

SDN

What's Software Defined
Networking?

Angelo Capossele

Outline

● Introduction to SDN
● OpenFlow
● Network Functions Virtualization
● Some examples
● Opportunities
● Research problems
● Security
● Case study: LTE
● (Mini)Tutorial on Controller programming

The Problem

Networks are complicated
– Just like any computer system

– Worse: it’s distributed

– Even worse: no clean programming APIs, only “knobs and dials”

Network equipment is proprietary
– Integrated solutions (software, configuration, protocol

implementations, hardware) from major vendors (Cisco, Juniper, etc.)

Result: Hard to innovate and modify networks

Traditional networking

What is Software Defined
Networking

● A new approach to
designing, building and
managing networks

● The basic concept is that
SDN separates the
network’s control
(brains) and forwarding
(muscle) planes to make
it easier to optimize
each.

Software Defined Networking

Evolution of SDN

Evolution of SDN

● Routing Control Platform (2005)
– [Caesar, Caldwell, Feamster, Rexford, Shaikh, van der

Merwe, NSDI 2005]

– Centralized computation of BGP routes, pushed to border
routers via iBGP

Evolution of SDN

● 4D architecture (2005)
– A Clean Slate 4D Approach to Network Control and

Management [Greenberg, Hjalmtysson, Maltz, Myers,
Rexford, Xie,Yan, Zhan, Zhang, CCR Oct 2005]

– Logically centralized “decision plane” separated from data
plane

Evolution of SDN

● Ethane (2007)
– [Casado, Freedman, Pettit, Luo, McKeown, Shenker,

SIGCOMM 2007]

– Centralized controller enforces enterprise network
Ethernet forwarding policy using existing hardware

Evolution of SDN

● OpenFlow (2008)
– [McKeown, Anderson, Balakrishnan, Parulkar,

Peterson, Rexford, Shenker, Turner, CCR 2008]

– Thin, standardized interface to data plane

– General-purpose programmability at controller

● NOX (2008)
– First OF controller: centralized network view

provided to multiple control apps as a database

SDN trend

● Startup
● Accademic research

Software Defined Networking

● A controller is a
software program that
sends and receives
OpenFlow from
network devices.

● The controller sends
OpenFlow entries for
the forwarding table

● Because the controller
must compute the flow
paths in software this is
usually known as
SOFTWARE DEFINED
NETWORKING.
The controller sends
OpenFlow entries for the
forwarding table

● Abbreviated to “SDN”

Controller Concepts

● Controller drives a level of network convergence that was
previously unimaginable.

● Consider changing all the configuration on your network to
support new network path every 10 minutes ?

● Todays’ tools cannot do that.

● SNMP can’t do configuration. CLI programming is too diverse
between vendors (and no standards will ever solve that).

Why Software Defined Networking

● Separate hardware from software

– Choose hardware based on necessary features

– Choose software based on protocol requirements

● Logically centralized network control

– More deterministic

– More efficient

– More fault tolerant

● Separate monitoring, management, and operation from
individual boxes

● Flexibility and Innovation

SDN is not OpenFlow

● Often people point to OpenFlow as being
synonymous with SDN, but it is only a single
element in the overall SDN architecture.

● OpenFlow is an open standard for a
communications protocol that enables the
control plane to interact with the forwarding
plane

● Alternative protocols (see ONOS)

OpenFlow

OpenFlow Protocol

Data Path (Hardware)

Control Path OpenFlow

Controller
(Server Software)

App App App

Separate Control from Datapath

Research Experiments

Cache flow decisions in datapath

“If header = x, send to port 4”

“If header = ?, send to me”
“If header = y, overwrite header with z, send to ports 5,6”

Flow
Table

<Match, Action>

• Match arbitrary bits in headers:

– Match on any header, or new header
– Allows any flow granularity

• Action
– Forward to port(s), drop, send to controller
– Overwrite header with mask, push or pop
– Forward at specific bit-rate

•

Header Data

Match: 1000x01xx0101001x

Slicing Traffic

All network traffic

Research
traffic

Experiment #1

Experiment #2

…

Experiment N

SDN vs NFV

● Software-Defined Networking (SDN), Network functions Virtualization (NFV)
and Network Virtualization (NV), are all complementary approaches.

● They each offer a new way to design deploy and manage the network and its
services:

– SDN separates the network’s control (brains) and forwarding (muscle)
planes and provides a centralized view of the distributed network for more
efficient orchestration and automation of network services.

– NFV focuses on optimizing the network services themselves. NFV
decouples the network functions, such as DNS, Caching, etc., from
proprietary hardware appliances, so they can run in software to accelerate
service innovation and provisioning, particularly within service provider
environments.

– NV ensures the network can integrate with and support the demands of
virtualized architectures, particularly those with multi-tenancy
requirements.

Network Functions Virtualization
(NFV)

● NFV decouples the network functions (NAT, firewalling, IDS,
DNS, caching, etc.), from proprietary hardware appliances, so
they can run in software.

● It utilizes standard IT virtualization technologies that run on
high-volume service, switch and storage hardware to virtualize
network functions.

● It is applicable to any data plane processing or control plane
function in both wired and wireless network infrastructures.

How a Managed Router Service
Would be Deployed with NFV

SDN and NFV Are Better Together

● These approaches are mutually beneficial, but are not dependent on one
another

● SDN contributes network automation that enables policy-based decisions
to orchestrate which network traffic goes where

● NFV focuses on the services, and NV ensures the network’s capabilities
align with the virtualized environments they are supporting

● Move functionality to software

● Use commodity servers and switches over proprietary appliances

● Leverage programmatic application interfaces (APIs)

● Support more efficient orchestration, virtualization and automation of
network services

Google WAN

● Two backbones
– Internet facing (user traffic)

– Datacenter traffic (internal)

● Widely varying requirements: loss sensitivity,
availability, topology, etc.

● Widely varying traffic characteristics: smooth/diurnal vs.
bursty/bulk

● Therefore: built two separate logical networks
– I-Scale (bulletproof)

– G-Scale (possible to experiment)

Google's OpenFlow WAN

Google SDN Experiences

● Much faster iteration time: deployed production-grade
centralized traffic engineering in two months
– fewer devices to update

– much better testing ahead of rollout

● Simplified, high fidelity test environment
– Can emulate entire backbone in software

● Hitless SW upgrades and new features
– No packet loss and no capacity degradation

– Most feature releases do not touch the switch

Google's conclusion

● OpenFlow is ready for real-world use
● SDN is ready for real-world use

– Enables rapid rich feature deployment

– Simplifies network management

● Google's datacenter WAN successfully runs on
OpenFlow
– Largest production network at Google
– Improved manageability

– Improved cost (too early to have exact numbers)

Opportunities

● Open data plane interface
– Hardware: easier for operators to change hardware, and for

vendors to enter market
– Software: can finally directly access device behavior

● Centralized controller
– Direct programmatic control of network

● Software abstractions on the controller
– Solve distributed systems problems only once, then just

write algorithms
– Libraries/languages to help programmers write net apps

Challenges

● Scalability (controller is bottleneck)
● Single point of failure (or small number)
● Latency to controller
● Needs new hardware or software
● Distributed system challenges still present

– Imperfect knowledge of network state

– Consistency issues between controllers

● Security

Ideas?

● Cloud virtualization
– Create separate virtual networks for tenants

– Allow flexible placement and movement of VMs

● WAN traffic engineering
– Drive utilization to near 100% when possible

– Protect critical traffic from congestion

● Key characteristics of the above
– Special-purpose deployments with less diverse hardware

– Existing solutions aren’t just annoying, they don’t work!

Range of new apps in research

● Environments
– Mobility
– Control of wireless infrastructure
– Performance optimization
– ...

● Infrastructure / “northbound APIs”
– Programming languages
– APIs to assist policy-compliant updates
– Verification
– ...

Questions

● When does the SDN controller send
instructions to switches?
– ...in the OpenFlow paper? reactive

– ...other options? proactive

● How does SDN affect reliability?
– More bugs in the network, or fewer?

Security: SDN Architecture

Security: SDN Architecture

Categorization of SDN Security
Research

Categorization of SDN Security
Research

Open Research Areas

● Moving Target Defense
– Exploiting the dynamic and adaptive capabilities of

SDN

● Trust (Application-Enabled SDN)
– Application-Control Interface and Control-Data

Interface

● Securing the Network Map

Controller: we are looking for

● clean code base (not a slick GUI or ground-breaking
performance),

● versatile core (not ad-hoc solutions like STP to common
problems),

● decent set of built-in components (e.g., device/switch query
interface, access to topology, links and routing),

● quick deployment cycle (i.e., it should take a few minutes to
compile your changes and fire up the controller),

● active development (i.e., presence of developers constantly
contributing to the code base),

● some documentation (not just a API reference).

Controller

Feauters NOX POX Beacon Floodlight OpenDaylight Trema

Language
supported

C, C++,
Python

Python Java Java,
Python

Java C,
Ruby

Actively
developed

N Y Mainteined Y Y Y

Active
community

N Y Y Y Y N

Is
documented?

N N Y Y some Y

Writing Your Own Controller

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

