL procedure that can compile, link-edit and

execute a program. The first step identifies the COBOL compiler, as declared in

//COBOL EXEC PGM=IGYCRCTL . The statement //SYSLIN DD describes the

output of the compiler (the object deck).

The object deck is the input for the second step, which performs link-editing

(through program IEWL). Link-editing is needed to resolve external references and

bring in or link the previously developed common routines (a type of code

re-use).

In the third step, the program is executed.

84 z/OS Basic Skills Information Center: z/OS concepts

To invoke a procedure, you can write some simple JCL, as shown in Figure 43 on

page 86. In this example, we added other DD statements, such as//COBOL.SYSIN DD

*, which identifies the data set that contains the COBOL source code.

000010 //IGYWCLG PROC LNGPRFX=’IGY.V3R2M0’,SYSLBLK=3200,

000020 // LIBPRFX=’CEE’,GOPGM=GO

000030 //*

000040 //**

000050 //* *

000060 //* Enterprise COBOL for z/OS and OS/390 *

000070 //* Version 3 Release 2 Modification 0 *

000080 //* *

000090 //* LICENSED MATERIALS - PROPERTY OF IBM. *

000100 //* *

000110 //* 5655-G53 5648-A25 (C) COPYRIGHT IBM CORP. 1991, 2002 *

000120 //* ALL RIGHTS RESERVED *

000130 //* *

000140 //* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, *

000150 //* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA *

000160 //* ADP SCHEDULE CONTRACT WITH IBM CORP. *

000170 //* *

000180 //**

000190 //*

000300 //COBOL EXEC PGM=IGYCRCTL,REGION=2048K

000310 //STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,

000320 // DISP=SHR

000330 //SYSPRINT DD SYSOUT=*

000340 //SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

000350 // DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

000360 // DCB=(BLKSIZE=&SYSLBLK)

000370 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

000440 //LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K

000450 //SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,

000460 // DISP=SHR

000470 //SYSPRINT DD SYSOUT=*

000480 //SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)

000490 // DD DDNAME=SYSIN

000500 //SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(TRK,(10,10,1)),

000510 // UNIT=SYSDA,DISP=(MOD,PASS)

000520 //SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

000530 //GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL),(4,LT,LKED)),

000540 // REGION=2048K

000550 //STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,

000560 // DISP=SHR

000570 //SYSPRINT DD SYSOUT=*

000580 //CEEDUMP DD SYSOUT=*

000590 //SYSUDUMP DD SYSOUT=*

Figure 42. Procedure to compile, link-edit, and execute programs

Chapter 4. Processing work on z/OS: How the system starts and manages batch jobs 85

During the execution of a step, the program is controlled by z/OS, not by JES

(Figure 44 on page 87). Also, a spooling function is needed at this point in the

process.

000001 //COBOL1 JOB (POK,999),MGELINSKI,MSGLEVEL=(1,1),MSGCLASS=X,

000002 // CLASS=A,NOTIFY=&SYSUID

000003 /*JOBPARM SYSAFF=*

000004 // JCLLIB ORDER=(IGY.SIGYPROC)

000005 //*

000006 //RUNIVP EXEC IGYWCLG,PARM.COBOL=RENT,REGION=1400K,

000007 // PARM.LKED=’LIST,XREF,LET,MAP’

000008 //COBOL.STEPLIB DD DSN=IGY.SIGYCOMP,

000009 // DISP=SHR

000010 //COBOL.SYSIN DD *

000011 IDENTIFICATION DIVISION.

000012 PROGRAM-ID. CALLIVP1.

000013 AUTHOR. STUDENT PROGRAMMER.

000014 INSTALLATION. MY UNIVERSITY

000015 DATE-WRITTEN. JUL 27, 2004.

000016 DATE-COMPILED.

000017 /

000018 ENVIRONMENT DIVISION.

000019 CONFIGURATION SECTION.

000020 SOURCE-COMPUTER. IBM-390.

000021 OBJECT-COMPUTER. IBM-390.

000022

000023 PROCEDURE DIVISION.

000024 DISPLAY "***** HELLO WORLD *****" UPON CONSOLE.

000025 STOP RUN.

000026

000027 //GO.SYSOUT DD SYSOUT=*

000028 //

Figure 43. Procedure to compile, link-edit, and execute a COBOL program

86 z/OS Basic Skills Information Center: z/OS concepts

Spooling is the means by which the system manipulates its work, including:

v Using storage on direct access storage devices (DASDs) as buffer storage to

reduce processing delays when transferring data between peripheral equipment

and a program to be run.

v Reading and writing input and output streams on an intermediate device for

later processing or output.

v Performing an operation such as printing while the computer is busy with other

work.

There are two sorts of spooling: Input and output. Both improve the performance

of the program reading the input and writing the output.

To implement input spooling in JCL, you declare // DD *, which defines one file

whose content records are in JCL between the // DD * statement and the /*

statements. All the logical records must have 80 characters. In this case, this file is

read and stored in a specific JES2 spool area (a huge JES file on disk) as shown in

Figure 45 on page 88.

Figure 44. Related actions with JCL

Chapter 4. Processing work on z/OS: How the system starts and manages batch jobs 87

Later, when the program is executed and asks to read this data, JES2 picks up the

records in the spool and delivers them to the program (at disk speed).

To implement output spooling in JCL, you specify the keyword SYSOUT on the

DD statement. SYSOUT defines an empty file in the spool, allocated with logical

records of 132 characters in a printed format (EBCDIC/ASCII/UNICODE). This file

is allocated by JES when interpreting a DD card with the SYSOUT keyword, and

used later for the step program. Generally, after the end of the job, this file is

printed by a JES function.

Batch processing and JES: Scenario 2

Suppose that you want to make a backup of one master file and then update the

master file with records read in from another file (the update file).

If so, you need a job with two steps:

1. In Step 1, your job reads the master file and writes it to tape.

2. In Step 2, another program (which can be written in COBOL) is executed to

read a record from the update file and searches for its match in the master file.

The program updates the existing record (if it finds a match) or adds a new

record if needed.

In this scenario, what kind of functions are needed in the operating system to meet

your requirements? Your JCL must have two steps, the first one indicating the

resources for the backup program, and the second for the update program.

v Who you are

v What resources are needed by the job, such as the following:

– Load the backup program (that you already have compiled).

– How much memory the system needs to allocate to accommodate the backup

program, I/O buffers, and working areas.

– Make accessible to the backup program an output tape data set to receive the

backup, a copy, and the master file data set itself.

– At program end indicate to the operating system that now your update

program needs to be loaded into memory (however, this should not be done

if the backup program failed).

– Make accessible to the update program the update file and master file.

– Make accessible to your program a printer for eventual messages.

Figure 45. Spooling

88 z/OS Basic Skills Information Center: z/OS concepts

Figure 46 illustrates the resources needed for each step.

 Logically, the second step will not be executed if the first one fails for any reason.

The second step will have a // DD SYSOUT statement to indicate the need for output

spooling.

The jobs are allowed to start only when there are enough resources available. In

this way, the system is made more efficient: JES manages jobs before and after

running the program; the base control program manages jobs during processing.

Job flow through the system

During the life of a job, JES2 and the base control program of z/OS control

different phases of the overall processing.

The job queues contain jobs that are waiting to run, currently running, waiting for

their output to be produced, having their output produced, and waiting to be

purged from the system.

Generally speaking, a job goes through the following phases:

1. Input

2. Conversion

3. Processing

4. Output

5. Print/punch (hard copy)

6. Purge

During batch job processing, numerous checkpoints occur. A checkpoint is a point

in processing at which information about the status of a job and the system can be

recorded (in a file called a checkpoint data set). Checkpoints allow the job step to

be restarted later if it ends abnormally due to an error.

Figure 46. Scenario 2

Chapter 4. Processing work on z/OS: How the system starts and manages batch jobs 89

Figure 47 shows the different phases of a job during batch processing.

Input phase

JES2 accepts jobs, in the form of an input stream, from input devices, from

other programs through internal readers, and from other nodes in a job

entry network.

 The internal reader is a program that other programs can use to submit

jobs, control statements, and commands to JES2. Any job running in z/OS

can use an internal reader to pass an input stream to JES2. JES2 can receive

multiple jobs simultaneously through multiple internal readers. The system

programmer defines internal readers to be used to process all batch jobs

other than started tasks (STCs) and TSO requests.

JES2 reads the input stream and assigns a job identifier to each JOB JCL

statement. JES2 places the job’s JCL, optional JES2 control statements, and

SYSIN data onto DASD data sets called spool data sets. JES2 then selects

jobs from the spool data sets for processing and subsequent running.

Conversion phase

1. JES2 uses a converter program to analyze a job’s JCL statements. The

converter takes the job’s JCL and merges it with JCL from a procedure

library. The procedure library can be defined in the JCLLIB JCL

statement, or system/user procedure libraries can be defined in the

PROCxx DD statement of the JES2 startup procedure.

2. Then, JES2 converts the composite JCL into converter/interpreter text

that both JES2 and the initiator can recognize.

Figure 47. Job flow through the system

90 z/OS Basic Skills Information Center: z/OS concepts

3. Next, JES2 stores the converter/interpreter text on the spool data set. If

JES2 detects any JCL errors, it issues messages, and the job is queued

for output processing rather than execution. If there are no errors, JES2

queues the job for execution.

Processing phase

In the processing phase, JES2 responds to requests for jobs from the

initiators. JES2 selects jobs that are waiting to run from a job queue and

sends them to initiators.

 An initiator is a system program belonging to z/OS, but controlled by JES

or by the workload management (WLM) component of z/OS, which starts

a job allocating the required resources to allow it to compete with other

jobs that are already running.

JES2 initiators are initiators that are started by the operator or by JES2

automatically when the system initializes. They are defined to JES2

through JES2 initialization statements. To obtain an efficient use of

available system resources, the installation associates each initiator with

one or more job classes. Initiators select jobs whose classes match the

initiator-assigned class, obeying the priority of the queued jobs.

WLM initiators are started by the system automatically based on

performance goals, relative importance of the batch workload, and the

capacity of the system to do more work. The initiators select jobs based on

their service class and the order in which they were made available for

execution. Jobs are routed to WLM initiators through a JOBCLASS JES2

initialization statement.

Output phase

JES2 controls all SYSOUT processing. SYSOUT is system-produced output;

that is, all output produced by, or for, a job. This output includes system

messages that must be printed, as well as data sets requested by the user

that must be printed or punched. After a job finishes, JES2 analyzes the

characteristics of the job’s output in terms of its output class and device

setup requirements; then JES2 groups data sets with similar characteristics.

JES2 queues the output for print or punch processing.

Print/punch (hard copy) phase

JES2 selects output for processing from the output queues by output class,

route code, priority, and other criteria. The output queue can have output

that is to be processed locally or at a remote location. After processing all

the output for a particular job, JES2 puts the job on the purge queue.

Purge phase

When all processing for a job completes, JES2 releases the spool space

assigned to the job, making the space available for allocation to subsequent

jobs. JES2 then issues a message to the operator indicating that the job has

been purged from the system.

JES2 compared to JES3

IBM provides two kinds of job entry subsystems: JES2 and JES3. In many cases,

JES2 and JES3 perform similar functions, but most installations use JES2.

Both JES2 and JES3 read jobs into the system, convert them to internal

machine-readable form, select them for processing, process their output, and purge

them from the system.

Chapter 4. Processing work on z/OS: How the system starts and manages batch jobs 91

Some principle differences between the two JES systems include:

v In a mainframe installation that has only one processor, JES3 provides tape

setup, dependent job control, and deadline scheduling for users of the system,

while JES2 in the same system would require its users to manage these activities

through other means. In an installation with a multiprocessor configuration,

there are noticeable differences between the two, mainly in how JES2 exercises

independent control over its job processing functions. That is, within the

configuration, each JES2 processor controls its own job input, job scheduling,

and job output processing.

v In cases where multiple z/OS systems are clustered (a sysplex), it is possible to

configure JES2 to share spool and checkpoint data sets with other JES2 systems

in the same sysplex. This configuration is called Multi-Access Spool (MAS). In

contrast, JES3 exercises centralized control over its processing functions through

a single global JES3 processor. This global processor provides all job selection,

scheduling, and device allocation functions for all of the other JES3 systems.

v With JES3, installations may decide whether the global JES3 or z/OS base

control program will handle device allocation. With JES2, only the z/OS base

control program handles device allocation.

92 z/OS Basic Skills Information Center: z/OS concepts

Chapter 5. Doing work on z/OS: How you submit, control and

monitor jobs using JCL and SDSF

As a technical professional in the world of mainframe computing, you will need to

know JCL, the language that tells z/OS which resources will be needed to process

a batch job or to start a system task. You also will need to use SDSF to check the

output of jobs and tasks submitted to the system.

Job control language (JCL) is used to tell the system what program to execute,

followed by a description of program inputs and outputs. Basic JCL contains three

types of statements: JOB, EXEC, and DD. A job can contain several EXEC

statements (steps) and each step might have several DD statements. JCL provides a

wide range of parameters and controls, but you will find that you use only a

subset most of the time.

System users are expected to write simple JCL, but they normally use JCL

procedures for more complex jobs. A cataloged procedure is written once and can

then be used by many users. z/OS supplies many JCL procedures, and locally

written ones can be added easily. To supply the parameters (usually DD

statements) needed for a specific job, a user must understand how to override or

extend statements in a JCL procedure.

After submitting a job, it is common to use System Display and Search Facility

(SDSF), which is a utility that allows you to monitor, control, and view the output

of jobs in the system.

What is JCL?

For every job that you submit, you need to tell z/OS where to find the appropriate

input, how to process that input, and what to do with the resulting output. You

use job control language (JCL) to convey this information to z/OS through a set of

statements known as job control statements.

While application programmers need some knowledge of JCL, the production

control analyst must be highly proficient with JCL, to create, monitor, correct and

rerun the company’s daily batch workload.

The set of job control statements is quite large, which allows you to provide a great

deal of information to z/OS. Most jobs, however, can be run using a very small

subset of these control statements. Once you become familiar with the

characteristics of the jobs you typically run, you may find that you need to know

the details of only some of the control statements.

The following JCL example represents a job that performs the same functions as

the TSO commands outlined in Figure 20 on page 61.

//MYJOB JOB 1

//MYSORT EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=ZPROF.AREA.CODES

//SORTOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

SORT FIELDS=(1,3,CH,A)

/*

© Copyright IBM Corp. 2006, 2008 93

Each JCL DD statement is equivalent to the TSO ALLOCATE command. Both are

used to associate a z/OS data set with a ddname, which is recognized by the

program as an input or output. The difference in method of execution is that TSO

executes the sort in the foreground while JCL is used to execute the sort in the

background.

When submitted for execution:

MYJOB

Is a jobname the system associates with this workload.

MYSORT

Is the stepname, which instructs the system to execute the SORT program.

SORTIN

On the DD statement, SORTIN is the ddname. The SORTIN ddname is

coded in the SORT program as a program input. The data set name (DSN)

on this DD statement is ZPROF.AREA.CODES. The data set can be shared

(DISP=SHR) with other system processes. The data content of

ZPROF.AREA.CODES is SORT program input.

SORTOUT

This ddname is the SORT program output.

SYSOUT

SYSOUT=* specifies to send system output messages to the Job Entry

Subsystem (JES) print output area. It is possible to send the output to a

data set.

SYSIN

DD * is another input statement. It specifies that what follows is data or

control statements. In this case, it is the sort instruction telling the SORT

program which fields of the SORTIN data records are to be sorted.

“The Big Three” JCL statements: JOB, EXEC, and DD

All jobs require the three main types of JCL statements: JOB, EXEC, and DD. A job

defines a specific workload for z/OS to process. A job is a separately executable

unit of work defined by a user, and run by a computer. This representation of a

unit of work consists of one program or a set of programs, files, and control

statements.

Some z/OS users use the older term JCL card instead of JCL statement, because

JCL used to be submitted to the system in the form of punched cards. Now JCL

resides in storage (data sets) rather than on punched cards.

Because JCL was originally designed for punched cards, the details of coding JCL

statements can be complicated. However, the general concepts are quite simple,

and most jobs can be run using a very small subset of these control statements.

JCL has three basic statements:

JOB Labels the unit of work that you want the system to perform, by providing

a name (jobname). The JOB statement can optionally include accounting

information and parameters that apply to the entire job.

 A job stream, or input stream, consists of one or more jobs that are

submitted to the system in a sequence. You can submit jobs to z/OS

through either TSO or ISPF.

94 z/OS Basic Skills Information Center: z/OS concepts

EXEC Provides the name of an application program or JCL procedure (sometimes

called a “proc”) that the system is to run (or execute). A single job may

contain multiple EXEC statements. Each EXEC statement within the same

job is a job step.

DD Identifies input and output to the program or procedure on the EXEC

statement. Each DD (data definition) statement links a data set or other

I/O device or function to a name (ddname) coded in the program. DD

statements are associated with a particular job step.

 Two special DD statements, JOBLIB DD and STEPLIB DD, identify the

location of the program or procedure on the EXEC statement. z/OS

automatically searches standard system libraries, so you need to code these

special DD statements in your JCL only when your program or procedure

resides in a private library.

How is a job submitted for batch processing?

You can use several methods of submitting a job for batch processing; most involve

either TSO or ISPF.

Using UNIX as an analogy, a UNIX process can be processed in the background by

appending an ampersand (&) to the end of a command or script. Pressing Enter

then submits the work as a background process.

In z/OS terminology, work (a job) is submitted for batch processing. Batch

processing is a rough equivalent to UNIX background processing. The job runs

independently of the interactive session. The term batch is used because it is a

large collection of jobs that can be queued, waiting their turn to be executed when

the needed resources are available. Commands to submit jobs might take any of

the following forms:

ISPF editor command line

Type submit or sub and press Enter.

ISPF command shell

When your JCL data set is sequential, type submit `USER.JCL’ and press

Enter.

ISPF command line

v When your JCL data set is sequential, type TSO submit ’USER.JCL’ and

press Enter.

v When your JCL data set is a library or partitioned data set containing

the member you want to submit, type TSO submit ’USER.JCL(MYJOB)’

and press Enter.

TSO command line

Type submit ’USER.JCL’ and press Enter.

What is the System Display and Search Facility (SDSF)?

System Display and Search Facility (SDSF) is a utility that allows you to monitor,

control, and view the output of jobs in the system.

After submitting a job, it is common to use System Display and Search Facility

(SDSF) to review the output for successful completion or to review and correct JCL

errors. SDSF allows you to display printed output held in the JES spool area. Much

Chapter 5. Doing work on z/OS: How you submit, control and monitor jobs using JCL and SDSF 95

of the printed output sent to JES by batch jobs (and other jobs) is never actually

printed. Instead it is inspected using SDSF and deleted or used as needed.

SDSF provides a number of additional functions, including:

v Viewing the system log and searching for any literal string

v Entering system commands (in earlier versions of the operating system, only the

operator could enter commands)

v Controlling job processing (hold, release, cancel, and purge jobs)

v Monitoring jobs while they are being processed

v Displaying job output before deciding to print it

v Controlling the order in which jobs are processed

v Controlling the order in which output is printed

v Controlling printers and initiators

Figure 48 shows the SDSF primary option menu.

 SDSF uses a hierarchy of online panels to guide users through its functions, as

shown in Figure 49 on page 97.

 Display Filter View Print Options Help

--

ISPFCU41 SDSF Primary Option Menu

COMMAND INPUT ===> _ SCROLL ===> PAGE

DA Active users INIT Initiators

I Input queue PR Printers

O Output queue PUN Punches

H Held output queue RDR Readers

ST Status of jobs LINE Lines

 NODE Nodes

LOG System log SO Spool offload

SR System requests SP Spool volumes

MAS Members in the MAS

JC Job classes ULOG User session log

SE Scheduling environments

RES WLM resources

ENC Enclaves

PS Processes

END Exit SDSF

Licensed Materials - Property of IBM

5694-A01 (C) Copyright IBM Corp. 1981, 2002. All rights reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 F1=HELP F2=SPLIT F3=EXIT F4=RETURN F5=IFIND F6=BOOK

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 48. SDSF primary option menu

96 z/OS Basic Skills Information Center: z/OS concepts

You can see the JES output data sets created during the execution of your batch

job. They are saved on the JES spool data set.

You can see the JES data sets in any of the following queues:

I Input queue

DA Execution queue

O Output queue

H Held queue

ST Status queue

For output and held queues, you cannot see those JES data sets that you requested

to be automatically purged (by setting a MSGCLASS sysout class that has been

defined to not save output). Also, depending on the MSGCLASS you chose on the

JOB card, the sysouts can be either in the output queue or in the held queue.

Figure 49. SDSF panel hierarchy

Chapter 5. Doing work on z/OS: How you submit, control and monitor jobs using JCL and SDSF 97

Screen 1 in Figure 50 displays a list of jobs that submitted, with output directed to

the held (Class T) queue, as identified in the MSGCLASS=T parameter on the job

card. In this case, only one job has been submitted and executed. Therefore, only

one job is on the held queue. To display the output files generated by job 7359, you

would enter a ? command in the NP column.

Screen 2 in Figure 50 displays three ddnames: the JES2 messages log file, the JES2

JCL file, and the JES2 system messages file. This option is useful when you are

seeing jobs with many files directed to SYSOUT and you want to display one

associated with a specific step. To see all output files, you would enter an S in the

NP column. The JES2 job log is displayed similar to the one shown in Figure 51 on

page 99.

Screen 1

 Display Filter View Print Options Help

--

SDSF HELD OUTPUT DISPLAY ALL CLASSES LINES 44

COMMAND INPUT ===> _ SCROLL ===> PAGE

PREFIX=* DEST=(ALL) OWNER=* SYSNAME=

NP JOBNAME JobID Owner Prty C ODisp Dest Tot-Rec Tot-

?_ MIRIAM2 JOB26044 MIRIAM 144 T HOLD LOCAL 44

Screen 2

 Display Filter View Print Options Help

--

SDSF JOB DATA SET DISPLAY - JOB MIRIAM2 (JOB26044) LINE 1-3 (3)

COMMAND INPUT ===> _ SCROLL ===> PAGE

PREFIX=* DEST=(ALL) OWNER=* SYSNAME=

NP DDNAME StepName ProcStep DSID Owner C Dest Rec-Cnt Page

 JESMSGLG JES2 2 MIRIAM T LOCAL 20

 JESJCL JES2 3 MIRIAM T LOCAL 12

 JESYSMSG JES2 4 MIRIAM T LOCAL 12

Figure 50. SDSF viewing the JES2 Output files

98 z/OS Basic Skills Information Center: z/OS concepts

J E S 2 J O B L O G -- S Y S T E M S C 6 4 -- N O D E

13.19.24 JOB26044 ---- WEDNESDAY, 27 AUG 2003 ----

13.19.24 JOB26044 IRR010I USERID MIRIAM IS ASSIGNED TO THIS JOB.

13.19.24 JOB26044 ICH70001I MIRIAM LAST ACCESS AT 13:18:53 ON WEDNESDAY,

AUGUST 2003

13.19.24 JOB26044 $HASP373 MIRIAM2 STARTED - INIT 1 - CLASS A- SYS SC64

13.19.24 JOB26044 IEF403I MIRIAM2 - STARTED - ASID=0027 - SC64

13.19.24 JOB26044 - --TIMINGS (MINS.)--

13.19.24 JOB26044 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK

13.19.24 JOB26044 -MIRIAM2 STEP1 00 9 .00 .00 .00

13.19.24 JOB26044 IEF404I MIRIAM2 - ENDED - ASID=0027 - SC64

13.19.24 JOB26044 -MIRIAM2 ENDED. NAME-MIRIAM

TOTAL CPU TIME=

13.19.24 JOB26044 $HASP395 MIRIAM2 ENDED

------ JES2 JOB STATISTICS ------

27 AUG 2003 JOB EXECUTION DATE

11 CARDS READ

44 SYSOUT PRINT RECORDS

0 SYSOUT PUNCH RECORDS

3 SYSOUT SPOOL KBYTES

0.00 MINUTES EXECUTION TIME

1 //MIRIAM2 JOB 19,MIRIAM,NOTIFY=&SYSUID,MSGCLASS=T,

 // MSGLEVEL=(1,1),CLASS=A

 IEFC653I SUBSTITUTION JCL -

 19,MIRIAM,NOTIFY=MIRIAM,MSGCLASS=T,MSGLEVE

2 //STEP1 EXEC PGM=IEFBR14

 //*---*

 //* THIS IS AN EXAMPLE OF A NEW DATA SET ALLOCATION

 //*---*

3 //NEWDD DD DSN=MIRIAM.IEFBR14.TEST1.NEWDD,

 // DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,

 // SPACE=(CYL,(10,10,45)),LRECL=80,BLKSIZE=3120

4 //SYSPRINT DD SYSOUT=T

 /*

ICH70001I MIRIAM LAST ACCESS AT 13:18:53 ON WEDNESDAY, AUGUST 27, 2003

IEF236I ALLOC. FOR MIRIAM2 STEP1

IGD100I 390D ALLOCATED TO DDNAME NEWDD DATACLAS ()

IEF237I JES2 ALLOCATED TO SYSPRINT

IEF142I MIRIAM2 STEP1 - STEP WAS EXECUTED - COND CODE 0000

IEF285I MIRIAM.IEFBR14.TEST1.NEWDD CATALOGED

IEF285I VOL SER NOS= SBOX38.

IEF285I MIRIAM.MIRIAM2.JOB26044.D0000101.? SYSOUT

IEF373I STEP/STEP1 /START 2003239.1319

IEF374I STEP/STEP1 /STOP 2003239.1319 CPU 0MIN 00.00SEC SRB 0MIN 00.00S

IEF375I JOB/MIRIAM2 /START 2003239.1319

IEF376I JOB/MIRIAM2 /STOP 2003239.1319 CPU 0MIN 00.00SEC SRB 0MIN 00.00S

Figure 51. Sample JES2 job log

Chapter 5. Doing work on z/OS: How you submit, control and monitor jobs using JCL and SDSF 99

100 z/OS Basic Skills Information Center: z/OS concepts

Chapter 6. Parallel Sysplex: Worth the effort for continuous

availability

Parallel Sysplex technology is an enabling technology, allowing highly reliable,

redundant, and robust mainframe technologies to achieve near-continuous

availability.

A properly configured Parallel Sysplex cluster is designed to remain available to its

users and applications with minimal downtime, for example:

v Hardware and software components provide for concurrency to facilitate

non-disruptive maintenance, like Capacity Upgrade on Demand, which allows

processing or coupling capacity to be added one engine at a time without

disruption to running workloads.

v DASD subsystems employ disk mirroring or RAID technologies to help protect

against data loss, and exploit technologies to enable point-in-time backup,

without the need to shut down applications.

v Networking technologies deliver functions such as VTAM® Generic Resources,

Multi-Node Persistent Sessions, Virtual IP Addressing, and Sysplex Distributor

to provide fault-tolerant network connections.

v I/O subsystems support multiple I/O paths and dynamic switching to prevent

loss of data access and improved throughput.

v z/OS software components allow new software releases to coexist with lower

levels of those software components to facilitate rolling maintenance.

v Business applications are ″data sharing-enabled″ and cloned across servers to

allow workload balancing to prevent loss of application availability in the event

of an outage.

v Operational and recovery processes are fully automated and transparent to

users, and reduce or eliminate the need for human intervention.

Benefits of Parallel Sysplex: No single points of failure

In a Parallel Sysplex cluster, it is possible to construct a parallel processing

environment with no single points of failure. Because all of the systems in the

Parallel Sysplex can have concurrent access to all critical applications and data, the

loss of a system due to either hardware or software failure does not necessitate loss

of application availability.

Peer instances of a failing subsystem executing on remaining healthy system nodes

can take over recovery responsibility for resources held by the failing instance.

Alternatively, the failing subsystem can be automatically restarted on still-healthy

systems using automatic restart capabilities to perform recovery for work in

progress at the time of the failure. While the failing subsystem instance is

unavailable, new work requests can be redirected to other data-sharing instances of

the subsystem on other cluster nodes to provide continuous application availability

across the failure and subsequent recovery. This alternatives provide the ability to

mask planned as well as unplanned outages to the end user.

Because of the redundancy in the configuration, there is a significant reduction in

the number of single points of failure. Without a Parallel Sysplex, the loss of a

server could severely impact the performance of an application, as well as

introduce system management difficulties in redistributing the workload or

© Copyright IBM Corp. 2006, 2008 101

reallocating resources until the failure is repaired. In a Parallel Sysplex

environment, it is possible that the loss of a server may be transparent to the

application, and the server workload can be redistributed automatically within the

Parallel Sysplex with little performance degradation. In a Parallel Sysplex

environment, events that otherwise would seriously impact application availability,

such as failures in central processor complex (CPC) hardware elements or critical

operating system components, have reduced impact.

Even though they work together and present a single image, the nodes in a

Parallel Sysplex cluster remain individual systems, making installation, operation,

and maintenance non-disruptive. The system programmer can introduce changes,

such as software upgrades, one system at a time, while the remaining systems

continue to process work. This design allows the mainframe IT staff to roll changes

through its systems on a schedule that is convenient to the business.

Benefits of Parallel Sysplex: Capacity and scaling

The Parallel Sysplex environment can scale nearly linearly from 2 to 32 systems.

These systems can be a mix of any servers that support the Parallel Sysplex

environment. The aggregate capacity of this configuration meets every processing

requirement known today.

Benefits of Parallel Sysplex: Dynamic workload balancing

The entire Parallel Sysplex cluster can be viewed as a single logical resource to end

users and business applications. Just as work can be dynamically distributed across

the individual processors within a single SMP server, so too, can work be directed

to any node in a Parallel Sysplex cluster having available capacity. This capability

avoids the need to partition data or applications among individual nodes in the

cluster or to replicate databases across multiple servers.

Workload balancing also permits a business to run diverse applications across a

Parallel Sysplex cluster while maintaining the response levels critical to a business.

The mainframe IT director selects the service level agreements required for each

workload, and the workload management (WLM) component of z/OS, along with

subsystems such as CP/SM or IMS, automatically balances tasks across all the

resources of the Parallel Sysplex cluster to meet these business goals. The work can

come from a variety of sources, such as batch, SNA, TCP/IP, DRDA®, or

WebSphere MQ.

There are several aspects to consider for recovery:

1. First, when a failure occurs, it is important to bypass it by automatically

redistributing the workload to utilize the remaining available resources.

After the failing element has been isolated, it is necessary to non-disruptively

redirect the workload to the remaining available resources in the Parallel

Sysplex. In the event of failure in the Parallel Sysplex environment, the online

transaction workload is automatically redistributed without operator

intervention.

2. Secondly, it is necessary to recover the elements of work that were in progress

at the time of the failure.

3. Finally, when the failed element is repaired, it should be brought back into the

configuration as quickly and transparently as possible to again start processing

the workload. Parallel Sysplex technology enables all this to happen.

102 z/OS Basic Skills Information Center: z/OS concepts

Generic resource management provides the ability to specify to VTAM a common

network interface. This can be used for CICS terminal owning regions (TORs), IMS

Transaction Manager, TSO, or DB2 DDF work. If one of the CICS TORs fails, for

example, only a subset of the network is affected. The affected terminals are able to

immediately log on again and continue processing after being connected to a

different TOR.

Benefits of Parallel Sysplex: Ease of use

The Parallel Sysplex solution satisfies a major customer requirement for continuous

24-hour-a-day, 7-day-a-week availability, while providing techniques for achieving

simplified Systems Management consistent with this requirement. Some of the

features of the Parallel Sysplex solution that contribute to increased availability

also help to eliminate some Systems Management tasks.

Workload management (WLM) component

The workload management (WLM) component of z/OS provides

sysplex-wide workload management capabilities based on

installation-specified performance goals and the business importance of the

workloads. WLM tries to attain the performance goals through dynamic

resource distribution. WLM provides the Parallel Sysplex cluster with the

intelligence to determine where work needs to be processed and in what

priority. The priority is based on the customer’s business goals and is

managed by sysplex technology.

Sysplex Failure Manager (SFM)

The Sysplex Failure Management policy allows the installation to specify

failure detection intervals and recovery actions to be initiated in the event

of the failure of a system in the sysplex.

 Without SFM, when one of the systems in the Parallel Sysplex fails, the

operator is notified and prompted to take some recovery action. The

operator may choose to partition the non-responding system from the

Parallel Sysplex, or to take some action to try to recover the system. This

period of operator intervention might tie up critical system resources

required by the remaining active systems. Sysplex Failure Manager allows

the installation to code a policy to define the recovery actions to be

initiated when specific types of problems are detected, such as fencing off

the failed image that prevents access to shared resources, logical partition

deactivation, or central storage and expanded storage acquisition, to be

automatically initiated following detection of a Parallel Sysplex failure.

Automatic Restart Manager (ARM)

Automatic Restart Manager enables fast recovery of subsystems that might

hold critical resources at the time of failure. If other instances of the

subsystem in the Parallel Sysplex need any of these critical resources, fast

recovery will make these resources available more quickly. Even though

automation packages are used today to restart the subsystem to resolve

such deadlocks, ARM can be activated closer to the time of failure.

 ARM reduces operator intervention in the following areas:

v Detection of the failure of a critical job or started task

v Automatic restart after a started task or job failure

After an abend of a job or started task, the job or started task can be

restarted with specific conditions, such as overriding the original JCL or

specifying job dependencies, without relying on the operator.

Chapter 6. Parallel Sysplex: Worth the effort for continuous availability 103

v Automatic redistribution of work to an appropriate system following a

system failure

This removes the time-consuming step of human evaluation of the most

appropriate target system for restarting work

Cloning and symbolics

Cloning refers to replicating the hardware and software configurations

across the different physical servers in the Parallel Sysplex. That is, an

application that is going to take advantage of parallel processing might

have identical instances running on all images in the Parallel Sysplex. The

hardware and software supporting these applications could also be

configured identically on all systems in the Parallel Sysplex to reduce the

amount of work required to define and support the environment.

 The concept of symmetry allows new systems to be introduced and

enables automatic workload distribution in the event of failure or when an

individual system is scheduled for maintenance. It also reduces the amount

of work required by the system programmer in setting up the

environment. Note that symmetry does not preclude the need for systems

to have unique configuration requirements, such as the asymmetric

attachment of printers and communications controllers, or asymmetric

workloads that do not lend themselves to the parallel environment.

System symbolics are used to help manage cloning. z/OS provides support

for the substitution values in startup parameters, JCL, system commands,

and started tasks. These values can be used in parameter and procedure

specifications to allow unique substitution when dynamically forming a

resource name.

zSeries resource sharing

A number of base z/OS components have discovered that the IBM

coupling facility shared storage provides a medium for sharing component

information for the purpose of multisystem resource management. This

exploitation, called IBM zSeries Resource Sharing, enables sharing of

physical resources such as files, tape drives, consoles, and catalogs with

improvements in cost, performance and simplified systems management.

This is not to be confused with Parallel Sysplex data sharing by the

database subsystems. zSeries Resource Sharing delivers immediate value

even for customers who are not leveraging data sharing, through native

system exploitation delivered with the base z/OS software stack.

 One of the goals of the Parallel Sysplex solution is to provide simplified

systems management by reducing complexity in managing, operating, and

servicing a Parallel Sysplex, without requiring an increase in the number of

support staff and without reducing availability.

Benefits of Parallel Sysplex: Single system image

Even though there could be multiple servers and z/OS images in the Parallel

Sysplex and a mix of different technologies, the collection of systems in the Parallel

Sysplex should appear as a single entity to the operator, the end user, the database

administrator, and so on. A single system image brings reduced complexity from

both operational and definition perspectives.

Regardless of the number of system images and the complexity of the underlying

hardware, the Parallel Sysplex solution provides for a single system image from

several perspectives:

v Data access, allowing dynamic workload balancing and improved availability

104 z/OS Basic Skills Information Center: z/OS concepts

v Dynamic Transaction Routing, providing dynamic workload balancing and

improved availability

v End-user interface, allowing logon to a logical network entity

v Operational interfaces, allowing easier Systems Management

It is a requirement that the collection of systems in the Parallel Sysplex can be

managed from a logical single point of control. The term ″single point of control″

means the ability to access whatever interfaces are required for the task in

question, without reliance on a physical piece of hardware. For example, in a

Parallel Sysplex of many systems, it is necessary to be able to direct commands or

operations to any system in the Parallel Sysplex, without the necessity for a

console or control point to be physically attached to every system in the Parallel

Sysplex.

Even though individual hardware elements or entire systems in the Parallel

Sysplex fail, a single system image must be maintained. This means that, as with

the concept of single point of control, the presentation of the single system image

is not dependent on a specific physical element in the configuration. From the

end-user point of view, the parallel nature of applications in the Parallel Sysplex

environment must be transparent. An application should be accessible regardless of

which physical z/OS image supports it.

Benefits of Parallel Sysplex: Compatible change and non-disruptive

growth

A primary goal of Parallel Sysplex is continuous availability. Therefore, it is a

requirement that changes such as new applications, software, or hardware can be

introduced non-disruptively, and that they be able to coexist with current levels. In

support of compatible change, the hardware and software components of the

Parallel Sysplex solution will allow the coexistence of two levels, that is, level N

and level N+1. This means, for example, that no IBM software product will make a

change that cannot be tolerated by the previous release.

Benefits of Parallel Sysplex: Application compatibility

A design goal of Parallel Sysplex clustering is that no application changes be

required to take advantage of the technology. For the most part, this has held true,

although some affinities need to be investigated to get the maximum advantage

from the configuration.

From the application architects’ point of view, three major points might lead to the

decision to run an application in a Parallel Sysplex:

Technology benefits

Scalability (even with non-disruptive upgrades), availability, and dynamic

workload management are tools that enable an architect to meet customer

needs in cases where the application plays a key role in the customer’s

business process. With the multisystem data sharing technology, all

processing nodes in a Parallel Sysplex have full concurrent read/write

access to shared data without affecting integrity and performance.

Integration benefits

Because many applications are historically S/390- and z/OS-based, new

applications on z/OS get performance and maintenance benefits, especially

if they are connected to existing applications.

Chapter 6. Parallel Sysplex: Worth the effort for continuous availability 105

Infrastructure benefits

If there is already an existing Parallel Sysplex, it needs very little

infrastructure work to integrate a new application. In many cases the

installation does not need to integrate new servers. Instead it can leverage

the existing infrastructure and make use of the strengths of the existing

sysplex. With Geographically Dispersed Parallel Sysplex™ (GDPS®)—

connecting multiple sysplexes in different locations— the mainframe IT

staff can create a configuration that is enabled for disaster recovery.

Benefits of Parallel Sysplex: Disaster recovery

Geographically Dispersed Parallel Sysplex (GDPS) is the primary disaster recovery

and continuous availability solution for a mainframe-based multi-site enterprise.

GDPS automatically mirrors critical data and efficiently balances workload

between the sites. GDPS also uses automation and Parallel Sysplex technology to

help manage multi-site databases, processors, network resources and storage

subsystem mirroring. This technology offers continuous availability, efficient

movement of workload between sites, resource management, and prompt data

recovery for business-critical mainframe applications and data. With GDPS, the

current maximum distance between the two sites is 100km (about 62 miles) of

fiber, although there are some other restrictions. This provides a synchronous

solution that helps to ensure no loss of data.

There is also GDPS/XRC, which can be used over extended distances and should

provide a recovery point objective of less than two minutes (that is, a maximum of

two minutes of data would need to be recovered or is lost).

106 z/OS Basic Skills Information Center: z/OS concepts

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2008 107

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

This book documents information that is NOT intended to be used as

Programming Interfaces of z/OS.

108 z/OS Basic Skills Information Center: z/OS concepts

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common

law trademarks in other countries. A current list of IBM trademarks is available on

the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 109

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

110 z/OS Basic Skills Information Center: z/OS concepts

����

Printed in USA

	Contents
	Introduction to z/OS
	Chapter 1. z/OS operating system: Providing virtual environments since the 1960s
	Hardware resources used by z/OS
	Multiprogramming and multiprocessing
	z/OS programming constructs: Modules, macros, components and control blocks
	Physical storage used by z/OS
	What is virtual storage?
	What is an address space?
	What is dynamic address translation?
	How z/OS uses physical and virtual storage
	How virtual storage addressing works in z/OS
	What is paging?
	How paging works in z/OS
	Swapping and the working set
	What is storage protection?

	The role of storage managers
	A brief history of virtual storage and 64-bit addressability
	What is meant by “below-the-line” storage?
	What's in an address space?
	System address spaces and the master scheduler

	What is workload management?
	I/O and data management
	Supervising the execution of work in the system
	What is interrupt processing?
	Dispatchable units of work: Tasks and service requests
	Preemptable versus non-preemptable units of work
	What does the dispatcher do?
	Serializing the use of resources

	Defining characteristics of z/OS
	Additional software products for z/OS
	Middleware for z/OS
	A brief comparison of z/OS and UNIX

	Chapter 2. z/OS storage constructs: File systems, data sets, and more
	What is a data set?
	Quick reference: Data set structure
	Where are data sets stored?
	What are access methods?
	What are DASD volumes and labels?
	Allocating a data set
	How are data sets named?
	How is space allocated on DASD volumes?
	Data set record formats

	Types of data sets
	Why is a PDS structured like that?
	What is a PDSE?

	What happens when a data set runs out of space?
	What is VSAM?

	What is a VTOC?
	What is a catalog?
	What is a generation data group?
	Role of DFSMS in managing space

	z/OS UNIX file systems
	z/OS data sets versus file system files
	What is a zFS file system?

	Chapter 3. Interacting with z/OS: TSO, ISPF, and z/OS UNIX interfaces
	What is TSO?
	What is TSO native mode?
	How are CLISTs and REXX used?

	What is ISPF?
	ISPF keyboard keys and functions
	The ISPF Data Set List utility
	The ISPF editor
	The ISPF Settings menu

	What is z/OS UNIX?
	ISHELL command (ish)
	OMVS command shell session
	Direct login to the z/OS UNIX shell

	Chapter 4. Processing work on z/OS: How the system starts and manages batch jobs
	What is batch processing?
	What is JES?
	What does an initiator do?
	Batch processing and JES: Scenario 1
	Batch processing and JES: Scenario 2
	Job flow through the system
	JES2 compared to JES3

	Chapter 5. Doing work on z/OS: How you submit, control and monitor jobs using JCL and SDSF
	What is JCL?
	How is a job submitted for batch processing?
	What is the System Display and Search Facility (SDSF)?

	Chapter 6. Parallel Sysplex: Worth the effort for continuous availability
	Benefits of Parallel Sysplex: No single points of failure
	Benefits of Parallel Sysplex: Capacity and scaling
	Benefits of Parallel Sysplex: Dynamic workload balancing
	Benefits of Parallel Sysplex: Ease of use
	Benefits of Parallel Sysplex: Single system image
	Benefits of Parallel Sysplex: Compatible change and non-disruptive growth
	Benefits of Parallel Sysplex: Application compatibility
	Benefits of Parallel Sysplex: Disaster recovery

	Notices
	Programming interface information
	Trademarks

